
Lecture 11
Thread Level Parallelism (4)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

Programming Model 1: Shared Memory

• Program is a collection of threads of control.

• Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables

• Also a set of shared variables, e.g., static variables, shared common
blocks, or global heap.

• Threads communicate implicitly by writing and reading shared
variables.

• Threads coordinate by synchronizing on shared variables

Shared Memory

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

Programming Model 2: Message Passing

• Program consists of a collection of named processes.

• Usually fixed at program startup time

• Thread of control plus local address space—NO shared data.

• Logically shared data is partitioned over local processes.

PnP1P0

y = ...s...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

Machine Model 2a: Distributed Memory
• Cray T3E, IBM SP2

• PC Clusters (Berkeley NOW, Beowulf)

• IBM SP-3, Millennium, CITRIS are distributed memory machines, but
the nodes are SMPs.

• Each processor has its own memory and cache but cannot directly
access another processor’s memory.

• Each “node” has a Network Interface (NI) for all communication and
synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

Tflop/s Clusters
• The following are examples of clusters configured out of separate networks and

processor components

• 72% of Top 500 (Nov 2005), 2 of top 10

• Dell cluster at Sandia (Thunderbird) is #4 on Top 500

• 8000 Intel Xeons @ 3.6GHz

• 64TFlops peak, 38 TFlops Linpack

• Infiniband connection network

• Walt Disney Feature Animation (The Hive) is #96

• 1110 Intel Xeons @ 3 GHz

• Gigabit Ethernet

• Saudi Oil Company is #107

• Credit Suisse/First Boston is #108

Machine Model 2b: Internet/Grid Computing
• SETI@Home: Running on 500,000 PCs

• ~1000 CPU Years per Day, 485,821 CPU Years so far

• Sophisticated Data & Signal Processing Analysis

• Distributes Datasets from Arecibo Radio Telescope
Next Step—

Allen Telescope
Array

mailto:SETI@Home
mailto:SETI@Home

Arecibo message

http://en.wikipedia.org/wiki/Image:Arecibo_message.svg

http://en.wikipedia.org/wiki/Image:Arecibo_message.svg
http://en.wikipedia.org/wiki/Image:Arecibo_message.svg

Programming Model 2c: Global Address Space

• Program consists of a collection of named threads.

• Usually fixed at program startup time

• Local and shared data, as in shared memory model

• But, shared data is partitioned over local processes

• Cost model says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran

• Global Address Space programming is an intermediate point between message
passing and shared memory

PnP1P0 s[myThread] = ...

y = ..s[i] ...
i: 2 i: 5 Private

memory

Shared memory

i: 8

s[0]: 27 s[1]: 27 s[n]: 27

Machine Model 2c: Global Address Space
• Cray T3D, T3E, X1, and HP Alphaserver cluster

• Clusters built with Quadrics, Myrinet, or Infiniband

• The network interface supports RDMA (Remote Direct Memory Access)

• NI can directly access memory without interrupting the CPU

• One processor can read/write memory with one-sided operations (put/get)

• Not just a load/store as on a shared memory machine

• Continue computing while waiting for memory op to finish

• Remote data is typically not cached locally

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
Global address
space may be
supported in
varying degrees

Programming Model 3: Data Parallel
• Single thread of control consisting of parallel operations.

• Parallel operations applied to all (or a defined subset) of a data structure, usually
an array

• Communication is implicit in parallel operators

• Elegant and easy to understand and reason about

• Coordination is implicit—statements executed synchronously

• Similar to Matlab language for array operations

• Drawbacks:

• Not all problems fit this model

• Difficult to map onto coarse-grained machines A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

Programming Model 4: Hybrids

• These programming models can be mixed

• Message passing (MPI) at the top level with shared memory within a
node is common

• New DARPA HPCS languages mix data parallel and threads in a global
address space

• Global address space models can (often) call message passing libraries
or vice versa

• Global address space models can be used in a hybrid mode

• Shared memory when it exists in hardware

• Communication (done by the runtime system) otherwise

Machine Model 4: Clusters of SMPs

• SMPs are the fastest commodity machine, so use them as a building block for a
larger machine with a network

• Common names:

• CLUMP = Cluster of SMPs

• Hierarchical machines, constellations

• Many modern machines look like this:

• Millennium, IBM SPs, ASCI machines

• What is an appropriate programming model for #4?

