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What We Know

• What new techniques have we learned that make …

• … control go fast?

• … datapath go fast?

 Processor

Control

Datapath



Cook analogy
• We want to prepare food for several banquets, each of 

which requires many dinners.

• We have two positions we can fill:

• The boss (control), who gets all the ingredients and tells 
the chef what to do

• The chef (datapath), who does all the cooking

• ILP is analogous to:

• One ultra-talented boss with many hands

• One ultra-talented chef with many hands



Cook analogy

• We want to prepare food for several banquets, each of 
which requires many dinners.

• But one boss and one chef isn’t enough to do all our 
cooking.

• What are our options?



Chef scaling

• What’s the cheapest way to cook more?

• Is it easy or difficult to share (ingredients, cooked 
food, etc.) between chefs?

• Which method of scaling is most flexible?



“Sea change in computing”
• “… today’s processors … are nearing an impasse as technologies 

approach the speed of light..” 

• David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (uniprocessor performance increased)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to 
multicore designs … This is a sea change in computing.” 

• Paul Otellini, President, Intel (2005) 

• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs



Flynn’s Classification Scheme

• SISD – single instruction, single data stream

• Uniprocessors

• SIMD – single instruction, multiple data streams

• single control unit broadcasting operations to multiple datapaths

• MISD – multiple instruction, single data

• no such machine (although some people put vector machines in this 
category)

• MIMD – multiple instructions, multiple data streams

• aka multiprocessors (SMPs, MPPs, clusters, NOWs)



Performance beyond single thread ILP

• There can be much higher natural parallelism in some applications 
(e.g., database or scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• Thread may be a subpart of a parallel program (“thread”), or it may be an independent 
program (“process”)

• Each thread has all the state (instructions, data, PC, register state, and so on) necessary 
to allow it to execute

• Many kitchens, each with own boss and chef

• Data Level Parallelism: Perform identical operations on data, and lots of data

• 1 kitchen, 1 boss, many chefs



Continuum of Granularity
• “Coarse”

• Each processor is more 
powerful

• Usually fewer 
processors

• Communication is more 
expensive between 
processors

• Processors are more 
loosely coupled

• Tend toward MIMD

• “Fine”

• Each processor is less 
powerful

• Usually more 
processors

• Communication is 
cheaper between 
processors

• Processors are more 
tightly coupled

• Tend toward SIMD



• Next 3 weeks:

• Thread-level parallelism. Coarse-grained parallelism. Multiprocessors, 
clusters, multicore.

• 3 weeks hence:

• Data-level parallelism. Fine-grained parallelism. MMX, SSE. Vector & 
stream processors. GPUs.

The Rest of the Class



Thread Level Parallelism
• ILP exploits implicit parallel operations within a loop 

or straight-line code segment

• TLP explicitly represented by the use of multiple 
threads of execution that are inherently parallel

• You must rewrite your code to be thread-parallel.

• Goal: Use multiple instruction streams to improve 

• Throughput of computers that run many programs 

• Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit than ILP



Organizing Many Processors

• Multiprocessor—multiple processors with a single shared address 
space

• Symmetric multiprocessors: All memory is the same distance away from 
all processors (UMA = uniform memory access)

 Processor

Control

Datapath

Memory

 Processor
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Organizing Many Processors

• Cluster—multiple computers (each with their own address space) 
connected over a local area network (LAN) functioning as a single 
system

• “Constellation”: cluster of multiprocessors

 Processor
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Memory

Input

Output

Input

Output

Memory
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Applications Needing “Supercomputing”

• Energy [plasma physics (simulating fusion reactions), geophysical (petroleum) 
exploration]

• DoE stockpile stewardship (to ensure the safety and reliability of the nation’s 
stockpile of nuclear weapons)

• Earth and climate (climate and weather prediction, earthquake, tsunami 
prediction and mitigation of risks)

• Transportation (improving vehicles’ airflow dynamics, fuel consumption, 
crashworthiness, noise reduction)

• Bioinformatics and computational biology (genomics, protein folding, designer 
drugs)

• Societal health and safety (pollution reduction, disaster planning, terrorist action 
detection)

• Financial (calculate options pricing, etc.)



