
Lecture 20
Wrapup

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

Also thanks to …

• Kathy Yelick, for her slides on “A Berkeley View on the
Parallel Computing Landscape”

4

Old: Transistors are Expensive; Power is Free

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

Scaling clock speed (business as usual) will not work

New: Power Wall Can put more transistors on a
chip than can afford to turn on

5

Very Old: Multiplies Slow, Loads fast
 Design algorithms to reduce floating point operations
 Machines measured on peak flop/s

4

Very Old: Multiplies Slow, Loads fast

! Design algorithms to reduce floating point operations

! Machines measured on peak flop/s

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM

#1

#500

1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

Data from top500.org

Linpack: Flop/s Benchmark

6

New: Memory Performance is Key

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1980 1985 1990 1995 2000

DRAM

CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce

“Mooreʼs Law”
1000

Ever-growing processor-memory performance gap

• Total chip performance still growing with Moore’s Law
• Bandwidth rather than latency will be growing concern

7

New: Clock Scaling Bonanza Has Ended
 Chip density is

continuing increase
~2x every 2 years
 Clock speed is not
 Number of processor

cores may double
instead

 There is little or no
hidden parallelism
(ILP) to be found

 Parallelism must be
exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

Single-core performance slowing

Jim Larus, Microsoft, from a talk at UC Davis in May 2009

9

Old: Parallelism only for High End Computing

10

New: Parallelism by Necessity

“This shift toward increasing parallelism is not a
triumphant stride forward based on breakthroughs in
novel software and architectures for parallelism;
instead, this plunge into parallelism is actually a
retreat from even greater challenges that thwart
efficient silicon implementation of traditional
uniprocessor architectures.”

 Kurt Keutzer, Berkeley View, December 2006
 HW/SW Industry bet its future that breakthroughs will

appear before it’s too late

11

Conventional Wisdom (CW)
 in Computer Architecture

1. Old CW: Power is free, but transistors expensive
 New CW: Power wall Power expensive, transistors “free”

 Can put more transistors on a chip than have the power to turn on

2. Very Old CW: Multiplies slow, but loads fast
 New CW: Memory wall Loads slow, multiplies fast

 200 clocks to DRAM, but even FP multiplies only 4 clocks

3. Old CW: More ILP via compiler/architecture innovation
 Branch prediction, speculation, Out-of-order execution, VLIW, …

 New CW: ILP wall Diminishing returns on more ILP
4. Old CW: 2X CPU Performance every 18 months
 New CW: Power + Memory + ILP Walls = Brick Wall
5. Old CW: Parallelism is only for Scientific fringe
 New CW: Parallelism is everywhere

12

7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Model &

Systems Software:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

What do you see as future
directions for higher-performance

computing?

14

Example Applications in Health
 Imagine a “digital body double”

 3D image-based medical record
 Includes diagnostic, pathologic, and other information

 Used for:
 Diagnosis
 Less invasive surgery-by-robot
 Experimental treatments
 Real-time diet and exercise

recommendations

Existing
simulations
• Heart
• Lung
• Brain
• Kidney
• Bone mass

RMS Applications

• Chen et al., Convergence of Recognition, Mining, and Synthesis
Workloads and Its Implications. Proceedings of the IEEE, May 2008.

RMS App Commonality

17

 Old Conventional Wisdom: Use old programs to
evaluate future computers
 For example, SPEC2006, EEMBC
 Tied to peculiarities of code artifact vs. fundamentals
 Black-box benchmarks: don’t understand or change

internals
 Berkeley View

 Computer HW and SW designers must understand
applications

 Killer apps for future systems are not yet known:
understand the building blocks and algorithmic trends

Apps and Kernels Tower:
What are the problems?

18

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Phillip Colella’s “Seven dwarfs”

 A dwarf is a pattern of
computation and
communication

 Dwarfs are well-
defined targets from
algorithmic, software,
and architecture
standpoints

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

19

Do dwarfs work well outside HPC?
 Examine use of 7 dwarfs elsewhere
1. Embedded Computing (EEMBC benchmark)
2. Desktop/Server Computing (SPEC2006)
3. Data Base / Text Mining Software

 Advice from Jim Gray of Microsoft and Joe Hellerstein of UC

4. Games/Graphics/Vision
5. Machine Learning

 Advice from Mike Jordan and Dan Klein of UC Berkeley

 Result: Added 7 more dwarfs, revised 2
original dwarfs, renumbered list

20

Dwarf Use (Red Important → Blue Not)

1. Embedded
(42 EEMBC
benchmarks)

Smart
phones

Sensor Nets

Media
Players

Cameras

21

Dwarf Use (Red Important → Blue Not)

2. Desktop/Server
(28 SPEC2006
benchmarks)

Laptops

Servers

22

Dwarf Use (Red Important → Blue Not)

