Lecture 7
Thread Level Parallelism (1)

EEC 171 Parallel Architectures
John Owens
UC Davis

Credits

e O John Owens /

e Thanks to many

UC Davis 2007—9.

sources for slide material: Computer

Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)

© 2007, Inside t
Dan Connors / U
Mei Hwu/David
David Patterson

ne Machine (Jon Stokes) © 2007, ©
niversity of Colorado 2007, © Wen-

Kirk, University of Illinois 2007, ©
/ UCB 2003-7, © John Lazzaro / UCB

2006, © Mary Jane Irwin / Penn State 2005, © John
Kubiatowicz / UCB 2002, © Krste Asinovic/Arvind /
MIT 2002, © Morgan Kaufmann Publishers 1998.

What We Know

Processor

Control

Datapath

e What new techniques have we learned that make ...

e ... control go fast?

e ... datapath go fast?

Cook analogy

e We want to prepare food for several banquets, each of
which requires many dinners.

e We have two positions we can fill:

e The boss (control), who gets all the ingredients and tells
the chef what to do

e The chef (datapath), who does all the cooking
e |LPis analogous to:
e One ultra-talented boss with many hands

e One ultra-talented chef with many hands

Cook analogy

e We want to prepare food for several banquets, each of
which requires many dinners.

e Butone boss and one chefisn’t enough to do all our
cooking.

e What are our options?

Chef scaling

e What’s the cheapest way to cook more?

e |sit easy or difficult to share (ingredients, cooked
food, etc.) between chefs?

e Which method of scaling is most flexible?

’

“Sea change in computing

“...today’s processors ... are nearing an impasse as technologies
approach the speed of light..”

e David Mitchell, The Transputer: The Time Is Now (1989)

Transputer had bad timing (uniprocessor performance increased)
= Procrastination rewarded: 2X seq. perf. / 1.5 years

“We are dedicating all of our future product development to
multicore designs ... This is a sea change in computing.”

e Paul Otellini, President, Intel (2005)

All microprocessor companies switch to MP (2X CPUs / 2 yrs)
= Procrastination penalized: 2X sequential perf. / 5 yrs

Flynn’s Classification Scheme

SISD - single instruction, single data stream

e Uniprocessors

SIMD - single instruction, multiple data streams

e single control unit broadcasting operations to multiple datapaths
MISD — multiple instruction, single data

e no such machine (although some people put vector machines in this
category)

MIMD — multiple instructions, multiple data streams

e aka multiprocessors (SMPs, MPPs, clusters, NOWSs)

Performance beyond single thread ILP

e There can be much higher natural parallelism in some applications
(e.g., database or scientific codes)

Explicit Thread Level Parallelism or
Thread: process with own instructions and data

e Thread may be a subpart of a parallel program (“thread”), or it may be an independent
program (“process”)

Each thread has all the state (instructions, data, PC, register state, and so on) necessary
to allow it to execute

Many kitchens, each with own boss and chef

: Perform identical operations on data, and lots of data

1 kitchen, 1 boss, many chefs

Continuum of Granularity

“Coarse”

Each processor is more
powerful

Usually fewer
processors

Communication is more
expensive between
processors

Processors are more
loosely coupled

Tend toward MIMD

“Fine”

Each processor is less
powerful

Usually more
processors

Communication is
cheaper between
processors

Processors are more
tightly coupled

Tend toward SIMD

The Rest of the Class

e Next 3 weeks:

e Thread-level parallelism. Coarse-grained parallelism. Multiprocessors,
clusters, multicore.

e 3 weeks hence:

e Data-level parallelism. Fine-grained parallelism. MMX, SSE. Vector &
stream processors. GPUs.