Supercomputer Style Migration (Top500)

• In the last 8 years uniprocessor and SIMDs disappeared while 
Clusters and Constellations grew from 3% to 80%
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http://www.top500.org/lists/2005/11/

Cluster—whole 
computers 

interconnected using 
their I/O bus

Constellation—a 
cluster that uses an 

SMP multiprocessor as 
the building block

http://www.top500.org/lists/2005/11/
http://www.top500.org/lists/2005/11/


Top 500: Application Area



Top 500: Historicals



Top 500: Architectures



Top 500: Countries



Top 500: Customers



Top 500: Interconnect



Top 500: Processor Family



Top 500: Processor Count



For most apps, most execution units lie idle

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 

Maximizing On-chip Parallelism, 
ISCA 1995.

[8-way superscalar]
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Figure 2: Sources of all unused issue cycles in an 8-issue superscalar processor. Processor busy represents the utilized issue slots; all

others represent wasted issue slots.

such as an I tlb miss and an I cache miss, the wasted cycles are

divided up appropriately. Table 3 specifies all possible sources

of wasted cycles in our model, and some of the latency-hiding or

latency-reducing techniques that might apply to them. Previous

work [32, 5, 18], in contrast, quantified some of these same effects

by removing barriers to parallelism and measuring the resulting

increases in performance.

Our results, shown in Figure 2, demonstrate that the functional

units of our wide superscalar processor are highly underutilized.

From the composite results bar on the far right, we see a utilization

of only 19% (the “processor busy” component of the composite bar

of Figure 2), which represents an average execution of less than 1.5

instructions per cycle on our 8-issue machine.

These results also indicate that there is no dominant source of

wasted issue bandwidth. Although there are dominant items in

individual applications (e.g., mdljsp2, swm, fpppp), the dominant

cause is different in each case. In the composite results we see that

the largest cause (short FP dependences) is responsible for 37% of

the issue bandwidth, but there are six other causes that account for

at least 4.5% of wasted cycles. Even completely eliminating any

one factor will not necessarily improve performance to the degree

that this graph might imply, because many of the causes overlap.

Not only is there no dominant cause of wasted cycles — there

appears to be no dominant solution. It is thus unlikely that any single

latency-tolerating technique will produce a dramatic increase in the

performance of these programs if it only attacks specific types of

latencies. Instruction scheduling targets several important segments

of the wasted issue bandwidth, but we expect that our compiler

has already achieved most of the available gains in that regard.

Current trends have been to devote increasingly larger amounts of

on-chip area to caches, yet even if memory latencies are completely

eliminated, we cannot achieve 40% utilization of this processor. If

specific latency-hiding techniques are limited, then any dramatic

increase in parallelism needs to come from a general latency-hiding

solution, of which multithreading is an example. The different types

of multithreading have the potential to hide all sources of latency,

but to different degrees.

This becomes clearer if we classify wasted cycles as either vertical



Source of Wasted Slots
Source of Wasted

Issue Slots Possible Latency-Hiding or Latency-Reducing Technique

instruction tlb miss, data

tlb miss

decrease the TLBmiss rates (e.g., increase the TLB sizes); hardware instruction prefetching; hardware

or software data prefetching; faster servicing of TLB misses

I cache miss larger, more associative, or faster instruction cache hierarchy; hardware instruction prefetching

D cache miss larger, more associative, or faster data cache hierarchy; hardware or software prefetching; improved

instruction scheduling; more sophisticated dynamic execution

branch misprediction improved branch prediction scheme; lower branch misprediction penalty

control hazard speculative execution; more aggressive if-conversion

load delays (first-level

cache hits)

shorter load latency; improved instruction scheduling; dynamic scheduling

short integer delay improved instruction scheduling

long integer, short fp, long

fp delays

(multiply is the only long integer operation, divide is the only long floating point operation) shorter

latencies; improved instruction scheduling

memory conflict (accesses to the same memory location in a single cycle) improved instruction scheduling