3. Database / Text
Mining

23

Dwarf Use (Red Important → Blue Not)

4. Video
Games

24

Dwarf Use (Red Important → Blue Not)

5. Machine
Learning

Automobiles

Robots

25

Dwarf Use (Red Important → Blue Not)

26

Roles of Dwarfs
1. Give us a vocabulary/organization to talk across

disciplinary boundaries
2. Define minimum set of necessary functionality for

new hardware/software systems
3. Define building blocks for creating libraries that cut

across application domains
4. “Anti-benchmarks” not tied to code or language

artifacts ⇒ encourage innovation in algorithms,
languages, data structures, and/or hardware

5. They decouple research, allowing analysis of HW &
SW programming support without waiting years for
full app development

27

 Power limits leading edge chip designs
 Intel Tejas Pentium 4 cancelled due to power issues

 Yield on leading edge processes dropping
dramatically
 IBM quotes yields of 10–20% on 8-processor Cell

 Design/validation leading edge chip is
becoming unmanageable
 Verification teams > design teams on leading edge

processors

Hardware Tower:
What are the problems?

28

HW Solution: Small is Beautiful
 Expect modestly pipelined (5- to 9-stage)

CPUs, FPUs, vector, SIMD PEs
 Small cores not much slower than large cores

 Parallel is energy efficient path to performance:
Power = CV2F
 Lower voltage, and increase parallelism lowers energy per op

 Redundant processors can improve chip yield
 Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

 Small, regular processors easier to verify
 One size fits all?

 Amdahl’s Law ⇒ Heterogeneous processors?

29

Number of Cores/Socket
 We need revolution, not evolution
 Software or architecture alone can’t fix parallel

programming problem, need innovations in both
 “Multicore” 2X cores per generation: 2, 4, 8, …
 “Manycore” 100s is highest performance per unit area,

and per Watt, then 2X per generation:
64, 128, 256, 512, 1024 …

 Multicore architectures, programming models,
and applications good for 2 to 32 cores won’t
evolve to Manycore systems of 1000’s of cores
⇒ Desperately need HW/SW models that work for
Manycore or will run out of steam
(as ILP ran out of steam at 4 instructions)

30

7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Model &

Systems Software:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success? (Inspired by a view of the

Golden Gate Bridge from Berkeley)

31

 Primary recent focus on correctness, not
performance
 Relied on “Moore’s Law” to make programs faster

 New generation of performance programmers
 Why parallel if performance doesn’t matter?

 Programming model must balance productivity and
implementation efficiency
 Enable software industry for manycore
 Usable by most programmers

Programming Model:
What are the problems?

32

Old CW in Programming Models
 Design new hardware with exotic performance

features
 Hand to software communication

 Develop new compiler technology and wait for maturity
and integration into commercial compilers

 Takes ~10 years in practice
 Compilers should

 Compiler arbitrary code efficiently
 Hide performance issues from programmer
 Run quickly (secs-mins, human is in the loop)

 Search for the holy grail language
 One language for all problems

33

New CW in Programming Models
 Feature creep in languages annotations
 de facto new languages

 Programs written in many languages
 Python, C++, Perl, Java, Javascript, C#,…

 Automatic performance tuning
 Use machine time in place of human time for tuning
 Search over possible implementations
 Autotuned libraries for dwarfs (up to 10x speedup)

•Spectral (FFTW, Spiral)
•Dense (Atlas, PHiPAC)

•Sparse (OSKI)
•Structured (OSKI’)

Software complexity

Jim Larus, Microsoft, from a talk at UC Davis in May 2009

35

1. ≈ Only companies can build HW, and it takes years
2. Software people don’t start working hard until

hardware arrives
• 3 months after HW arrives, SW people list everything that must

be fixed, then we all wait 4 years for next iteration of HW/SW

3. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

4. Can avoid waiting years between HW/SW iterations?

Measuring Success:
What are the problems?

36

Rapid Prototyping with FPGAs
“Research Accelerator for Multi-Processors”

 Multi-University collaboration developing FPGA “gateware” for manycore
emulations (10 faculty at UCB, CMU, MIT, Stanford, Texas, Washington)

Enables rapid interaction between hardware
and software developers

 “Tapeout” every day, not once in five years
 Fast enough (100MHz) for software development

RAMP Design Language (RDL) provides
“gateware linker” and cycle-accurate
timing models.

 All operations (DRAM access, FP multiply, disk access) take exact
same number of clock cycles as on desired target machine

Multiple machine styles in progress
 RAMP Blue (UC Berkeley) cluster/message-passing
 RAMP Red (Stanford) transactional memory
 RAMP White (Everyone) cache-coherent CMP

RAMP Blue, January 2007
256 RISC cores @100MHz
Works! Runs UPC version
of NAS benchmarks.