Thread Level Parallelism

e |LP exploits implicit parallel operations within a loop
or straight-line code segment

e TLP explicitly represented by the use of multiple
threads of execution that are inherently parallel

® You must rewrite your code to be thread-parallel.

e Goal: Use multiple instruction streams to improve
e Throughput of computers that run many programs
e Execution time of multi-threaded programs

e TLP could be more cost-effective to exploit than ILP

Organizing Many Processors

Processor Processor

Control Control

Datapath Datapath

e Multiprocessor—multiple processors with a single shared address
space

e Symmetric multiprocessors: All memory is the same distance away from
all processors (UMA = uniform memory access)

Organizing Many Processors

Processor Processor

Control Control

Datapath [Input]4 Input] Datapath

e Cluster—multiple computers (each with their own address space)
connected over a local area network (LAN) functioning as a single
system

e “Constellation”: cluster of multiprocessors

Applications Needing “Supercomputing”

Energy [plasma physics (simulating fusion reactions), geophysical (petroleum)
exploration]

DoE stockpile stewardship (to ensure the safety and reliability of the nation’s
stockpile of nuclear weapons)

Earth and climate (climate and weather prediction, earthquake, tsunami
prediction and mitigation of risks)

Transportation (improving vehicles’ airflow dynamics, fuel consumption,
crashworthiness, noise reduction)

Bioinformatics and computational biology (genomics, protein folding, designer
drugs)

Societal health and safety (pollution reduction, disaster planning, terrorist action
detection)

Financial (calculate options pricing, etc.)

Supercomputer Style Migration (Top500)

500 — Clusters
PR T M S R A K A Constellations
SIMDs
MPPs
SMPs
Uniproc's

Cluster—whole
computers
interconnected using
their 1/0 bus

Constellation—a
cluster that uses an
SMP multiprocessor as
0 the building block

1993 1994 1995 1996 1997 1998 19992000 2001 2002 2003 2004 2005

e [nthe last 8 years uniprocessor and SIMDs disappeared while
Clusters and Constellations grew from 3% to 80%

http://www.topsoo.org/lists/2005/11/

http://www.top500.org/lists/2005/11/
http://www.top500.org/lists/2005/11/

Top 500: Application Area

Application Area Share Over Time
1993-2008
500

Not Specified
Geophysics
B Finance
Telecomm
B Weather and Climate
Research
B Automotive
[Database
M Aerospace
B Semiconductor
M Research
B Electronics
B Information Processing
Service
M Energy
Others

e,
o
R

TOP500 Releases

Top 500: Historicals

<
@500 Performance Development

IRCOMPMUTE R SITES

100FFlops

16953&0& ™m- #1
10 PFlops - y o #500

1105.00 TA@- Sum
B-a

1 PFlops
100 TFlops

10 TFAops | &

Nl o

o
&

‘o poa®
100 GFlops i‘o""

1 TFlops

Performance

10 GFlops -

1 GFlops 4.}

100 MFlops

hitp://www .top500.0org/

Top 500: Architectures

Architecture / Systems
November 2008

Architecture / Performance
November 2008

Top 5o00: Countries

Countries Share Over Time
1993-2008

M

United States
Japan
M Germany
M United Kingdom
B France
M Italy
B Canada
B Korea, South
M Netherlands
B China
B Switzerland
M Others

TOP500 Releases

Top 500: Customers

@_ﬁﬂﬂc Customer Segment / Systems (November 2006)
S Movember 2006

FResearch (26 65%

Acadernic (17 2%

Classified (4.0%)
endor (2.2
- Others (0.8%

bt iy topS00.orgs

Top 500: Interconnect

Interconnect / Systems
November 2008

Gigabit Ethernet

ﬁ Others

XT3 Internal Interconnec

Infiniband Myrinet
Federation

Infinband DDR 4x
XT4 Internal Interconnect
Proprietary
Infiniband DDR

Top 500: Processor Family

@sau Processor Family / Systems (November 2006)
i casr FE 31785 Movember 2006

Intel EME4T (21.8% 3|

Fower (15.27%)

AMD x86 R4 (22 5% —— -
Processor Family / Systems

November 2008

PA-RISC (4.0%)]
Others (2.6%)

121172006 hittpfeeaew topS00 orgf

Intel EMG64T

Others
Intel IA-64
Power

AMD x86_64

Top 500: Processor Count

Number of Processors / Systems
November 2008

2049-4096

Others
32k-64k
16k-32k
8k-16k
1025-2048

For most apps, most execution units lie idle

100 =

F s
o [8-way superscalar]