Table 3: All possible causes of wasted issue slots, and latency-hiding or latency-reducing techniques that can reduce the number of

cycles wasted by each cause.

waste (completely idle cycles) or horizontal waste (unused issue

slots in a non-idle cycle), as shown previously in Figure 1. In our

measurements, 61% of the wasted cycles are vertical waste, the

remainder are horizontal waste. Traditional multithreading (coarse-

grain or fine-grain) can fill cycles that contribute to vertical waste.

Doing so, however, recovers only a fraction of the vertical waste;

becauseof the inability of a single thread to completely fill the issue

slots each cycle, traditional multithreading converts much of the

vertical waste to horizontal waste, rather than eliminating it.

Simultaneousmultithreading has the potential to recover all issue

slots lost to both horizontal and vertical waste. The next section

provides details on how effectively it does so.

4 Simultaneous Multithreading

This section presents performance results for simultaneous multi-

threaded processors. We begin by defining several machine models

for simultaneousmultithreading, spanning a range of hardware com-

plexities. We then show that simultaneous multithreading provides

significant performance improvement over both single-thread su-

perscalar and fine-grain multithreaded processors, both in the limit,

and also under less ambitious hardware assumptions.

4.1 The Machine Models

The following models reflect several possible design choices for a

combined multithreaded, superscalar processor. The models differ

in how threads can use issue slots and functional units each cycle;

in all cases, however, the basic machine is a wide superscalar with

10 functional units capable of issuing 8 instructions per cycle (the

same core machine as Section 3). The models are:

Fine-Grain Multithreading. Only one thread issues instruc-

tions each cycle, but it can use the entire issue width of the

processor. This hides all sourcesof vertical waste, but does not

hide horizontal waste. It is the onlymodel that does not feature

simultaneous multithreading. Among existing or proposed ar-

chitectures, this ismost similar to the Tera processor [3], which

issues one 3-operation LIW instruction per cycle.

SM:Full Simultaneous Issue. This is a completely flexible

simultaneousmultithreaded superscalar: all eight threads com-

pete for each of the issue slots each cycle. This is the least

realistic model in terms of hardware complexity, but provides

insight into the potential for simultaneousmultithreading. The

following models each represent restrictions to this scheme

that decrease hardware complexity.

SM:Single Issue,SM:Dual Issue, andSM:Four Issue. These

three models limit the number of instructions each thread can

issue, or have active in the schedulingwindow, each cycle. For

example, in a SM:Dual Issue processor, each thread can issue

a maximum of 2 instructions per cycle; therefore, a minimum

of 4 threads would be required to fill the 8 issue slots in one

cycle.

SM:Limited Connection. Each hardware context is directly

connected to exactly one of each type of functional unit. For

example, if the hardware supports eight threads and there are

four integer units, each integer unit could receive instructions

from exactly two threads. The partitioning of functional units

among threads is thus less dynamic than in the other models,

but each functional unit is still shared (the critical factor in

achieving high utilization). Since the choice of functional

units available to a single thread is different than in our original

target machine, we recompiled for a 4-issue (one of each type

of functional unit) processor for this model.

Some important differences in hardware implementation com-

plexity are summarized in Table 4. Notice that the fine-grain model

may not necessarily represent the cheapest implementation. Many

of these complexity issues are inherited from our wide superscalar

design rather than from multithreading, per se. Even in the SM:full

simultaneous issue model, the inter-instruction dependence check-

ing, the ports per register file, and the forwarding logic scale with

the issue bandwidth and the number of functional units, rather than



Single-threaded CPU

Introduction to Multithreading, Superthreading and Hyperthreading
By Jon Stokes
http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars

http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars
http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars


We can add more CPUs …

• … and we’ll talk about this later in the class

• Note we have multiple CPUs reading out of the same 
instruction store

• Is this more efficient than having one CPU?