• Speedup due to enhancement E:

• Suppose that enhancement E accelerates a fraction F
of the task by a factor S and the remainder of the task
is unaffected:

• Design Principle: Make the common case fast!

Amdahl’s Law

Speedup(E) =
Execution Time without E
Execution Time with E

=
Performance with E

Performance without E

Execution time (with E) = ((1− F) + F/S) · Execution time (without E)

Speedup (with E) =
1

(1− F) + F/S

Why EEC 171?

• Old CW: Don’t bother parallelizing your application, as you can just wait a little
while and run it on a much faster sequential computer.

• New CW: It will be a very long wait for a faster sequential computer.

• Old CW: Increasing clock frequency is the primary method of improving processor
performance.

• New CW: Increasing parallelism is the primary method of improving processor
performance.

• Old CW: Less than linear scaling for a multiprocessor application is failure.

• New CW: Given the switch to parallel computing, any speedup via parallelism is a
success.

Extracting Yet More Performance
• Two options:

• Increase the depth of the pipeline to increase the clock
rate — superpipelining

• How does this help performance? (What does it impact in the
performance equation?)

• Fetch (and execute) more than one instruction at one
time (expand every pipeline stage to accommodate
multiple instructions) — multiple-issue

• How does this help performance? (What does it impact in the
performance equation?)

• Today’s topic! seconds
program =

instructions
program × cycles

instruction ×
seconds
cycle

Instruction vs Machine Parallelism

• Instruction-level parallelism (ILP) of a program – a
measure of the average number of instructions in a
program that a processor might be able to execute at
the same time

• Mostly determined by the number of true (data)
dependencies and procedural (control) dependencies in
relation to the number of other instructions

• ILP is traditionally “extracting parallelism from a single
instruction stream working on a single stream of data”

Instruction vs Machine Parallelism

• Machine parallelism of a processor – a measure of the
ability of the processor to take advantage of the ILP of
the program

• Determined by the number of instructions that can be
fetched and executed at the same time

• To achieve high performance, need both ILP and
machine parallelism

Why is ILP a good idea? If you were
designing a computer system, why
would you choose ILP instead of,

say, multiple processors?

What kind of code has lots of ILP?
What kind of code has little ILP?

Machine Parallelism

• There are 2 main approaches for machine parallelism.
Responsibility of resolving hazards is …

• Primarily hardware-based—“dynamic issue”, “superscalar”

• Primarily software-based—“VLIW”

Growing complexity …

Small fraction for datapath

AMD “Deerhound” (K8L)

chip-architect.com

How does out-of-order issue help?

How does out-of-order completion
help?

How does register renaming help?

Static Multiple Issue Machines (VLIW)

• Static multiple-issue processors (aka VLIW) use the
compiler to decide which instructions to issue and
execute simultaneously

• Issue packet—the set of instructions that are bundled
together and issued in one clock cycle—think of it as
one large instruction with multiple operations

• The mix of instructions in the packet (bundle) is usually
restricted—a single “instruction” with several
predefined fields

• The compiler does static branch prediction and code
scheduling to reduce (ctrl) or eliminate (data) hazards

What’s good about VLIW?
What’s bad about VLIW?

Predication
• Predication can be used to eliminate branches by making the

execution of an instruction dependent on a “predicate”, e.g.,

 if (p) {statement 1 } else {statement 2 }

 would normally compile using two branches. (Why?) With predication
it would compile as
 (p) statement 1

 (~p) statement 2

• The use of (condition) indicates that the instruction is
committed only if condition is true

• Predication can be used to speculate as well as to eliminate
branches

Speculation
• Speculation is used to allow execution of future

instructions that (may) depend on the speculated
instruction

• Speculate on the outcome of a conditional branch
(branch prediction)

• Compare to out-of-order machine with branch prediction

• Speculate that a store (for which we don’t yet know the
address) that precedes a load does not refer to the
same address, allowing the load to be scheduled before
the store (load speculation)

• Original loop
allows us to
increment
either r0 or r1:
x[r0]=x[r0]+r1

• Profile says
incrementing r1
is much more
common

• Optimize for
that case

Trace Scheduling1316 P. P. CHANG, S. A. MAHLKE AND W.-M. W. HWU

(a)

(b)

Figure 9. An example of super-block global variable migration: (a) original program segment; (b)
program segment after global variable migration

5.
6.
7.

8.

The

op (x) and op (y) are incremented by the same value, i.e. K1 = K2 *

There are no branch instructions between op (x) and op (y).
For each operation op (j) in which src (j) contains dest (x), either j = x or all
elements of src (j) except dest (x) are loop invariant.
All uses of dest (x) can be modified to dest (y) in the super-block without
incurring time penalty.†

action function of induction variable elimination consists of four steps:

1. op (x) is deleted.
2. A subtraction instruction op (m), dest (m) ! dest (x) – dest (y), is inserted after

the last instruction in the preheader of the super-block loop.
3. For each instruction op (a) which uses dest (x), let other_src (a) denote the

* The restriction of predicate 5(K1 = K2) can be removed in some special uses of dest (x); however, these special
uses are too complex to be discussed in this paper.

