
Lecture 8
Thread Level Parallelism (2)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

Outline

• Simultaneous Multithreading

• Google’s Architecture

• Sun T1 (Niagara)

Gaming news article
Eve Online sets gaming supercomputer cluster record

Company aiming for 50,000 online players on a single shard
Matt Chapman, vnunet.com, 11 Sep 2006

Massively multiplayer online game Eve Online has set a new record for the largest supercomputer
cluster in the games industry.

The Eve Online server cluster manages over 150 million database transactions per day on a 64-bit
hardware architecture from IBM.

The database servers use solid state disks instead of traditional hard drives to handle more than
400,000 random I/Os per second.

CCP Games, which created Eve Online, recently set a world record by hosting 30,000 concurrent users
on a single server shard. The company now hopes to increase that to at least 50,000 users. ...

The upgraded server cluster features dual-processor 64-bit AMD Opteron-based IBM BladeCenter
LS20 blade servers, as well additional enhancements to the cluster's internet backbone.

http://www.itweek.co.uk/vnunet/news/2163979/eve-online-scores-largest

http://www.itweek.co.uk/vnunet/news/2163979/eve-online-scores-largest
http://www.itweek.co.uk/vnunet/news/2163979/eve-online-scores-largest

pthreads Example
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>

static void wait(void) {
 time_t start_time = time(NULL);
 while (time(NULL) == start_time) {
 /* do nothing except chew CPU slices for
up to one second */
 }
}

static void *thread_func(void *vptr_args) {
 for (int i = 0; i < 20; i++) {
 fputs(" b\n", stderr);
 wait();
 }
 return NULL;
}

int main(void) {
 int i;
 pthread_t thread;

 if (pthread_create(&thread, NULL,
thread_func, NULL) != 0) {
 return EXIT_FAILURE;
 }
 for (i = 0; i < 20; i++) {
 fputs("a\n", stdout);
 wait();
 }
 if (pthread_join(thread, NULL) != 0) {
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

Multithreaded Categories
Ti

m
e

(p
ro

ce
ss

or
 cy

cl
e) Superscalar Fine-Grained Coarse-Grained Multiprocessing Simultaneous

Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Simultaneous multithreading (SMT)

“Hyperthreading”

http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html

http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html
http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html

Multithreaded Execution

• When do we switch between threads?

• Alternate instruction per thread (fine grain)

• When a thread is stalled, perhaps for a cache miss,
another thread can be executed (coarse grain)

Fine-Grained Multithreading
• Switches between threads on each instruction, causing the

execution of multiple threads to be interleaved

• Usually done in a round-robin fashion, skipping any stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread stalls

• Disadvantage is it slows down execution of individual threads, since
a thread ready to execute without stalls will be delayed by
instructions from other threads

• Used on Sun’s Niagara (will see later)

Coarse-Grained Multithreading
• Switches threads only on costly stalls, such as L2 cache misses

• Advantages

• Relieves need to have very fast thread-switching

• Doesn’t slow down thread, since instructions from other threads issued only when the
thread encounters a costly stall

• Disadvantage is hard to overcome throughput losses from shorter stalls, due to
pipeline start-up costs

• Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be
emptied or frozen

• New thread must fill pipeline before instructions can complete

• Because of this start-up overhead, coarse-grained multithreading is better for
reducing penalty of high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

P4Xeon Microarchitecture
• Replicated

• Register renaming logic

• Instruction pointer, other
architectural registers

• ITLB

• Return stack predictor

• Partitioned

• Reorder buffers

• Load/store buffers

• Various queues: scheduling, uop,
etc.

• Shared

• Caches (trace, L1/L2/L3)

• Microarchitectural registers

• Execution units

• If configured as single-threaded, all
resources go to one thread

Partitioning: Static vs. Dynamic

Design Challenges in SMT
• Since SMT makes sense only with fine-grained implementation, impact of fine-

grained scheduling on single thread performance?

• A preferred thread approach sacrifices neither throughput nor single-thread
performance?