E memory conflict
E long fp

short fp

long integer

@ short integer
load delays

I:l control hazards
branch misprediction
ﬁ dcache miss

IID icache miss

[dtib miss

[itlb miss

. processor busy

3 DN |

| DN

g
(e}

@)
o

n
(@]

75
Q
—
Q
)
@)
Q
=
75
n
e
=
< 50
o
-
S
o
~N—
c
]
Q
S
0]
oW

W
]

From: Tullsen, Eggers, and Levy,

“Simultaneous Multithreading:

Maximizing On-chip Parallelism,
ISCA 1995,

li

mdljdp2
mdljsp2

nasa’ Il v o

espresso
fpppp
hydro2d
tomcatv
composite

Applications

Source of Wasted Slots

Source of Wasted
Issue Slots

Possible Latency-Hiding or Latency-Reducing Technique

instruction tlb miss, data
tlb miss

decrease the TLB miss rates (e.g., increase the TLB sizes); hardware instruction prefetching; hardware
or software data prefetching; faster servicing of TLB misses

I cache miss

larger, more associative, or faster instruction cache hierarchy; hardware instruction prefetching

D cache miss

larger, more associative, or faster data cache hierarchy; hardware or software prefetching; improved
instruction scheduling; more sophisticated dynamic execution

branch misprediction

improved branch prediction scheme; lower branch misprediction penalty

control hazard

speculative execution; more aggressive if-conversion

load delays (first-level

cache hits)

shorter load latency; improved instruction scheduling; dynamic scheduling

short integer delay

improved instruction scheduling

long integer, short fp, long
fp delays

(multiply is the only long integer operation, divide is the only long floating point operation) shorter
latencies; improved instruction scheduling

memory conflict

(accesses to the same memory location in a single cycle) improved instruction scheduling

RAM

Single-threade

CPU

Execution Core

Front End

Introduction to Multithreading, Superthreading and Hyperthreading
By Jon Stokes
http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars

http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars
http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars

We can add more CPUs ...

e ...and we’ll talk about this later in the class

e Note we have multiple CPUs reading out of the same
instruction store

e Isthis more efficient than having one CPU?

=
&

on
=
U]
U]
QD
O
-
-
Q.
.....I”u
-
=
O
e
e
D
=
=
>
s

-- o)
o
2
=

Conventional Multithreading

e How does a microprocessor run multiple processes /
threads “at the same time”?

e How does one program interact with another program?

e What is preemptive multitasking vs. cooperative
multitasking?

New Approach: Multithreaded Execution

e Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

e processor must duplicate independent state of each
thread e.g., a separate copy of register file, a separate
PC, and for running independent programs, a separate
page table

e memory shared through the virtual memory
mechanisms, which already support multiple processes

e HW for fast thread switch; much faster than full process
switch = 100s to 1000s of clocks

Superthreading

Simultaneous multithreading (SMT)

Simultaneous multithreading (SMT)

[

[

[
oo

BT
(W]
(1110

| [T
[TH] WaN

Multithreaded Categories

Simultaneous
Multithreading
N N

S e

Superscalar Fine-Grained Coarse-Grained Multiprocessing

N

~

<
O
>
&
—
O
7y
v
<
O
o
—
(@R

—
D
=

Thread 1 Thread 3
y Thread 2 “ Thread 4 Idle slot

“Hyperthreading”

E, Windows Task Manager

File ©Options Miew Help

Applications] Processes Performance lNetwnrking]

P sage CPU Usage Hiskory

|||""I |h|"ﬂ'||.llllq|lli\|lllr M M

PF Usage Page File Usage Hiskory

206 MB

Tokals Phwsical Mermaty (K]

Handles Total CZ273z
Threads Ay ailable 252364
Processes System Cache 134636

Cornmit Charge (K) Kernel Memaory (K)

Total 2117a0 Total 21556
Limit 12796ED Paged Ba00
Peal. 211512 Monpaged 11656

Processes: 15 CPU Usage: 45%: Commit Charge: 206M | 12490

http://www.2cpu.com/Hardware/ht analysis/images/taskmanager.html

http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html
http://www.2cpu.com/Hardware/ht_analysis/images/taskmanager.html

