DLP Project

2009




P

Introduction

* Use the NVIDIA Compute Unified Device Architecture
(CUDA) Graphic Processor Unit (GPU) programming
environment to explore

e Data-parallel hardware

e Programming environments

* Goals
e Explore the space of parallel algorithms

e Understand how the data-parallel hardware scales
performance with more resources

e Utilize the data-parallel programming model

5/22/2009 2



ToolChain

* CUDA programming environment

e Computer support

« Snake machines in ece department
» Your machine (NVIDIA G8o and CUDA environment )

e Gotchas
e Make sure no one else is on console if remote

mamba<2044> who
Yliu pts/1 May 11 20:54 (d178-58-orchard-1.ucdavis.edu)

* You will get device permission error, if someone else on
console.

5/22/2009 3



Setup

* Login to correct system:

e Support has installed the NVIDIA driver, CUDA toolkit,
and CUDA SDK onto :

- adder mamba gopher crowned rattle cobra rat redbelly
asp boa krait viper

e The CUDA toolkit i1s installed under /opt/cuda and the
CUDA SDK 1s installed under /opt/cuda-SDK.

» Setup environment variables:
setenv PATH ${PATH}:/opt/cuda’bin
setenv LD LIBRARY_PATH ${LD LIBRARY_PATH}:/opt/cuda/lib

* These can be added to the ~/.cshrc file or run
manually.

5/22/2009 4



Sample Code

* Flops (floating-point operations per second)

* Sum

* Branch

e Provide the framework to analyze branch effect on
performance

5/22/2009 5



Using CUDA

* Code install
e Flops code
e Sum code
e Branch code

* Evaluation mode setup
* Specific Tasks

5/22/2009 6



P e

Code Install

* Upload the branch.tar file into your
NVIDIA_CUDA_SDK /projects directory on a snakes
system

* Untar the directory tree

e tar —xf branch.tar
* You should see the directory NVIDIA_CUDA_SDK
* Compile and run the program

e make clean
e make

e bin/linux/release/branch

5/22/2009 7



P e

Task 1-Performance Scaling
* Goal

e How much work you can get out of the GPU with various
configurations of

o Threads
» Blocks

e Tasks:

e Determine how performance in GFlops scales when
changing threads per block

e Determine how performance in GFlops scales with the
number of blocks.

5/22/2009 8



P

Task 2-Data Elements per Thread

* Note: If you have not installed and modified the sum
project as specified in the optional section of the
warmup, you must do that before continuing on in the
project.

* Make sure your sum project adds up 1K (1024) elements
in shared memory

* Tasks:

e See how performance scales as you vary the amount of
work per thread.

e Does the performance track with your expectations,
given the GPU architecture? Explain why or why not.

5/22/2009 9



P e

Task 3-Branch Effect on Performance

® One branch made in the kernel.
e Call bigfunctiona or bigfunctionb

e Extend the branch code and measure performance at all

the other branch granularities: 256, 128, 64, 32, 16, §, 4,...
testKernel() {

if (threadldx.x == 0) {

bigfunctiona();

} else if (threadldx.x ==1) {
bigfunctionb();

} else if (threadldx.x == 2) {
bigfunctionc();

}else ...

J

5/22/2009 10



P e

Task 3-Branch Effect on Performance

® Tasks:

e See how performance scales with branch granularity,
from 1 to 256 branches.

e Save the source code for the version of your code that
does 256 branches for handing in.

5/22/2009 u



P e

Warmup Problems (2)

* SUM 1000 elements
e Modify the sum project to parallelize the code

e Use 500 threads for the first addition, 250 for the next
addition, and so on

e Remove the print statements before you run

5/22/2009 12



P e

Submission

e Use the SmartSite to turn in

e The working source code for the sum program, and the
branch program (256-branch kernel),

e The pdf report

A text file named “README” that describes what you
made changes on the source code.

* Due Date: Wed. 3 June at 5PM

5/22/2009 13



	DLP Project
	Introduction
	ToolChain
	Setup
	Sample Code
	Using CUDA
	Code Install
	Task 1-Performance Scaling
	Task 2-Data Elements per Thread
	Task 3-Branch Effect on Performance
	Task 3-Branch Effect on Performance
	Warmup Problems (2)
	Submission