Symmetric Multiprocessing



Conventional Multithreading

• How does a microprocessor run multiple processes / 
threads “at the same time”?

• How does one program interact with another program?

• What is preemptive multitasking vs. cooperative 
multitasking?



New Approach: Multithreaded Execution

• Multithreading: multiple threads to share the 
functional units of 1 processor via overlapping

• processor must duplicate independent state of each 
thread e.g., a separate copy of register file, a separate 
PC, and for running independent programs, a separate 
page table

• memory shared through the virtual memory 
mechanisms, which already support multiple processes

• HW for fast thread switch; much faster than full process 
switch ≈ 100s to 1000s of clocks



Superthreading



Simultaneous multithreading (SMT)



Simultaneous multithreading (SMT)
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“Hyperthreading”

http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html

http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html
http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html


Multithreaded Execution

• When do we switch between threads?

• Alternate instruction per thread (fine grain)

• When a thread is stalled, perhaps for a cache miss, 
another thread can be executed (coarse grain)



Fine-Grained Multithreading
• Switches between threads on each instruction, causing the 

execution of multiple threads to be interleaved 

• Usually done in a round-robin fashion, skipping any stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long stalls, since 
instructions from other threads executed when one thread stalls 

• Disadvantage is it slows down execution of individual threads, since 
a thread ready to execute without stalls will be delayed by 
instructions from other threads

• Used on Sun’s Niagara (will see later)



Coarse-Grained Multithreading
• Switches threads only on costly stalls, such as L2 cache misses

• Advantages 

• Relieves need to have very fast thread-switching

• Doesn’t slow down thread, since instructions from other threads issued only when the 
thread encounters a costly stall 

• Disadvantage is hard to overcome throughput losses from shorter stalls, due to 
pipeline start-up costs

• Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be 
emptied or frozen 

• New thread must fill pipeline before instructions can complete 

• Because of this start-up overhead, coarse-grained multithreading is better for 
reducing penalty of high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400



P4Xeon Microarchitecture
• Replicated

• Register renaming logic

• Instruction pointer, other 
architectural registers

• ITLB

• Return stack predictor

• Partitioned

• Reorder buffers

• Load/store buffers

• Various queues: scheduling, uop, 
etc.

• Shared

• Caches (trace, L1/L2/L3)

• Microarchitectural registers

• Execution units

• If configured as single-threaded, all 
resources go to one thread



Partitioning: Static vs. Dynamic



Design Challenges in SMT
• Since SMT makes sense only with fine-grained implementation, impact of fine-

grained scheduling on single thread performance?

• A preferred thread approach sacrifices neither throughput nor single-thread 
performance? 

• Unfortunately, with a preferred thread, the processor is likely to sacrifice some 
throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts

• Not affecting clock cycle time, especially in 

• Instruction issue—more candidate instructions need to be considered

• Instruction completion—choosing which instructions to commit may be challenging

• Ensuring that cache and TLB conflicts generated by SMT do not degrade 
performance



Problems with SMT

• One thread monopolizes resources

• Example: One thread ties up FP unit with long-latency 
instruction, other thread tied up in scheduler

• Cache effects

• Caches are unaware of SMT—can’t make warring 
threads cooperate

• If both warring threads access different memory and 
have cache conflicts, constant swapping



Hyperthreading Neutral!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html


Hyperthreading Good!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html


Hyperthreading Bad!

http://www.2cpu.com/articles/43_1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html