• Treat machine as “flat”, always use message passing, even within SMP (simple, but
ignores an important part of memory hierarchy).

• Shared memory within one SMP, but message passing outside of an SMP.

Challenges of Parallel Processing

• Application parallelism ⇒ primarily via new algorithms that have

better parallel performance

• Long remote latency impact ⇒ both by architect and by the

programmer

• For example, reduce frequency of remote accesses either by

• Caching shared data (HW)

• Restructuring the data layout to make more accesses local (SW)

• Today’s lecture on HW to help latency via caches

Fundamental Problem

• Many processors working on a task

• Those processors share data, need to communicate,
etc.

• For efficiency, we use caches

• This results in multiple copies of the data

• Are we working with the right copy?

Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to multiple
processors inside a single chip

• Caches:

• Private data are used by a single processor

• Shared data are used by multiple processors

• Caching shared data:

• reduces latency to shared data, memory bandwidth for
shared data, and interconnect bandwidth

• introduces a cache coherence problem

Example Cache Coherence Problem

• Processors see different values for u after event 3

• With write back caches, value written back to memory depends on happenstance of
which cache flushes or writes back value when

• Processes accessing main memory may see very stale value

• Unacceptable for programming, and it’s frequent!

u:5 I/O devices

Memory

P1

$

P2

$

P3

$4
u = ?

5
u = ?

1

u:5

2

u:5

3

u:7

Intuitive Memory Model
• Reading an address should return the last value

written to that address

• Easy in uniprocessors, except for I/O

• Too vague and simplistic; 2 issues

• Coherence defines values returned by a read

• Consistency determines when a written value will be
returned by a read

• Coherence defines behavior for same processor,
Consistency defines behavior for other processors

Defining Coherent Memory System

• Preserve Program Order: A read by processor P to
location X that follows a write by P to X, with no writes
of X by another processor occurring between the write
and the read by P, always returns the value written by
P

• P writes D to X

• Nobody else writes to X

• P reads X -> always gives D

Defining Coherent Memory System

• Coherent view of memory: Read by a processor to
location X that follows a write by another processor to
X returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

• P1 writes D to X

• Nobody else writes to X

• … wait a while …

• P2 reads X, should get D

Defining Coherent Memory System

• Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all
processors

• If not, a processor could keep value 1 since saw as last
write

• For example, if the values 1 and then 2 are written to a
location, processors can never read the value of the
location as 2 and then later read it as 1

Write Consistency
• For now assume

• A write does not complete (and allow the next write to occur) until all
processors have seen the effect of that write

• The processor does not change the order of any write with respect to
any other memory access

• ⇒ if a processor writes location A followed by location B, any

processor that sees the new value of B must also see the new value
of A

• These restrictions allow the processor to reorder reads, but forces
the processor to finish writes in program order

Basic Schemes for Coherence with Performance

• Program on multiple processors will normally have
copies of the same data in several caches

• Unlike I/O, where it’s rare

• SMPs use a HW protocol to maintain coherent caches

• Migration and Replication key to performance of shared
data

Basic Schemes for Coherence with Performance

• Migration—data can be moved to a local cache and
used there in a transparent fashion

• Reduces both latency to access shared data that is
allocated remotely and bandwidth demand on the
shared memory

• Replication—for reading shared data simultaneously,
since caches make a copy of data in local cache

• Reduces both latency of access and contention for read
shared data

2 Classes of Cache Coherence Protocols

• Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

• Snooping — Every cache with a copy of data also has a
copy of sharing status of block, but no centralized
state is kept

• All caches are accessible via some broadcast medium (a
bus or switch)

• All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block
that is requested on a bus or switch access

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on the shared medium (bus or switch)

• Does this transaction concern data that I have?

• If so, take action to ensure coherence

• invalidate (my val), update (my val), or supply (my value) (when, when, and when?)

• depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or update all copies on
write

State
Address
Data

Example: Write-thru Invalidate

• Must invalidate before step 3

• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

Architectural Building Blocks

• Cache block state transition diagram

• FSM specifying how disposition of block changes

• invalid, valid, exclusive

• Broadcast Medium Transactions (e.g., bus)

• Fundamental system design abstraction

• Logically single set of wires connect several devices

• Protocol: arbitration, command/address, data

• Every device observes every transaction

Architectural Building Blocks

• Broadcast medium enforces serialization of read or write accesses
⇒ Write serialization

• 1st processor to get medium invalidates others copies

• Implies cannot complete write until it obtains bus

• All coherence schemes require serializing accesses to same cache block

• Also need to find up-to-date copy of cache block (on read for
instance)

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

• Write through simpler if enough memory BW

• Write-back harder

• Most recent copy can be in a cache

• Can use same snooping mechanism

• Snoop every address placed on the bus

• If a processor has dirty copy of requested cache block, it provides it in response to a
read request and aborts the memory access

• Complexity from retrieving cache block from cache, which can take longer than
retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors

⇒ Most multiprocessors use write-back

Cache Resources for WB Snooping

• Normal cache tags can be used for snooping

• Valid bit per block makes invalidation easy

• Read misses easy since rely on snooping

• Writes ⇒ Need to know if any other copies of the block

are cached (“shared”)

• No other copies ⇒ No need to place write on bus for WB

• Other copies ⇒ Need to place invalidate on bus

Cache Resources for WB Snooping

• To track whether a cache block is shared, add extra
state bit associated with each cache block, like valid
bit and dirty bit

• Write to Shared block ⇒ Need to place invalidate on bus

and mark cache block as private (if an option)

• No further invalidations will be sent for that block

• This processor called owner of cache block

• Owner then changes state from shared to unshared (or
exclusive)

Cache behavior in response to bus
• Every bus transaction must check the cache-address tags

• could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags

• One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags

• Since L2 less heavily used than L1

• ⇒ Every entry in L1 cache must be present in the L2 cache, called the

inclusion property

• If Snoop gets a hit in L2 cache, then it must arbitrate for the L1 cache to
update the state and possibly retrieve the data, which usually requires
a stall of the processor

Example Protocol
• Snooping coherence protocol is usually implemented by

incorporating a finite-state controller in each node

• Logically, think of a separate controller associated with each cache
block

• That is, snooping operations or cache requests for different blocks can
proceed independently

• In implementations, a single controller allows multiple operations to
distinct blocks to proceed in interleaved fashion

• that is, one operation may be initiated before another is completed,
even through only one cache access or one bus access is allowed at
time

Example Write Back Snoopy Protocol
• Invalidation protocol, write-back

cache

• Snoops every address on bus

• If it has a dirty copy of requested
block, provides that block in
response to the read request and
aborts the memory access

• Each memory block is in one state:

• Clean in all caches and up-to-date
in memory (Shared)

• OR Dirty in exactly one cache
(Exclusive)

• OR Not in any caches

• Each cache block is in one state
(track these):

• Shared : block can be read

• OR Exclusive : cache has only
copy, it’s writeable, and dirty

• OR Invalid : block contains no
data (in uniprocessor cache too)

• Read misses: cause all caches to
snoop bus

• Writes to clean blocks are treated as
misses

Write-Back State Machine—CPU
CPU Read hit

• State machine
for CPU requests
for each
cache block

• Non-resident blocks
invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (conflicting addr?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine—Bus request

• State machine
for bus requests
 for each
cache block

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Write-back State Machine-III

Place read miss
on bus

• State machine
for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

Example

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

Example

Assumes A1 and A2 map to same cache block

Example

Assumes A1 and A2 map to same cache block

Example

Assumes A1 and A2 map to same cache block

Example

Assumes A1 and A2 map to same cache block

Example

Assumes A1 and A2 map to same cache block,
but A1 != A2

Performance of Symmetric Shared-Memory
Multiprocessors

• Cache performance is combination of

• Uniprocessor cache miss traffic

• Traffic caused by communication

• Results in invalidations and subsequent cache misses

• 4th C: coherence miss

• Joins Compulsory, Capacity, Conflict

Coherency Misses
• True sharing misses arise from the communication of data through

the cache coherence mechanism

• Invalidates due to 1st write to shared block

• Reads by another CPU of modified block in different cache

• Miss would still occur if block size were 1 word

• False sharing misses when a block is invalidated because some
word in the block, other than the one being read, is written into

• Invalidation does not cause a new value to be communicated, but only
causes an extra cache miss

• Block is shared, but no word in block is actually shared
 ⇒ miss would not occur if block size were 1 word

Example: True v. False Sharing v. Hit?

