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Outline

• Trace scheduling & trace caches

• Pentium 4

• Intel tips for performance

• EPIC & Itanium: Modern VLIW

• Transmeta approach—alternate VLIW strategy

• Limits to ILP



• Problem: Can’t find enough ILP within single block

• Solution: Pretend blocks are bigger!

• Problem: But blocks aren’t bigger! Blocks are 
separated by branches.

• Solution 1: Let hardware speculate (branch prediction)

• Solution 2: Let software make its best guess based on 
history (trace scheduling)

• … and then implement this in hardware (trace cache, 
Pentium 4)

Trace scheduling



• Original loop 
allows us to 
increment 
either r0 or r1:
x[r0]=x[r0]+r1

• Profile says 
incrementing r1 
is much more 
common

• Optimize for 
that case

Example (SW)1316 P. P. CHANG, S. A. MAHLKE AND W.-M. W. HWU

(a)

(b)

Figure 9. An example of super-block global variable migration: (a) original program segment; (b)
program segment after global variable migration

5.
6.
7.

8.

The

op ( x ) and op ( y ) are incremented by the same value, i.e. K1 = K2 *

There are no branch instructions between op ( x ) and op ( y ).
For each operation op ( j ) in which src ( j ) contains dest ( x ), either j = x or all
elements of src ( j ) except dest ( x ) are loop invariant.
All uses of dest ( x ) can be modified to dest ( y ) in the super-block without
incurring time penalty.†

action function of induction variable elimination consists of four steps:

1. op ( x ) is deleted.
2. A subtraction instruction op ( m ), dest ( m ) ! dest ( x ) – dest ( y ), is inserted after

the last instruction in the preheader of the super-block loop.
3. For each instruction op ( a ) which uses dest ( x ), let other_src ( a ) denote the

* The restriction of predicate 5( K1 = K2 ) can be removed in some special uses of dest ( x ); however, these special
uses are too complex to be discussed in this paper.

† For example, if we know that dest ( x ) = dest ( y ) + 5 because of different initial values, then a (branch if not
equal) bne(dest ( x ),0) instruction is converted to a bne(dest ( y ), -5) instruction. For some machines, bne(dest ( y ), -5)
needs to be broken down to a compare instruction plus a branch instruction; then, the optimization may degrade
performance.

Chang et al. SPE Dec. 1991
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1

Figure 1. A block diagram of our prototype C compiler

Table I. Classic code optimizations

Local Global

constant propagation
copy propagation
common subexpression elimination
redundant load elimination
redundant store elimination
constant folding
strength reduction
constant combining
operation folding
dead code removal
code reordering

constant propagation
copy propagation
common subexpression elimination
redundant load elimination
redundant store elimination
loop unrolling
loop invariant code removal
loop induction strength reduction
loop induction variable elimination
dead code removal
global variable migration
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Figure 5. Forming super-blocks

Formulation of code optimizations

Table II shows a list of classic code optimizations that we have extended to use
profile information. The original formulation of these classic code optimizations can

Table II. Super-block code optimizations

Name Scope

constant propagation super-block

copy propagation super-block

constant combining super-block

common subexpression elimination super-block

redundant store elimination super-block

redundant load elimination super-block

dead code removal super-block

loop invariant code removal super-block loop

loop induction variable elimination super-block loop

global variable migration super-block loop



• Over SPEC and other benchmarks:

• Profile vs. global techniques: 15% better

• MIPS o4 vs. global: 4% worse

• gnu.o vs. global: 12% worse

• Code size: Profile vs. global: 7% bigger

Chang et al. results



Trace Cache

• Trace techniques are useful in software

• How about in hardware?

• Addresses 2 problems in hardware:

• How to find more instruction level parallelism?

• How to avoid translation from x86 to microops? 

• Answer: Trace cache in Pentium 4



Pentium 4 Architecture
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Pentium Pro vs. P4
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Trace Cache
• Dynamic traces of the executed instructions vs. static 

sequences of instructions as determined by layout in 
memory

• Built-in branch predictor

• Cache the micro-ops vs. x86 instructions

• Decode/translate from x86 to micro-ops on trace 
cache miss

• P4 trace cache has unspecified size—Intel says 
roughly 12k µops, equivalent to 16-18 kB icache



Trace Cache Pros & Cons

• + Better utilize long blocks (don’t exit in middle of 
block, don’t enter at label in middle of block)

• – Complicated address mapping since addresses no 
longer aligned to power-of-2 multiples of word size

• Compiler is encouraged to produce static code like this

• – Instructions may appear multiple times in 
multiple dynamic traces due to different branch 
outcomes



Trace Cache Operation
• Two modes:

• Execute mode

• Up to 3 uops/cycle

• No translation or decode (saves 8 cycles)

• Only cache misses kick in front end

• Build mode

• Front end fetches x86 code from L2

• Translate, build trace segment, put into L1

• How do we prevent giant x86 instructions from polluting trace 
cache? Switch control over to ROM