• Unfortunately, with a preferred thread, the processor is likely to sacrifice some
throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts

• Not affecting clock cycle time, especially in

• Instruction issue—more candidate instructions need to be considered

• Instruction completion—choosing which instructions to commit may be challenging

• Ensuring that cache and TLB conflicts generated by SMT do not degrade
performance

Problems with SMT

• One thread monopolizes resources

• Example: One thread ties up FP unit with long-latency
instruction, other thread tied up in scheduler

• Cache effects

• Caches are unaware of SMT—can’t make warring
threads cooperate

• If both warring threads access different memory and
have cache conflicts, constant swapping

Hyperthreading Neutral!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

Hyperthreading Good!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

Hyperthreading Bad!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

SPEC vs. SPEC (PACT ‘03)
Benchmark Best Speedup Worst Speedup Avg Speedup

gzip 1.48 1.14 1.24

vpr 1.43 1.04 1.17

gcc 1.44 1.00 1.11

mcf 1.57 1.01 1.21

crafty 1.40 0.99 1.17

parser 1.44 1.09 1.18

eon 1.42 1.07 1.25

perlbmk 1.40 1.07 1.20

gap 1.43 1.17 1.25

vortex 1.41 1.01 1.13

bzip2 1.47 1.15 1.24

twolf 1.48 1.02 1.16

wupwise 1.33 1.12 1.24

swim 1.58 0.90 1.13

mgrid 1.28 0.94 1.10

applu 1.37 1.02 1.16

mesa 1.39 1.11 1.22

galgel 1.47 1.05 1.25

art 1.55 0.90 1.13

equake 1.48 1.02 1.21

facerec 1.39 1.16 1.25

ammp 1.40 1.09 1.21

lucas 1.36 0.97 1.13

fma3d 1.34 1.13 1.20

sixtrack 1.58 1.28 1.42

apsi 1.40 1.14 1.23

Overall 1.58 0.90 1.20

Table 2. Multiprogrammed SPEC Speedups

tend to cause their partner to run slowly. In fact, it is the

latter. We see that � � � 	on average sees 63% of its origi-

nal throughput, while the coscheduled thread achieves only

49% of it’s original throughput. Likewise, �
 �on average

achieves 71% of its original throughput, whereas cosched-

uled threads achieve only 42%.

The worst speedup is achieved by � � � 	running with

�
 �. The best speedup is achieved by � � � 	running with

����
 � ��(although �
 �also has the third highest speedup in

conjunction with ����
 � ��). Thus, � � � 	is part of both the

best and worst pairs! Analysis of these cases with VTune

reveal that � � � 	and �
 �both have low IPCs due to rela-

tively high cache miss rate. When run with� � � 	,�
 �’s poor

cache behavior increases the L2 miss rate of� � � 	by a fac-

tor of almost 40. In the other case,� � � 	and�
 �’s low IPCs

interfere only minimally with����
 � ��.

The lowest speedup is below 1.0. However, the slow-

downs are uncommon, and no lower than a 0.9 speedup. In

all, only 8 of the 351 combinations experience slowdowns.

None of the slowdowns approach the worst case results pre-

dicted by Tullsen and Brown [27]. That paper identifies

scenarios, particularly with two threads, where a shared in-

struction queue could result in speedups significantly below

one for certain combinations of threads if the queue is not

designed carefully. That work also shows that a partitioned

queue, while limiting performance in the best case, miti-

gates the problem. These results for the Pentium 4 parti-

tioned queue seem to confirm that result. This architecture

g
z
ip

v
p

r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

e
o

n

p
e

rl
b

m
k

g
a

p

vo
rt

e
x

b
z
ip

2

tw
o

lf

w
u
p
w

is
e

sw
im

m
g
ri

d

a
p

p
lu

m
e

s
a

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

lu
c
a

s

fm
a

3
d

s
ix

tr
a

c
k

a
p

s
i

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M
u

lt
ip

ro
g
ra

m
m

e
d

 S
p

e
e

d
u

p

Figure 2. Multiprogrammed speedup of all

SPEC benchmarks

usually achieves its stated goal [13] of providing high isola-

tion between threads.

5.3 Parallel Multithreaded Speedup

Parallel applications exercise aspects of the multi-

threaded implementation that the multiprogrammed work-

load does not. Parallel speedup will be sensitive to the

speed and efficiency of synchronization and communica-

tion mechanisms. In addition, parallel applications have

the potential to compete more heavily for shared resources

than a multiprogrammed workload – if the threads of the

parallel program each have similar characteristics, they will

likely each put pressure on the same resources in the same

way, and a single resource will become a bottleneck more

quickly [11].

Parallel speedups for the SPLASH2 benchmarks are

shown in Figure 3. For the sake of comparison, that graph

also shows the speedup when two single-threaded copies of

that benchmark are run. The multithreaded speedup ranges

from 1.02 to 1.67, and thus is a positive speedup in all cases,

although the speedups for����
 ��
������� and����
 � � � �
� � � �are not significant. The multiprogrammed speedups

range from 1.06 to 1.49, with no slowdowns. It is interest-

ing to note that in three out of the eight cases, the speedup

from the parallel version is actually greater than the average

speedup from running two copies.

