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Transition to Today’s Topic

• Last week we looked at machines that were optimized 
for running many thread-parallel programs in parallel.

• Today we are looking at how to run one program with 
many threads in parallel.

• Why is this harder?



Outline
• Overview of parallel machines (~hardware) and programming models (~software)

• Shared memory

• Shared address space

• Message passing

• Data parallel

• Clusters of SMPs

• Grid

• Parallel machine may or may not be tightly coupled to programming model

• Historically, tight coupling

• Today, portability is important

• Trends in real machines



A generic parallel architecture
Proc
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Where is the memory physically located?
Is it connected directly to processors?

What is the connectivity of the network?



Centralized vs. Distributed Memory
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Beyond Programmable Shading: Fundamentals

What is a programming model?

• Is a programming model a language?
– Programming models allow you to express ideas in 

particular ways
– Languages allow you to put those ideas into practice
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Specification model (in domain of 
the application)

Computational model 
(representation of computation)

Programming model

Cost model (how computation maps 
to hardware)



Beyond Programmable Shading: Fundamentals

Writing Parallel Programs

• Identify concurrency in task
– Do this in your head

• Expose the concurrency when writing the 
task
– Choose a programming model and language that allow 

you to express this concurrency

• Exploit the concurrency 
– Choose a language and hardware that together allow 

you to take advantage of the concurrency
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Parallel Programming Models

• Programming model is made up of the languages and 
libraries that create an abstract view of the machine

• Control

• How is parallelism created?

• What orderings exist between operations?

• How do different threads of control synchronize?



Parallel Programming Models

• Programming model is made up of the languages and 
libraries that create an abstract view of the machine

• Data

• What data is private vs. shared?

• How is logically shared data accessed or 
communicated?



Parallel Programming Models

• Programming model is made up of the languages and 
libraries that create an abstract view of the machine

• Synchronization

• What operations can be used to coordinate parallelism?

• What are the atomic (indivisible) operations?

• Next slides



Segue: Atomicity
• Swaps between threads can happen any time

• Communication from other threads can happen any 
time

• Other threads can access shared memory any time

• Think about how to grab a shared resource (lock):

• Wait until lock is free

• When lock is free, grab it

• while (*ptrLock == 0) ;
*ptrLock = 1;



Segue: Atomicity
• Think about how to grab a shared resource (lock):

• Wait until lock is free

• When lock is free, grab it

• while (*ptrLock == 0) ;
*ptrLock = 1;

• Why do you want to be able to do this?

• What could go wrong with the code above?

• How do we fix it?



Parallel Programming Models

• Programming model is made up of the languages and 
libraries that create an abstract view of the machine

• Cost

• How do we account for the cost of each of the above?



Simple Example
• Consider applying a function f to the elements of an array A and then 

computing its sum: 

• Questions:

• Where does A live?  All in single memory? Partitioned?

• How do we divide the work among processors?

• How do processors cooperate to produce a single result?

A:

fA:
f
sum

A = array of all data
fA = f(A)

s = sum(fA)
s:

n−1∑

i=0

f(A[i])



Programming Model 1:  Shared Memory

• Program is a collection of threads of control.

• Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables 

• Also a set of shared variables, e.g., static variables, shared common 
blocks, or global heap.

• Threads communicate implicitly by writing and reading shared 
variables.

• Threads coordinate by synchronizing on shared variables



Shared Memory

PnP1P0

s      s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private 
memory

i: 8



Simple Example
• Shared memory strategy:

• small number p << n=size(A) processors 

• attached to single memory

• Parallel Decomposition: 

• Each evaluation and each partial sum is a task.

• Assign n/p numbers to each of p procs

• Each computes independent “private” results and 
partial sum.

• Collect the p partial sums and compute a global sum.

n−1∑

i=0

f(A[i])



Simple Example

• Two Classes of Data: 

• Logically Shared

• The original n numbers, the global sum.

• Logically Private

• The individual function evaluations.