P4 Trace Cache Advantages
• Saves cost of branch prediction

• Even successfully predicted branches likely put a 
bubble into the pipeline

• P4 has *20* cycle minimum misprediction penalty, 
more if cache miss

• In standard Intel pipelines, instruction fetch of a 
cache line goes up to a branch and stops

• Trace cache lines contain speculative ops after branches
—no waste



Pentium 4 Pipeline
• 1–2: Trace cache next instruction 

pointer

• 3–4: Trace cache fetch

• 5: Drive

• Up to 3 µops now sent into µop 
queue

• 6–8: Allocate and rename

• Each µop enters 1 queue, up to 3 
µops into queue

• 9: Queue (in-order queue within 
queue)
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Pentium 4 Pipeline
• 10–12: Schedule

• 8–12 entry mini-µop queue, arbitrates for 
one of 4 issue ports

• 13–14: Issue

• Up to 6 µops/cycle thru 4 ports

• 2 execution ports are double-clocked

• 15–16: Register files

• 17: Execute  •   18: Flags

• 19: Branch check •   20: Drive

• 21+ : Complete and commit
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Front End

• Optimizing the front end covers two aspects: 

• Maintaining steady supply of µops to the execution engine — Mispredicted branches 
can disrupt streams of µops, or cause the execution engine to waste execution 
resources on executing streams of µops in the non-architected code path. Much of the 
tuning in this respect focuses on working with the Branch Prediction Unit. Common 
techniques are covered in Section 3.4.1, “Branch Prediction Optimization.” 

• Supplying streams of µops to utilize the execution bandwidth and retirement bandwidth 
as much as possible — For Intel Core microarchitecture and Intel Core Duo processor 
family, this aspect focuses maintaining high decode throughput. In Intel NetBurst 
microarchitecture, this aspect focuses on keeping the Trace Cache operating in stream 
mode. Techniques to maximize decode throughput for Intel Core microarchitecture are 
covered in Section 3.4.2, “Fetch and Decode Optimization.” 



Branch prediction
• Keep code and data on separate pages. “This is very important”. 

Why? 

• Eliminate branches whenever possible.  (next slides)

• Arrange code to be consistent with the static branch prediction 
algorithm. (next slides)

• Use the PAUSE instruction in spin-wait loops. 

• Inline functions and pair up calls and returns.

• Unroll as necessary so that repeatedly-executed loops have sixteen 
or fewer iterations (unless this causes an excessive code size 
increase). 

• Separate branches so that they occur no more frequently than every 
three µops where possible. 



Eliminating branches
• Eliminating branches improves performance because: 

• It reduces the possibility of mispredictions. 

• It reduces the number of required branch target buffer (BTB) entries. 

• Conditional  branches that are never taken do not consume BTB 
resources. 

• There are four principal ways of eliminating branches (next slides): 

• Arrange code to make basic blocks contiguous. 

• Unroll loops, as discussed in Section 3.4.1.7, “Loop Unrolling.” 

• Use the CMOV instruction. 

• Use the SETCC instruction (explained on future slide).



Assembly Rule 1

• Arrange code to make basic blocks contiguous and eliminate 
unnecessary branches. 

• For the Pentium M processor, every branch counts. Even correctly 
predicted branches have a negative effect on the amount of useful code 
delivered to the processor. Also, taken branches consume space in the 
branch prediction structures and extra branches create pressure on the 
capacity of the structures. 



Assembly Rule 2
• Use the SETCC and CMOV instructions to eliminate unpredictable 

conditional branches where possible. Do not do this for predictable 
branches. Do not use these instructions to eliminate all 
unpredictable conditional branches (because using these 
instructions will incur execution overhead due to the requirement 
for executing both paths of a conditional branch). In addition, 
converting a conditional branch to SETCC or CMOV trades off control 
flow dependence for data dependence and restricts the capability of 
the out-of-order engine. When tuning, note that all Intel 64 and IA-32 
processors usually have very high branch prediction rates. 
Consistently mispredicted branches are generally rare. Use these 
instructions only if the increase in computation time is less than the 
expected cost of a mispredicted branch. 



Static Branch Predict Rules
• P4, Pentium M, Intel Core Solo and Intel Core Duo processors have 

similar static prediction algorithms that: 

• predict unconditional branches to be taken

• predict indirect branches to be NOT taken 

• In addition, conditional branches in processors based on the Intel 
NetBurst microarchitecture are predicted using the following static 
prediction algorithm: 

• predict backward conditional branches to be taken; rule is suitable for 
loops 

• predict forward conditional branches to be NOT taken



Assembly Rule 3

• Arrange code to be consistent with the static branch prediction 
algorithm: make the fall-through code following a conditional 
branch be the likely target for a branch with a forward target, and 
make the fall-through code following a conditional branch be the 
unlikely target for a branch with a backward target. 

• Is it better to do:

• if (condition) then likely() else unlikely()

• if (condition) then unlikely() else likely()



Return address stack
• Return Stack. Returns are always taken; but since a 

procedure may be invoked from several call sites, a 
single predicted target does not suffice. The Pentium 
4 processor has a Return Stack that can predict return 
addresses for a series of procedure calls. This 
increases the benefit of unrolling loops containing 
function calls. It also mitigates the need to put certain 
procedures inline since the return penalty portion of 
the procedure call overhead is reduced. 

