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Limits to ILP
• Conflicting studies of amount

• Benchmarks (vectorized Fortran FP vs. integer C programs)

• Hardware sophistication

• Compiler sophistication

• How much ILP is available using existing mechanisms with increasing HW 
budgets?

• Do we need to invent new HW/SW mechanisms to keep on processor performance 
curve?

• Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints 

• Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

• Motorola AltiVec: 128 bit ints and FPs

• Supersparc Multimedia ops, etc.



Overcoming Limits

• Advances in compiler technology + significantly new 
and different hardware techniques may be able to 
overcome limitations assumed in studies

• However, unlikely such advances when coupled with 
realistic hardware will overcome these limits in near 
future 



Upper Limit to ILP: Ideal Machine

Integer: 18–60
FP: 75–150
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Limits to ILP
• Most techniques for increasing performance increase power 

consumption 

• The key question is whether a technique is energy efficient: does it 
increase power consumption faster than it increases performance? 

• Multiple issue processor techniques all are energy inefficient:

• Issuing multiple instructions incurs some overhead in logic that grows 
faster than the issue rate grows

• Growing gap between peak issue rates and sustained performance

• Number of transistors switching = f(peak issue rate), and 
performance = f(sustained rate):
Growing gap between peak and sustained performance 
 ⇒ increasing energy per unit of performance



Limits to ILP
• Doubling issue rates above today’s 3–6 instructions per clock, say 

to 6 to 12 instructions, probably requires a processor to 

• Issue 3 or 4 data memory accesses per cycle, 

• Resolve 2 or 3 branches per cycle, 

• Rename and access more than 20 registers per cycle, and 

• Fetch 12 to 24 instructions per cycle. 

• Complexities of implementing these capabilities likely means 
sacrifices in maximum clock rate 

• E.g,  widest issue processor is the Itanium 2, but it also has the slowest 
clock rate, despite the fact that it consumes the most power!



Limits to ILP
• Initial HW Model here; MIPS compilers. 

• Assumptions for ideal/perfect machine to start:

• 1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided

• 2. Branch prediction – perfect; no mispredictions 

• 3. Jump prediction – all jumps perfectly predicted (returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation & an unbounded buffer of 

instructions available

• 4. Memory-address alias analysis – addresses known & a load can be moved before a 
store provided addresses not equal; 1&4 eliminates all but RAW

• Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited 
instructions issued/clock cycle; 



Limits to ILP HW Model comparison
New Model Ideal Power 5

Instructions 
Issued per clock 64 Infinite 4

Instruction 
Window Size 2048 Infinite 200

Renaming 
Registers 256 Int + 256 FP Infinite 48 integer + 

40 Fl. Pt.
Branch 

Prediction 8K 2-bit Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB L2, 
36 MB L3

Memory Alias Perfect v. Stack v. 
Inspect v. none Perfect Perfect
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Misprediction Rates (%)
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Memory Address Alias Impact
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HW vs. SW to increase ILP
• Memory disambiguation: HW best

• Speculation: 

• HW best when dynamic branch prediction better than compile time 
prediction

• Exceptions easier for HW

• HW doesn’t need bookkeeping code or compensation code

• Very complicated to get right

• Scheduling: SW can look ahead to schedule better

• Compiler independence: does not require new compiler, 
recompilation to run well



Performance beyond single thread ILP

• There can be much higher natural parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• thread may be a process part of a parallel program of multiple 
processes, or it may be an independent program

• Each thread has all the state (instructions, data, PC, register state, and 
so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical operations on data, and 
lots of data



ILP Summary
• Leverage Implicit Parallelism for Performance: 

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP

• Works when can’t know dependence at compile time

• Can hide L1 cache misses

• Code for one machine runs well on another