Figure 4 shows the results of running the NAS parallel

benchmarks compiled with OpenMP directives for the class

• Avg. multithreaded speedup 1.20 (range 0.90–1.58)
“Initial Observations of the Simultaneous Multithreading Pentium 4 Processor”, Nathan Tuck and Dean M. Tullsen (PACT ‘03)

ILP reaching limits

• Olukotun and Hammond, “The Future of
Microprocessors”, ACM Queue, Sept. 2005

Olukotun’s view

• “With the exhaustion of essentially all performance
gains that can be achieved for ‘free’ with technologies
such as superscalar dispatch and pipelining, we are
now entering an era where programmers must switch
to more parallel programming models in order to
exploit multi-processors effectively, if they desire
improved single-program performance.”

Olukotun (pt. 2)

• “This is because there are only three real ‘dimensions’
to processor performance increases beyond Moore’s
law: clock frequency, superscalar instruction issue,
and multiprocessing. We have pushed the first two to
their logical limits and must now embrace
multiprocessing, even if it means that programmers
will be forced to change to a parallel programming
model to achieve the highest possible performance.”

Google’s Architecture

• “Web Search for a Planet: The Google Cluster
Architecture”

• Luiz André Barroso, Jeffrey Dean, Urs Hölzle, Google

• Reliability in software not in hardware

• 2003: 15k commodity PCs

• July 2006 (estimate): 450k commodity PCs

• $2M/month for electricity

Goal: Price/performance
• “We purchase the CPU generation that currently gives the best

performance per unit price, not the CPUs that give the best absolute
performance.”

• Google rack: 40–80 x86 servers

• “Our focus on price/performance favors servers that resemble mid-
range desktop PCs in terms of their components, except for the
choice of large disk drives.”

• 4-processor motherboards: better perf, but not better price/perf

• SCSI disks: better perf and reliability, but not better price/perf

• Depreciation costs: $7700/month; power costs: $1500/month

• Low-power systems must have equivalent performance

Google power density
• Mid-range server, dual 1.4 GHz Pentium III: 90 watts

• 55 W for 2 CPUs

• 10 W for disk drive

• 25 W for DRAM/motherboard

• so 120 W of AC power (75% efficient)

• Rack fits in 25 ft2

• 400 W/ft2; high end processors 700 W/ft2

• Typical data center: 70–150 W/ft2

• Cooling is a big issue

Google Workload (1 GHz P3)

Unfortunately, the typical power density for
commercial data centers lies between 70 and
150 W/ft2, much lower than that required for
PC clusters. As a result, even low-tech PC
clusters using relatively straightforward pack-
aging need special cooling or additional space
to bring down power density to that which is
tolerable in typical data centers. Thus, pack-
ing even more servers into a rack could be of
limited practical use for large-scale deploy-
ment as long as such racks reside in standard
data centers. This situation leads to the ques-
tion of whether it is possible to reduce the
power usage per server.

Reduced-power servers are attractive for
large-scale clusters, but you must keep some
caveats in mind. First, reduced power is desir-
able, but, for our application, it must come
without a corresponding performance penal-
ty: What counts is watts per unit of perfor-
mance, not watts alone. Second, the
lower-power server must not be considerably
more expensive, because the cost of deprecia-
tion typically outweighs the cost of power.
The earlier-mentioned 10 kW rack consumes
about 10 MW-h of power per month (includ-
ing cooling overhead). Even at a generous 15
cents per kilowatt-hour (half for the actual
power, half to amortize uninterruptible power
supply [UPS] and power distribution equip-
ment), power and cooling cost only $1,500
per month. Such a cost is small in compari-
son to the depreciation cost of $7,700 per
month. Thus, low-power servers must not be
more expensive than regular servers to have
an overall cost advantage in our setup.

Hardware-level application characteristics
Examining various architectural characteris-

tics of our application helps illustrate which
hardware platforms will provide the best
price/performance for our query-serving sys-
tem. We’ll concentrate on the characteristics of
the index server, the component of our infra-
structure whose price/performance most heav-
ily impacts overall price/performance. The main
activity in the index server consists of decoding
compressed information in the inverted index
and finding matches against a set of documents
that could satisfy a query. Table 1 shows some
basic instruction-level measurements of the
index server program running on a 1-GHz dual-
processor Pentium III system.