• Assume x1 and x2 in same cache block.
 P1 and P2 both read x1 and x2 before.

Time P1 P2 True, False, Hit? Why?
1 Write x1
2 Read x2
3 Write x1
4 Write x2
5 Read x2

True miss; invalidate x1 in P2
False miss; x1 irrelevant to P2
False miss; x1 irrelevant to P2
False miss; x1 irrelevant to P2
True miss; invalidate x2 in P1

Review

• Caches contain all information on state of cached
memory blocks

• Snooping cache over shared medium for smaller MP
by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values returned

by a read), Consistency (when a written value will be
returned by a read)

A Cache Coherent System Must:
• Provide set of states, state transition diagram, and actions

• Manage coherence protocol

• (0) Determine when to invoke coherence protocol

• (a) Find info about state of block in other caches to determine action

• whether need to communicate with other cached copies

• (b) Locate the other copies

• (c) Communicate with those copies (invalidate/update)

• (0) is done the same way on all systems

• state of the line is maintained in the cache

• protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

Bus-based Coherence
• All of (a), (b), (c) done through broadcast on bus

• faulting processor sends out a “search”

• others respond to the search probe and take necessary action

• Could do it in scalable network too

• broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with p

• on bus, bus bandwidth doesn’t scale

• on scalable network, every fault leads to at least p network transactions

• Scalable coherence:

• can have same cache states and state transition diagram

• different mechanisms to manage protocol

Scalable Approach: Directories

• Every memory block has associated directory
information

• keeps track of copies of cached blocks and their states

• on a miss, find directory entry, look it up, and
communicate only with the nodes that have copies if
necessary

• in scalable networks, communication with directory and
copies is through network transactions

• Many alternatives for organizing directory information

Basic Operation of Directory

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• If dirty-bit ON then { recall line from dirty proc (cache state to shared); update memory;
turn dirty-bit OFF; turn p[i] ON; supply recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all caches that have the
block; turn dirty-bit ON; turn p[i] ON; ... }

• • ...

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit

Directory Protocol
• Similar to Snoopy Protocol: Three states

• Shared: ≥ 1 processors have data, memory up-to-date

• Uncached (no processor has it; not valid in any cache)

• Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which processors have data when in the
shared state (usually bit vector, 1 if processor has copy)

• Why isn’t this necessary for snoopy prot0col?

• Keep it simple:

• Writes to non-exclusive data => write miss

• Processor blocks until access completes

• Assume messages received and acted upon in order sent

Directory Protocol
• No bus and don’t want to broadcast:

• interconnect no longer single arbitration point

• all messages have explicit responses

• Terms: typically 3 processors involved

• Local node where a request originates

• Home node where the memory location of an address resides

• Remote node has a copy of a cache block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

Directory Protocol Messages (Fig 4.22)
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A
– Processor P reads data at address A;

make P a read sharer and request data
Write miss Local cache Home directory P, A
– Processor P has a write miss at address A;

make P the exclusive owner and request data
Invalidate Home directory Remote caches A
– Invalidate a shared copy at address A
Fetch Home directory Remote cache A
– Fetch the block at address A and send it to its home directory;

change the state of A in the remote cache to shared
Fetch/Invalidate Home directory Remote cache A
– Fetch the block at address A and send it to its home directory;

invalidate the block in the cache
Data value reply Home directory Local cache Data
– Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data
– Write back a data value for address A (invalidate response)

State Transition Diagram for One Cache Block in Directory Based System

• States identical to snoopy case; transactions very
similar

• Transitions caused by read misses, write misses,
invalidates, data fetch requests

• Generates read miss & write miss message to home
directory

• Write misses that were broadcast on the bus for
snooping ⇒ explicit invalidate & data fetch requests

• Note: on a write, a cache block is bigger, so need to
read the full cache block

CPU—Cache State Machine
• State machine

for CPU requests
for each
memory block

• Invalid state
if in memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
messageCPU Write:

Send Write Miss
msg to home

directory

CPU Write: Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home directory

CPU read miss: send Data Write
Back message and read miss to

home directory

Shared
(read/only)

State Transition Diagram for Directory

• Same states & structure as the transition diagram for
an individual cache

• 2 actions: update of directory state & send messages
to satisfy requests

• Tracks all copies of memory block

• Also indicates an action that updates the sharing set,
Sharers, as well as sending a message

Directory State Machine
• State machine

for Directory requests
for each memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}

send Data Value
Reply

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Example Directory Protocol
• Message sent to directory causes two actions:

• Update the directory

• More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value;
only possible requests for that block are:

• Read miss: requesting processor sent data from memory & requestor
made only sharing node; state of block made Shared.

• Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only valid
copy is cached. Sharers indicates the identity of the owner.

Example Directory Protocol

• Message sent to directory causes two actions:

• Update the directory

• More messages to satisfy request

• Block is Shared ⇒ the memory value is up-to-date:

• Read miss: requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.

• Write miss: requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

Example Directory Protocol

• Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) ⇒ three

possible directory requests:

• Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to send
data to directory, where it is written to memory & sent back to
requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.

Example Directory Protocol

• Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) ⇒ three

possible directory requests:

• Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

Example Directory Protocol

• Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) ⇒ three

possible directory requests:

• Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

A1 and A2 map to the same cache block

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

A1 and A2 map to the same cache block

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

A1 and A2 map to the same cache block
Write Back

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

A1 and A2 map to the same cache block

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block
(but different memory block addresses A1 ≠ A2)

Processor 1 Processor 2 Interconnect MemoryDirectory

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

P1: pA

R/req

S

S

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

R/_

R/_

R/_
S

S

S

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pA
Read_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E

W/_

Inv/_

EX

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)
Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req E
W/_

I

E

W/req E

RU/_

A Popular Middle Ground

• Two-level “hierarchy”

• Individual nodes are multiprocessors, connected non-hiearchically

• e.g. mesh of SMPs

• Coherence across nodes is directory-based

• directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory

• orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

Another MP Issue: Memory Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that

• P1: A = 0; P2: B = 0;

 A = 1; B = 1;
 L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?

• What if write invalidate is delayed & processor
continues?

Another MP Issue: Memory Consistency Models

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved ⇒ assignments before ifs above

• SC: delay all memory accesses until all invalidates done

Memory Consistency Model
• Schemes faster execution to sequential consistency

• Not an issue for most programs; they are synchronized

• A program is synchronized if all access to shared data are ordered by synchronization
operations
 write (x)
 ...
 release (s) {unlock}
 ...
 acquire (s) {lock}
 ...
 read(x)

• Only those programs willing to be nondeterministic are not synchronized: “data
race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since most programs are
synchronized; characterized by their attitude towards: RAR, WAR, RAW, WAW
to different addresses

Relaxed Consistency Models: The Basics

• Key idea: allow reads and writes to complete out of order, but to use
synchronization operations to enforce ordering, so that a
synchronized program behaves as if the processor were sequentially
consistent

• By relaxing orderings, may obtain performance advantages

• Also specifies range of legal compiler optimizations on shared data

• Unless synchronization points are clearly defined and programs are
synchronized, compiler could not interchange read and write of 2
shared data items because might affect the semantics of the program

Relaxed Consistency Models: The Basics

• 3 major sets of relaxed orderings:

• W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that operate
under sequential consistency operate under this model, without
additional synchronization. Called processor consistency

• W → W ordering (all writes completed before next write)

• R → W and R → R orderings, a variety of models depending on
ordering restrictions and how synchronization operations enforce
ordering

• Many complexities in relaxed consistency models; defining precisely
what it means for a write to complete; deciding when processors can
see values that it has written

Mark Hill observation
• Instead, use speculation to hide latency from strict consistency

model

• If processor receives invalidation for memory reference before it is
committed, processor uses speculation recovery to back out
computation and restart with invalidated memory reference

• 1. Aggressive implementation of sequential consistency or
processor consistency gains most of advantage of more relaxed
models

• 2. Implementation adds little to implementation cost of speculative
processor

• 3. Allows the programmer to reason using the simpler programming
models

And in Conclusion …
• Snooping and Directory Protocols similar; bus makes snooping

easier because of broadcast (snooping -> uniform memory access)

• Directory has extra data structure to keep track of state of all cache
blocks

• Distributing directory:

• scalable shared address multiprocessor

• Cache coherent, Non uniform memory access

• MPs are highly effective for multiprogrammed workloads

• MPs proved effective for intensive commercial workloads, such as
OLTP (assuming enough I/O to be CPU-limited), DSS applications
(where query optimization is critical), and large-scale, web
searching applications

