
Lecture 7
Instruction Level Parallelism (5)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–2009.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Wen-
Mei Hwu/David Kirk, University of Illinois 2007, ©
David Patterson / UCB 2003–7, © John Lazzaro / UCB
2006, © Mary Jane Irwin / Penn State 2005, © John
Kubiatowicz / UCB 2002, © Krste Asinovic/Arvind /
MIT 2002, © Morgan Kaufmann Publishers 1998.

Limits to ILP
• Conflicting studies of amount

• Benchmarks (vectorized Fortran FP vs. integer C programs)

• Hardware sophistication

• Compiler sophistication

• How much ILP is available using existing mechanisms with increasing HW
budgets?

• Do we need to invent new HW/SW mechanisms to keep on processor performance
curve?

• Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

• Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

• Motorola AltiVec: 128 bit ints and FPs

• Supersparc Multimedia ops, etc.

Overcoming Limits

• Advances in compiler technology + significantly new
and different hardware techniques may be able to
overcome limitations assumed in studies

• However, unlikely such advances when coupled with
realistic hardware will overcome these limits in near
future

Upper Limit to ILP: Ideal Machine

Integer: 18–60
FP: 75–150

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Limits to ILP
• Most techniques for increasing performance increase power

consumption

• The key question is whether a technique is energy efficient: does it
increase power consumption faster than it increases performance?

• Multiple issue processor techniques all are energy inefficient:

• Issuing multiple instructions incurs some overhead in logic that grows
faster than the issue rate grows

• Growing gap between peak issue rates and sustained performance

• Number of transistors switching = f(peak issue rate), and
performance = f(sustained rate):
Growing gap between peak and sustained performance
 ⇒ increasing energy per unit of performance

Limits to ILP
• Doubling issue rates above today’s 3–6 instructions per clock, say

to 6 to 12 instructions, probably requires a processor to

• Issue 3 or 4 data memory accesses per cycle,

• Resolve 2 or 3 branches per cycle,

• Rename and access more than 20 registers per cycle, and

• Fetch 12 to 24 instructions per cycle.

• Complexities of implementing these capabilities likely means
sacrifices in maximum clock rate

• E.g, widest issue processor is the Itanium 2, but it also has the slowest
clock rate, despite the fact that it consumes the most power!

Limits to ILP
• Initial HW Model here; MIPS compilers.

• Assumptions for ideal/perfect machine to start:

• 1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided

• 2. Branch prediction – perfect; no mispredictions

• 3. Jump prediction – all jumps perfectly predicted (returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation & an unbounded buffer of

instructions available

• 4. Memory-address alias analysis – addresses known & a load can be moved before a
store provided addresses not equal; 1&4 eliminates all but RAW

• Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
instructions issued/clock cycle;

Limits to ILP HW Model comparison
New Model Ideal Power 5

Instructions
Issued per clock 64 Infinite 4

Instruction
Window Size 2048 Infinite 200

Renaming
Registers 256 Int + 256 FP Infinite 48 integer +

40 Fl. Pt.
Branch

Prediction 8K 2-bit Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB L2,
36 MB L3

Memory Alias Perfect v. Stack v.
Inspect v. none Perfect Perfect

0

37.5

75.0

112.5

150.0

gcc espresso li fpppp doduc tomcatv

Infinite 2048 512 128 32

More Realistic HW: Window Impact
FP: 9–150

Integer: 8–63

IP
C

0

17.5

35.0

52.5

70.0

gcc espresso li fpppp doducd tomcatv

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
FP: 15–45

Integer: 6–12

IP
C

 Window of 2048 instructions,
maximum issue of 64
instructions per clock cycle

Misprediction Rates (%)

0

7.5

15.0

22.5

30.0

tomcatv doduc fpppp li espresso gcc

Profile-based 2-bit counter Tournament

0

15

30

45

60

gcc espresso li fpppp doducd tomcatv

Infinite 256 128 64 32 None

Renaming Register Impact

Integer: 5–15

FP: 11–45

IP
C

Memory Address Alias Impact

FP: 4–45
(Fortran,
no heap)

Integer: 4–9

IP
C

HW vs. SW to increase ILP
• Memory disambiguation: HW best

• Speculation:

• HW best when dynamic branch prediction better than compile time
prediction

• Exceptions easier for HW

• HW doesn’t need bookkeeping code or compensation code

• Very complicated to get right

• Scheduling: SW can look ahead to schedule better

• Compiler independence: does not require new compiler,
recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

• Each thread has all the state (instructions, data, PC, register state, and
so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical operations on data, and
lots of data

ILP Summary
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP

• Works when can’t know dependence at compile time

• Can hide L1 cache misses

• Code for one machine runs well on another