• What about the individual partial sums?

n−1∑

i=0

f(A[i])



Shared Memory “Code” for Computing a Sum

• Each thread is responsible for half the input elements

• For each element, a thread adds that element to the a 
shared variable s

• When we’re done, s contains the global sum

Thread 1

   for i = 0, n/2-1
        s = s + f(A[i])

Thread 2

  for i = n/2, n-1
        s = s + f(A[i])

static int s = 0;



Shared Memory “Code” for Computing a Sum

• Problem is a race condition on variable s in the 
program

• A race condition or data race occurs when:

• Two processors (or two threads) access the same 
variable, and at least one does a write.

• The accesses are concurrent (not synchronized) so they 
could happen simultaneously

Thread 1

   for i = 0, n/2-1
        s = s + f(A[i])

Thread 2

  for i = n/2, n-1
        s = s + f(A[i])

static int s = 0;



Shared Memory Code for Computing a Sum

• Assume A = [3,5], f is the square function, and s=0 initially

• For this program to work, s should be 34 at the end

• but it may be 34, 9, or 25 (how?)

• The atomic operations are reads and writes

• += operation is not atomic

• All computations happen in (private) registers

Thread 1
  ….
   compute f([A[i]) and put in reg0
   reg1 = s 
   reg1 = reg1 + reg0 
   s = reg1
  …

Thread 2
 …
  compute f([A[i]) and put in reg0
   reg1 = s 
   reg1 = reg1 + reg0 
   s = reg1
  …

static int s = 0;

9 25
0 0
9 25

259

3 5A f = square



Improved Code for Computing a Sum

• Since addition is associative, it’s OK to rearrange order

• Most computation is on private variables

• Sharing frequency is also reduced, which might improve speed 

• But there is still a race condition on the update of shared s

Thread 1

    local_s1= 0
    for i = 0, n/2-1
        local_s1 = local_s1 + f(A[i])
    s = s + local_s1

Thread 2

    local_s2 = 0
    for i = n/2, n-1
        local_s2 = local_s2 + f(A[i])
    s = s + local_s2

static int s = 0;



Improved Code for Computing a Sum

• Since addition is associative, it’s OK to rearrange order

• Most computation is on private variables

• Sharing frequency is also reduced, which might improve speed 

• But there is still a race condition on the update of shared s

• The race condition can be fixed by adding locks (only one thread can 
hold a lock at a time; others wait for it)

Thread 1

    local_s1= 0
    for i = 0, n/2-1
        local_s1 = local_s1 + f(A[i])
    lock(lk);
    s = s + local_s1
    unlock(lk);

Thread 2

    local_s2 = 0
    for i = n/2, n-1
        local_s2= local_s2 + f(A[i])
    lock(lk);
    s = s +local_s2
    unlock(lk);

static int s = 0;
static lock lk;



Machine Model 1a:  Shared Memory

• Processors all connected to a large shared memory

• Typically called Symmetric Multiprocessors (SMPs)

• SGI, Sun, HP, Intel, IBM SMPs (nodes of Millennium, SP)

• Multicore chips, except that caches are often shared in multicores

P1

bus

$

memory

P2

$

Pn

$

Note: $ = cache
shared $



Machine Model 1a:  Shared Memory
• Difficulty scaling to large numbers of processors

• <= 32 processors typical

• Advantage: uniform memory access (UMA) 

• Cost: much cheaper to access data in cache than main memory.

P1

bus

$

memory

P2

$

Pn

$

Note: $ = cache
shared $



Intel Core Duo
• Based on Pentium M 

microarchitecture

• Pentium D dual-core is two 
separate processors, no 
sharing

• Private L1 per core, shared 
L2, arbitration logic

• Saves power

• Share data w/o bus

• Only one access bus, share

L2 Cache

Core 1

Core 2



Problems Scaling Shared Memory Hardware

• Why not put more processors on (with larger 
memory?)

• The memory bus becomes a bottleneck

• We’re going to look at interconnect performance in a future 
lecture. For now, just know that “busses are not scalable”.

• Caches need to be kept coherent



Problems Scaling Shared Memory Hardware

• Example from a Parallel Spectral Transform Shallow Water Model (PSTSWM) 
demonstrates the problem

• Experimental results (and slide) from Pat Worley at ORNL

• This is an important kernel in atmospheric models

• 99% of the floating point operations are multiplies or adds, which generally run well 
on all processors

• But it does sweeps through memory with little reuse of operands, so uses bus and 
shared memory frequently

• These experiments show serial performance, with one “copy” of the code running 
independently on varying numbers of procs

• The best case for shared memory: no sharing

• But the data doesn’t all fit in the registers/cache



Example: Problem in Scaling Shared Memory

• Performance degradation 
is a “smooth” function of 
the number of processes.

