Lecture 7
Instruction Level Parallelism (5)

EEC 171 Parallel Architectures
John Owens
UC Davis

Credits

e O John Owens /

e Thanks to many

UC Davis 2007—-2009.

sources for slide material: Computer

Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)

© 2007, Inside t
Dan Connors / U
Mei Hwu/David
David Patterson

ne Machine (Jon Stokes) © 2007, ©
niversity of Colorado 2007, © Wen-

Kirk, University of Illinois 2007, ©
/ UCB 2003-7, © John Lazzaro / UCB

2006, © Mary Jane Irwin / Penn State 2005, © John
Kubiatowicz / UCB 2002, © Krste Asinovic/Arvind /
MIT 2002, © Morgan Kaufmann Publishers 1998.

Limits to ILP

Conflicting studies of amount
e Benchmarks (vectorized Fortran FP vs. integer C programs)
e Hardware sophistication

e Compiler sophistication

How much ILP is available using existing mechanisms with increasing HW
budgets?

Do we need to invent new HW/SW mechanisms to keep on processor performance
curve?

Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
Motorola AltiVec: 128 bit ints and FPs

Supersparc Multimedia ops, etc.

Overcoming Limits

e Advances in compiler technology + significantly new
and different hardware techniques may be able to
overcome limitations assumed in studies

e However, unlikely such advances when coupled with

realistic hardware will overcome these limits in near
future

Upper Limit to ILP: Ideal Machine

FP: 75—-150
Integer: 18-60 118.7

=
&
L=
o
-
QD
al
(Vg
c
o
.-I:
&)
-
-
e
(Vg
c

gcc espresso [fpppp doducd tomcatv

Programs

Limits to ILP

Most techniques for increasing performance increase power
consumption

The key question is whether a technique is energy efficient: does it
increase power consumption faster than it increases performance?

Multiple issue processor techniques all are energy inefficient:

e |ssuing multiple instructions incurs some overhead in logic that grows
faster than the issue rate grows

e Growing gap between peakissue rates and sustained performance

Number of transistors switching = f(peak issue rate), and
performance = f(sustained rate):

Growing gap between peak and sustained performance
= increasing energy per unit of performance

Limits to ILP

e Doublingissue rates above today’s 3—-6 instructions per clock, say
to 6 to 12 instructions, probably requires a processor to

e |ssue 3 or 4 data memory accesses per cycle,
e Resolve 2 or 3 branches per cycle,
e Rename and access more than 20 registers per cycle, and

e Fetch 12 to 24 instructions per cycle.

e Complexities of implementing these capabilities likely means
sacrifices in maximum clock rate

e E.g, widestissue processoristhe ltanium 2, but it also has the slowest
clock rate, despite the fact that it consumes the most power!

Limits to ILP

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

e 1. Register renaming — infinite virtual registers
=» all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions

3. Jump prediction - all jumps perfectly predicted (returns, case statements)
2 & 3 = no control dependencies; perfect speculation & an unbounded buffer of
instructions available

4. Memory-address alias analysis — addresses known & a load can be moved before a
store provided addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
instructions issued/clock cycle;

Limits to ILP HW Model comparison

New Model |deal Power g

Instructions

Issued per clock 64 Infinite

Instruction

Window Size 2048 Infinite 200

Renaming
Registers

48 integer +

FP Infini
256 Int + 256 nfinite 40 FL Pt.

Branch

.. 8K 2-bit Perfect Tournament
Prediction

64Kl, 32KD, 1.92MB L2,

Cache Perfect Perfect 36 MB L3

: Perfect v. Stack v.
Memory Alias Perfect Perfect
Inspect v. none

More Realistic HW: Window Impact

FP: 9—150

Integer: 8—63

o
L

espresso li fpppp doduc tomcatv

W Infinite B 2048 | 512 [128 M 32

More Realistic HW: Branch Impact

70.0 : : :
Window of 2048 instructions,

maximum issue of 64
instructions per clock cycle

Integer: 6—12

gcc espresso i fpppp

W Perfect [Selective predictor | Standard 2-bit

FP: 15—-45

doducd

B Static

tomcatv

B None

Misprediction Rates (%)

30.0

tomcatv doduc fpppp i espresso

" Profile-based [} 2-bit counter Tournament

Renaming Register Impact

e FP: 11—45

Integer: 5—15

~

gcc espresso ' fpppp doducd tomcatv

™ Infinite B 256 | M 64 B 32 B None

Memory Address Alias Impact

FP: 4-45
(Fortran,
no heap)

Integer: 4—9

gcc espresso li fpppp doducd tomcatv

Program

B Perfect B Global/stack Perfect Inspection [None

HW vs. SW to increase ILP

e Memory disambiguation: HW best
e Speculation:

e HW best when dynamic branch prediction better than compile time
prediction

e Exceptions easier for HW
e HW doesn’t need bookkeeping code or compensation code

e Very complicated to get right

e Scheduling: SW can look ahead to schedule better

e Compilerindependence: does not require new compiler,
recompilation to run well

Performance beyond single thread ILP

There can be much higher natural parallelism in some applications
(e.g., Database or Scientific codes)

Explicit Thread Level Parallelism or Data Level Parallelism
Thread: process with own instructions and data

e thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

e Each thread has all the state (instructions, data, PC, register state, and
so on) necessary to allow it to execute

Data Level Parallelism: Perform identical operations on data, and
lots of data

ILP Summary

e Leverage Implicit Parallelism for Performance:
Instruction Level Parallelism

Loop unrolling by compiler to increase ILP

Branch prediction to increase ILP

Dynamic HW exploiting ILP

e Works when can’t know dependence at compile time
e Can hide L1 cache misses

e Code for one machine runs well on another