SPEC vs. SPEC (PACT ‘03)
Benchmark Best Speedup Worst Speedup Avg Speedup

gzip 1.48 1.14 1.24

vpr 1.43 1.04 1.17

gcc 1.44 1.00 1.11

mcf 1.57 1.01 1.21

crafty 1.40 0.99 1.17

parser 1.44 1.09 1.18

eon 1.42 1.07 1.25

perlbmk 1.40 1.07 1.20

gap 1.43 1.17 1.25

vortex 1.41 1.01 1.13

bzip2 1.47 1.15 1.24

twolf 1.48 1.02 1.16

wupwise 1.33 1.12 1.24

swim 1.58 0.90 1.13

mgrid 1.28 0.94 1.10

applu 1.37 1.02 1.16

mesa 1.39 1.11 1.22

galgel 1.47 1.05 1.25

art 1.55 0.90 1.13

equake 1.48 1.02 1.21

facerec 1.39 1.16 1.25

ammp 1.40 1.09 1.21

lucas 1.36 0.97 1.13

fma3d 1.34 1.13 1.20

sixtrack 1.58 1.28 1.42

apsi 1.40 1.14 1.23

Overall 1.58 0.90 1.20

Table 2. Multiprogrammed SPEC Speedups

tend to cause their partner to run slowly. In fact, it is the

latter. We see that swim on average sees 63% of its origi-

nal throughput, while the coscheduled thread achieves only

49% of it’s original throughput. Likewise, art on average

achieves 71% of its original throughput, whereas cosched-

uled threads achieve only 42%.

The worst speedup is achieved by swim running with

art. The best speedup is achieved by swim running with

sixtrack (although art also has the third highest speedup in

conjunction with sixtrack). Thus, swim is part of both the

best and worst pairs! Analysis of these cases with VTune

reveal that swim and art both have low IPCs due to rela-

tively high cache miss rate. When run with swim, art’s poor

cache behavior increases the L2 miss rate of swim by a fac-

tor of almost 40. In the other case, swim and art’s low IPCs

interfere only minimally with sixtrack.

The lowest speedup is below 1.0. However, the slow-

downs are uncommon, and no lower than a 0.9 speedup. In

all, only 8 of the 351 combinations experience slowdowns.

None of the slowdowns approach the worst case results pre-

dicted by Tullsen and Brown [27]. That paper identifies

scenarios, particularly with two threads, where a shared in-

struction queue could result in speedups significantly below

one for certain combinations of threads if the queue is not

designed carefully. That work also shows that a partitioned

queue, while limiting performance in the best case, miti-

gates the problem. These results for the Pentium 4 parti-

tioned queue seem to confirm that result. This architecture
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Figure 2. Multiprogrammed speedup of all

SPEC benchmarks

usually achieves its stated goal [13] of providing high isola-

tion between threads.

5.3 Parallel Multithreaded Speedup

Parallel applications exercise aspects of the multi-

threaded implementation that the multiprogrammed work-

load does not. Parallel speedup will be sensitive to the

speed and efficiency of synchronization and communica-

tion mechanisms. In addition, parallel applications have

the potential to compete more heavily for shared resources

than a multiprogrammed workload – if the threads of the

parallel program each have similar characteristics, they will

likely each put pressure on the same resources in the same

way, and a single resource will become a bottleneck more

quickly [11].

Parallel speedups for the SPLASH2 benchmarks are

shown in Figure 3. For the sake of comparison, that graph

also shows the speedup when two single-threaded copies of

that benchmark are run. The multithreaded speedup ranges

from 1.02 to 1.67, and thus is a positive speedup in all cases,

although the speedups for ocean contiguous and water spa-

tial are not significant. The multiprogrammed speedups

range from 1.06 to 1.49, with no slowdowns. It is interest-

ing to note that in three out of the eight cases, the speedup

from the parallel version is actually greater than the average

speedup from running two copies.

Figure 4 shows the results of running the NAS parallel

benchmarks compiled with OpenMP directives for the class

• Avg. multithreaded speedup 1.20 (range 0.90–1.58)
“Initial Observations of the Simultaneous Multithreading Pentium 4 Processor”, Nathan Tuck and Dean M. Tullsen (PACT ‘03)