Multithreaded Execution

e When do we switch between threads?
e Alternate instruction per thread (fine grain)

e When a thread is stalled, perhaps for a cache miss,
another thread can be executed (coarse grain)

Fine-Grained Multithreading

Switches between threads on each instruction, causing the
execution of multiple threads to be interleaved

Usually done in a round-robin fashion, skipping any stalled threads
CPU must be able to switch threads every clock

Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread stalls

Disadvantage is it slows down execution of individual threads, since
a thread ready to execute without stalls will be delayed by
instructions from other threads

Used on Sun’s Niagara (will see later)

Coarse-Grained Multithreading

Switches threads only on costly stalls, such as L2 cache misses
Advantages
e Relieves need to have very fast thread-switching

e Doesn’t slow down thread, since instructions from other threads issued only when the
thread encounters a costly stall

Disadvantage is hard to overcome throughput losses from shorter stalls, due to
pipeline start-up costs

e Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must be
emptied or frozen

e New thread must fill pipeline before instructions can complete

Because of this start-up overhead, coarse-grained multithreading is better for
reducing penalty of high cost stalls, where pipeline refill <« stall time

Used in IBM AS/400

P4Xeon Microarchitecture

e Replicated

® Register renaming logic

Instr.uctlon pomt.er, other e Shared
architectural registers

L
LB e Caches (trace, L1/L2/L3)

, e Microarchitectural registers
Return stack predictor

e Execution units

e Partitioned
e |If configured as single-threaded, all

Reorder buffers resources go to one thread

Load/store buffers

Various queues: scheduling, uop,
etc.

Partitioning: Static vs. Dynamic

SoHAERE

Design Challenges in SMT

Since SMT makes sense only with fine-grained implementation, impact of fine-
grained scheduling on single thread performance?

e A preferred thread approach sacrifices neither throughput nor single-thread
performance?

Unfortunately, with a preferred thread, the processor is likely to sacrifice some
throughput, when preferred thread stalls

Larger register file needed to hold multiple contexts

Not affecting clock cycle time, especially in

e Instruction issue—more candidate instructions need to be considered

e |[nstruction completion—choosing which instructions to commit may be challenging

Ensuring that cache and TLB conflicts generated by SMT do not degrade
performance

Problems with SMT

e Onethread monopolizes resources

e Example: One thread ties up FP unit with long-latency
instruction, other thread tied up in scheduler

e (Cache effects

e (Caches are unaware of SMT—can’t make warring
threads cooperate

e If both warring threads access different memory and
have cache conflicts, constant swapping

Hyperthreading Neutral!

LAME 3.92MMX

B HT - 2.0ghz
O HNo HT - 2.0ghz
B HT - 2.4ghz
O No HT - 2.4ghz

Seconds to Encode (Lower is Better)

http://www.2cpu.com/articles/43 1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

Hyperthreading Good!

TMPGEnc - MPEG1
128 |
B HT - 2.0ghz
O No HT - 2.0ghz

B HT - 24ghz
O HNo HT - 24ghz

Seconds to Encode (Lower is Better)

http://www.2cpu.com/articles/43 1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

Hyperthreading Bad!

DivX Pro v5.0.2 Encoding

af.21

26,38

61.23

Frames/5Second (Higher is Better)

B HT - 2.0ghz
O Mo HT - 2.0ghz
B HT - 24ghz
@ HNo HT - 24ghz

http://www.2cpu.com/articles/43 1.html

http://www.2cpu.com/articles/43_1.html
http://www.2cpu.com/articles/43_1.html

iIsde
NOoreAIXIS
pgewy
seon|
dwwe
091908}
ayenba
ue
|[objeb
esaw
nidde
pLbw
WIMS
asimanm
jom}
gdizq
X8]J0A
deb
ywqied
uoo
Jasred
Ayeio
jow
006

Jda
dizb

e Avg. multithreaded speedup 1.20 (range 0.90-1.58)

~
M
&
—
=
al
—
O
LLl
al
Yy
n
>
O
LLl
al
Yy

“Initial Observations of the Simultaneous Multithreading Pentium 4 Processor”, Nathan Tuck and Dean M. Tullsen (PACT ‘03)