• No shared data between 
them, so there should be 
perfect parallelism.

• (Code was run for a 18 
vertical levels with a range 
of horizontal sizes.)

• From Pat Worley, ORNL
via Kathy Yelick, UCB



Machine Model 1b: Multithreaded Processor
• Multiple thread “contexts” without full processors

• Memory and some other state is shared

• Sun Niagara processor (for servers)

• Up to 32 threads all running simultaneously

• In addition to sharing memory, they share floating point units 

• Why?  Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn



Machine Model 1c: Distributed Shared Memory

• Memory is logically shared, but physically distributed

• Any processor can access any address in memory

• Cache lines (or pages) are passed around machine

• SGI Origin is canonical example (+ research machines)

• Scales to 512 (SGI Altix (Columbia) at NASA/Ames)

• Limitation is cache coherency protocols—how to keep cached copies of 
the same address consistent 

P1

network

$

memory

P2

$

Pn

$
Cache lines (pages) 
must be large to 
amortize overhead—
locality is critical to 
performancememory memory



Programming Model 2:  Message Passing

• Program consists of a collection of named processes.

• Usually fixed at program startup time

• Thread of control plus local address space—NO shared data.

• Logically shared data is partitioned over local processes.

PnP1P0

y = ...s...

s: 12 

i: 2

Private 
memory

s: 14 

i: 3

s: 11 

i: 1

send P1,s

Network

receive Pn,s



Programming Model 2:  Message Passing

• Processes communicate by explicit send/receive pairs

• Coordination is implicit in every communication event.

• MPI (Message Passing Interface) is the most commonly used SW

PnP1P0

y = .. s ...

s: 12 

i: 2

Private 
memory

s: 14 

i: 3

s: 11 

i: 1

send P1,s

Network

receive Pn,s



Computing s = A[1]+A[2] on each processor

•  First possible solution—what could go wrong?

•  If send/receive acts like the telephone system?  The post office?

•  Second possible solution

•  What if there are more than 2 processors? 

Processor 1
xlocal = A[1]

    send xlocal, proc2
    receive xremote, proc2

    s = xlocal + xremote   

Processor 2
xlocal = A[2]

    receive xremote, proc1
    send xlocal, proc1

    s = xlocal + xremote

Processor 1
xlocal = A[1]

    send xlocal, proc2
    receive xremote, proc2

    s = xlocal + xremote   

Processor 2
xlocal = A[2]

    send xlocal, proc1
    receive xremote, proc1

    s = xlocal + xremote



MPI—the de facto standard

• MPI has become the de facto standard for parallel computing using 
message passing

• Pros and Cons of standards

• MPI created finally a standard for applications development in the HPC 
community → portability

• The MPI standard is a least common denominator building on mid-80s 
technology, so may discourage innovation

• Programming Model reflects hardware! 



MPI Hello World
int main(int argc, char *argv[])
{
  char idstr[32];
  char buff[BUFSIZE];
  int numprocs;
  int myid;
  int i;
  MPI_Status stat; 
 
  MPI_Init(&argc,&argv); /* all MPI programs start with MPI_Init; all 'N' processes 
exist thereafter */
  MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD world is */
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); /* and this processes' rank is */

  /* At this point, all the programs are running equivalently, the rank is used to
     distinguish the roles of the programs in the SPMD model, with rank 0 often used
     specially... */



MPI Hello World
  if(myid == 0)
  {
    printf("%d: We have %d processors\n", myid, numprocs);
    for(i=1;i<numprocs;i++)
    {
      sprintf(buff, "Hello %d! ", i);
      MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);
    }
    for(i=1;i<numprocs;i++)
    {
      MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);
      printf("%d: %s\n", myid, buff);
    }
  }



MPI Hello World
  else
  {
    /* receive from rank 0: */
    MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);
    sprintf(idstr, "Processor %d ", myid);
    strcat(buff, idstr);
    strcat(buff, "reporting for duty\n");
    /* send to rank 0: */
    MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);
  }

  MPI_Finalize(); /* MPI Programs end with MPI Finalize; this is a weak 
synchronization point */
  return 0;
}



Machine Model 2a:  Distributed Memory
• Cray T3E, IBM SP2

• PC Clusters (Berkeley NOW, Beowulf)

• IBM SP-3, Millennium, CITRIS are distributed memory machines, but 
the nodes are SMPs.