The application has a moderately high CPI,
considering that the Pentium III is capable of
issuing three instructions per cycle. We expect
such behavior, considering that the applica-
tion traverses dynamic data structures and that
control flow is data dependent, creating a sig-
nificant number of difficult-to-predict
branches. In fact, the same workload running
on the newer Pentium 4 processor exhibits
nearly twice the CPI and approximately the
same branch prediction performance, even
though the Pentium 4 can issue more instruc-
tions concurrently and has superior branch
prediction logic. In essence, there isn’t that
much exploitable instruction-level parallelism
(ILP) in the workload. Our measurements
suggest that the level of aggressive out-of-
order, speculative execution present in mod-
ern processors is already beyond the point of
diminishing performance returns for such
programs.

A more profitable way to exploit parallelism
for applications such as the index server is to
leverage the trivially parallelizable computa-
tion. Processing each query shares mostly read-
only data with the rest of the system, and
constitutes a work unit that requires little com-
munication. We already take advantage of that
at the cluster level by deploying large numbers
of inexpensive nodes, rather than fewer high-
end ones. Exploiting such abundant thread-
level parallelism at the microarchitecture level
appears equally promising. Both simultaneous
multithreading (SMT) and chip multiproces-
sor (CMP) architectures target thread-level
parallelism and should improve the perfor-
mance of many of our servers. Some early

26

GOOGLE SEARCH ARCHITECTURE

IEEE MICRO

Table 1. Instruction-level
measurements on the index server.

Characteristic Value
Cycles per instruction 1.1
Ratios (percentage)

Branch mispredict 5.0
Level 1 instruction miss* 0.4
Level 1 data miss* 0.7
Level 2 miss* 0.3
Instruction TLB miss* 0.04
Data TLB miss* 0.7
* Cache and TLB ratios are per
instructions retired.

Details of workload
• “Moderately high CPI” (P3 can issue 3 instrs/cycle)

• “Significant number of difficult-to-predict branches”

• Same workload on P4 has “nearly twice the CPI and approximately the
same branch prediction performance”

• “In essence, there isn’t that much exploitable instruction-level
parallelism in the workload.”

• “Our measurements suggest that the level of aggressive out-of-
order, speculative execution present in modern processors is
already beyond the point of diminishing performance returns for
such programs.”

Google and SMT
• “A more profitable way to exploit parallelism for applications such

as the index server is to leverage the trivially parallelizable
computation.”

• “Exploiting such abundant thread-level parallelism at the
microarchitecture level appears equally promising. Both
simultaneous multithreading (SMT) and chip multiprocessor (CMP)
architectures target thread-level parallelism and should improve the
performance of many of our servers.”

• “Some early experiments with a dual-context (SMT) Intel Xeon
processor show more than a 30 percent performance improvement
over a single-context setup.”

CMP: Chip Multiprocessing

• First CMPs: Two or more conventional superscalar
processors on the same die

• UltraSPARC Gemini, SPARC64 VI, Itanium Montecito,
IBM POWER4

• One of the most important questions: What do cores
share and what is not shared between cores?

UltraSPARC GeminiUltraSPARC Gemini

13

Area Distribution

27.77%

35.34%

15.83%

1.77%

5.23%

14.07%

CORE

L2$

IO

MCU

JBU

MISC

8.1

4.74

2.08 1.45

3.14

1.47

7.62
Integer

FGU

DCache

ICache

LSU

ECU

MISC

CPU Area = 206 mm2

Core Area = 28.6 mm2

512KB 512KB

MC

U

Core 1 Core 0

JB

U

POWER5POWER5

© 2003 IBM CorporationHotchips 15, August 2003

SMT Implementation in POWER5

POWER5 --- The Next Step

! Technology: 130nm lithography,

Cu, SOI

! Dual processor core

! 8-way superscalar

! Simultaneous multithreaded

(SMT) core

! Up to 2 virtual processors per

real processor

! 24% area growth per core for

SMT

! Natural extension to POWER4

design

CMP Benefits

• Volume: 2 processors where 1 was before

• Power: All processors on one die share a single
connection to rest of system

CMP Power
• Consider a 2-way CMP replacing a uniprocessor

• Run the CMP at half the uniprocessor’s clock speed

• Each request takes twice as long to process …

• … but slowdown is less because request processing is
likely limited by memory or disk

• If there’s not much contention, overall throughput is the
same

• Half clock rate -> half voltage -> quarter power per
processor, so 2x savings overall

Sun T1 (“Niagara”)
• Target: Commercial server applications

• High thread level parallelism (TLP)

• Large numbers of parallel client requests

• Low instruction level parallelism (ILP)

• High cache miss rates

• Many unpredictable branches

• Frequent load-load dependencies

• Power, cooling, and space are major concerns for data centers

• Metric: Performance/Watt/Sq. Ft.