† For example, if we know that dest (x) = dest (y) + 5 because of different initial values, then a (branch if not
equal) bne(dest (x),0) instruction is converted to a bne(dest (y), -5) instruction. For some machines, bne(dest (y), -5)
needs to be broken down to a compare instruction plus a branch instruction; then, the optimization may degrade
performance.

Chang et al. SPE Dec. 1991

ILP Summary
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP

• Works when can’t know dependence at compile time

• Can hide L1 cache misses

• Code for one machine runs well on another

Flynn’s Classification Scheme

• SISD – single instruction, single data stream

• Uniprocessors

• SIMD – single instruction, multiple data streams

• single control unit broadcasting operations to multiple datapaths

• MISD – multiple instruction, single data

• no such machine (although some people put vector machines in this
category)

• MIMD – multiple instructions, multiple data streams

• aka multiprocessors (SMPs, MPPs, clusters, NOWs)

Continuum of Granularity
• “Coarse”

• Each processor is more
powerful

• Usually fewer
processors

• Communication is more
expensive between
processors

• Processors are more
loosely coupled

• Tend toward MIMD

• “Fine”

• Each processor is less
powerful

• Usually more
processors

• Communication is
cheaper between
processors

• Processors are more
tightly coupled

• Tend toward SIMD

What kind of problems are good
for coarse-grained parallelism?
What kind of problems are good

for fine-grained parallelism?

Simultaneous multithreading (SMT)

Centralized vs. Distributed Memory

Centralized Memory Distributed Memory

Scale

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

2 Classes of Cache Coherence Protocols

• Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

• Snooping — Every cache with a copy of data also has a
copy of sharing status of block, but no centralized
state is kept

• All caches are accessible via some broadcast medium (a
bus or switch)

• All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block
that is requested on a bus or switch access

Types of Communication

1 to 1

N to 1

1 to N

N to M

SIMD Instructions

Cray-1 (1976)
Single Port

Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80 MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element Vector
Registers

CM-2 Hardware Overview82C c a M M

Figure 9. The CM-2 parallel processing unit

Parallel processing instructions issued by the front-end computer are received by the sequencer,

which interprets them to produce a series of single-cycle "nanoinstructions." The nanoinstructions

are broadcast over the instruction bus to thousands of data processors. Each data processor has its

own memory.

All processors can access their respective memories simultaneously. Alternatively, the sequencer can

access this memory serially, one 32-bit word at a time, over the scalar memory bus. The data proces-

sors can emit one datum apiece, and their combined value is delivered to the sequencer on the global

result bus. The data processors can exchange information among themselves in parallel through rout-

ing, NEWS, and scanning mechanisms; these are in turn connected to the I/O interfaces.

from/to Front End Computer

- -

Connection Machine Model CM-2 Technical Summarry82

CUDA Hardware Abstraction���#&�$� � � ���$�(�$�� � # � � � ! & � & � " !

�

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

!Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

�

�%�&�"������� '�&�#$"��%%"$%�(�&��"!����#�%��$��� � "$*��

� � � ' $ � �� � ���� � $ � (� $ � �� " � � � �
�

���
) � � ' & � " ! �� " � � � �
� �� � � � �� � �� � ��� � �� � �
 � � �� � �� �
 � � � � ������� �� � � �
 � �� ! �� �
 � � � � � �� � � �� ��� � � � �� � �
 � � �
� � �� �
 � �� � � � ��� �
 � � � � � �� � ��� �� � � � �� � �
 � � � � �� �
��� ��
 � �� � �� � � � � �� � ���
 � 	 � �� � � � � � ����
� � � �� � � �
 � � � � � �!"#$%����
��� ���� � �� �� � ��� �
���� �� � ���� �� �� � �� � ��� ��� ���� ��� � � ��

 � � � � � �� � � �!"#$&%'()� �� � � �� � �� �
 � � � � �� ! �� � � �� � � � � � ��
 � � ��� �� � �� �
 � 	 � �� � � � � � � � �� �*+#)",&
%-+),./)#�� � � � � � �
 � � � ! �� � � �
 � � � �� � � � �� � � ���� � ����������������� ���"�����������������

�

��� � � � �
 �� $ " � $ � � ! � �� ' � � � �� � $% � " ! �� � 	 � ��

Data-Parallel Algorithms

• Efficient algorithms require efficient building blocks

• Data-parallel building blocks

• Map

• Gather & Scatter

• Reduce

• Scan

• Sort