• Each processor has its own memory and cache but cannot directly 
access another processor’s memory.

• Each “node” has a Network Interface (NI) for all communication and 
synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI



Tflop/s Clusters 
• The following are examples of clusters configured out of separate networks and 

processor components

• 72% of Top 500 (Nov 2005), 2 of top 10

• Dell cluster at Sandia (Thunderbird) is #4 on Top 500

• 8000 Intel Xeons @ 3.6GHz

• 64TFlops peak, 38 TFlops Linpack

• Infiniband connection network

• Walt Disney Feature Animation (The Hive) is #96

• 1110 Intel Xeons @ 3 GHz

• Gigabit Ethernet

• Saudi Oil Company is #107

• Credit Suisse/First Boston is #108



Machine Model 2b: Internet/Grid Computing
• SETI@Home: Running on 500,000 PCs 

• ~1000 CPU Years per Day, 485,821 CPU Years so far

• Sophisticated Data & Signal Processing Analysis

• Distributes Datasets from Arecibo Radio Telescope
Next Step—

Allen Telescope 
Array

mailto:SETI@Home
mailto:SETI@Home


Arecibo message

http://en.wikipedia.org/wiki/Image:Arecibo_message.svg

http://en.wikipedia.org/wiki/Image:Arecibo_message.svg
http://en.wikipedia.org/wiki/Image:Arecibo_message.svg


Programming Model 2c: Global Address Space

• Program consists of a collection of named threads.

• Usually fixed at program startup time

• Local and shared data, as in shared memory model

• But, shared data is partitioned over local processes

• Cost model says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran

• Global Address Space programming is an intermediate point between message 
passing and shared memory

PnP1P0 s[myThread] = ...

y = ..s[i] ...
i: 2 i: 5 Private 

memory

Shared memory

i: 8

s[0]: 27 s[1]: 27 s[n]: 27



Machine Model 2c:  Global Address Space
• Cray T3D, T3E, X1, and HP Alphaserver cluster

• Clusters built with Quadrics, Myrinet, or Infiniband

• The network interface supports RDMA (Remote Direct Memory Access)

• NI can directly access memory without interrupting the CPU

• One processor can read/write memory with one-sided operations (put/get)

• Not just a load/store as on a shared memory machine

• Continue computing while waiting for memory op to finish

• Remote data is typically not cached locally 

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
Global address 
space may be 
supported in 
varying degrees



Programming Model 3:  Data Parallel
• Single thread of control consisting of parallel operations.

• Parallel operations applied to all (or a defined subset) of a data structure, usually 
an array

• Communication is implicit in parallel operators 

• Elegant and easy to understand and reason about 

• Coordination is implicit—statements executed synchronously

• Similar to Matlab language for array operations

• Drawbacks: 

• Not all problems fit this model

• Difficult to map onto coarse-grained machines A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:



Programming Model 4: Hybrids

• These programming models can be mixed 

• Message passing (MPI) at the top level with shared memory within a 
node is common

• New DARPA HPCS languages mix data parallel and threads in a global 
address space

• Global address space models can (often) call message passing libraries 
or vice versa

• Global address space models can be used in a hybrid mode

• Shared memory when it exists in hardware

• Communication (done by the runtime system) otherwise



Machine Model 4:  Clusters of SMPs

• SMPs are the fastest commodity machine, so use them as a building block for a 
larger machine with a network

• Common names:

• CLUMP = Cluster of SMPs

• Hierarchical machines, constellations

• Many modern machines look like this:

• Millennium, IBM SPs, ASCI machines

• What is an appropriate programming model for #4?

• Treat machine as “flat”, always use message passing, even within SMP (simple, but 
ignores an important part of memory hierarchy).

• Shared memory within one SMP, but message passing outside of an SMP.