• Approach: Multicore, Fine-grain multithreading, Simple pipeline, Small L1 caches,
Shared L2

T1 Architecture

• Also ships with 6 or 4 processors

T1 pipeline
• Single issue, in-order, 6-deep pipeline: F, S, D, E, M, W

• “Only single-issue desktop or server microprocessor introduced in more
than 5 years.”

• 3 clock delays for loads & branches

• Shared units:

• L1 $, L2 $

• TLB

• X units

• pipe registers

• 1.2 GHz at ≈72W
typical, 79W peak

T1 Fine-Grained Multithreading
• Each core supports four threads and has its own level one caches

(16 KB for instructions and 8 KB for data)

• Switching to a new thread on each clock cycle

• Idle threads are bypassed in the scheduling

• Waiting due to a pipeline delay or cache miss

• Processor is idle only when all 4 threads are idle or stalled

• Both loads and branches incur a 3 cycle delay that can only be
hidden by other threads

• A single set of floating point functional units is shared by all 8 cores

• Floating point performance was not a focus for T1

T1 Memory System
• 16 KB 4 way set assoc. I$/ core

• 8 KB 4 way set assoc. D$/ core

• 3MB 12 way set assoc. L2 $ shared

• 4 x 750KB independent banks

• Write-through, allocate for loads, no-allocate for stores

• crossbar switch to connect

• 2 cycle throughput, 8 cycle latency

• Direct link to DRAM & Jbus

• Manages cache coherence for the 8 cores

• CAM based directory

0

1.25

2.50

3.75

5.00

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

TPC-C
SPECJBB

Miss Rates: L2 Cache Size, Block Size

T1

0

47.5

95.0

142.5

190.0

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

TPC-C
SPECJBB

Miss Latency: L2 Cache Size, Block Size

T1

CPI Breakdown of Performance

Benchmark
Per

Thread
CPI

Per
core
CPI

Effective
CPI for 8

cores

Effective
IPC for 8

cores
TPC-C 7.20 1.80 0.23 4.4

SPECJBB 5.60 1.40 0.18 5.7
SPECWeb99 6.60 1.65 0.21 4.8

Performance Relative to Pentium D

0

2.5

5.0

7.5

10.0

SPECIntRate SPECFPRate SPECJBB05 SPECWeb05 TPC-like

Power5+
Opteron
Sun T1

Performance/mm2, Performance/Watt

0

2.5

5.0

7.5

10.0

SP
EC

Int
Rate

/m
m^2

SP
EC

Int
Rate

/W
att

SP
EC

FP
Rate

/m
m^2

SP
EC

FP
Rate

/W
att

SP
EC

JBB
05

/m
m^2

SP
EC

JBB
05

/W
att

TPC
-C

/m
m^2

TPC
-C

/W
att

Power5+
Opteron
Sun T1

“Benchmarks demonstrate this approach has worked very
well on commercial (integer), multithreaded workloads
such as Java application servers, Enterprise Resource

Planning (ERP) application servers, email (such as Lotus
Domino) servers, and web servers.” —Wikipedia

Microprocessor Comparison
Processor SUN T1 Opteron Pentium D IBM Power 5

Cores 8 2 2 2

Instruction issues / clk / core 1 3 3 4

Peak instr. issues / chip 8 6 6 8

Multithreading
Fine-

grained No SMT SMT

L1 I/D in KB per core 16/8 64/64 12K uops/16 64/32

L2 per core/shared
3 MB

shared
1 MB /

core 1 MB/ core 1.9 MB shared

Clock rate (GHz) 1.2 2.4 3.2 1.9

Transistor count (M) 300 233 230 276

Die size (mm2) 379 199 206 389

Power (W) 79 110 130 125

Niagara 2 (October 2007)
• Improved performance by increasing # of threads supported per

chip from 32 to 64

• 8 cores * 8 threads per core [now has 2 ALUs/core, 4 threads/ALU]

• Floating-point unit for each core, not for each chip

• Hardware support for encryption standards EAS, 3DES, and
elliptical-curve cryptography

• Added 1 8x PCI Express interface directly into the chip in addition to
integrated 10 Gb Ethernet XAU interfaces and Gigabit Ethernet ports.

• Integrated memory controllers will shift support from DDR2 to FB-
DIMMs and double the maximum amount of system memory.

• Niagara 3 rumor: 45 nm, 16 cores, 16 threads/core
Kevin Krewell, “Sun's Niagara Begins CMT Flood—The Sun UltraSPARC

T1 Processor Released”. Microprocessor Report, January 3, 2006