• Has 16 entries (P4). “If there is a chain of more than 16 
nested calls and more than 16 returns in rapid 
succession, performance may degrade.”



Assembly Rule 4
• Near calls must be matched with near returns, and far calls must be matched with 

far returns. 

• Pushing the return address on the stack and jumping to the routine to be called is 
not recommended since it creates a mismatch in calls and returns. 

• Calls and returns are expensive; use inlining for the following reasons: 

• Parameter passing overhead can be eliminated. 

• In a compiler, inlining a function exposes more opportunity for optimization. 

• If the inlined routine contains branches, the additional context of the caller may improve 
branch prediction within the routine. 

• A mispredicted branch can lead to performance penalties inside a small function that 
are larger than those that would occur if that function is inlined. 



Assembly Rule 14

• Assembly/Compiler Coding Rule 14. (M impact, L 
generality) When indirect branches are present, try to 
put the most likely target of an indirect branch 
immediately following the indirect branch. 
Alternatively, if indirect branches are common but 
they cannot be predicted by branch prediction 
hardware, then follow the indirect branch with a UD2 
instruction, which will stop the processor from 
decoding down the fall-through path. 



Problems with 1st Generation VLIW

• Increase in code size

• generating enough operations in a straight-line code 
fragment requires ambitiously unrolling loops

• whenever VLIW instructions are not full, unused 
functional units translate to wasted bits in instruction 
encoding



Problems with 1st Generation VLIW

• Operated in lock-step; no hazard detection HW

• a stall in any functional unit pipeline caused entire 
processor to stall, since all functional units must be 
kept synchronized

• Compiler might predict on function units, but caches 
hard to predict



Problems with 1st Generation VLIW

• Binary code compatibility

• Pure VLIW => different numbers of functional units and 
unit latencies require different versions of the code



EPIC Goal

• Support compiler-based exploitation of ILP

• Predication

• Compiler-based parallelism detection

• Support for memory reference speculation

• …



How EPIC extends VLIW

• Greater flexibility in indicating parallelism between 
instructions & within instruction formats

• VLIW has a fixed instruction format

• All ops within instr must be parallel

• EPIC has more flexible instruction formats

• EPIC indicates parallelism between neighboring 
instructions

• Extensive support for software speculation



Intel/HP IA-64 “Explicitly Parallel Instruction Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs

• Not separate register files per functional unit as in old 
VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?



Intel/HP IA-64 “Explicitly Parallel Instruction Computer (EPIC)”

• Itanium™ was first implementation (2001)

• Highly parallel and deeply pipelined hardware at 
800 MHz

• 6-wide, 10-stage pipeline at 800 MHz on 0.18µ process

• Itanium 2™ is name of 2nd implementation (2005)

• 6-wide, 8-stage pipeline at 1666 MHz on 0.13µ process

• Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 
KB L3



EPIC Instruction Format

• Major opcode (4 bits)

• Minor opcode

• Immediate operands (8–22 bits)

• Register result identifier(s) (6 or 7 bits)

• Register operand identifiers (7 bits)

• Qualifying predicates (6 bits)

• A few instructions do not have a QP (nearly all do!)

Major
Opcode

(4 bits)

Minor Opcode or
Immediate

(10 bits)

Register
Identifier

(7 bits)

Qualifying
Predicate

(6 bits)

41 bits

Register
Identifier

(7 bits)

Register
Identifier

(7 bits)



Instruction Slot 0
(41 bits)

128 bits

Instruction Formats: Bundles

• Instruction types

• M: Memory

• I: Shifts and multimedia

• A: ALU

• B: Branch

• F: Floating point

• L+X: Long

• Template encodes types

• MII, MLX, MMI, MFI, MMF, 
MI_I, M_MI

• Branch:  MIB, MMB, MFB, 
MBB, BBB

• Template encodes parallelism

• All come in two flavors: with 
and without stop at end

Instruction Slot 1
(41 bits)

Instruction Slot 2
(41 bits)

Template
(5 bits)

Template identifies types of instructions in bundle and 
delineates independent operations (through “stops”)

127 04545468687



EPIC Rules
G.6 The Intel IA-64 Architecture and Itanium Processor !  G-35

the boundary between one instruction group and another. This boundary is indi-
cated by placing a stop between two instructions that belong to different groups.
To understand how stops are indicated, we must first explain how instructions are
placed into bundles.

IA-64 instructions are encoded in bundles, which are 128 bits wide. Each
bundle consists of a 5-bit template field and three instructions, each 41 bits in
length. (Actually, the 41-bit quantities are not truly instructions, since they can
only be interpreted in conjunction with the template field. The name syllable is
sometimes used for these operations. For simplicity, we will continue to use the
term “instruction.”) To simplify the decoding and instruction issue process, the
template field of a bundle specifies what types of execution units each instruction
in the bundle requires. Figure G.6 shows the five different execution unit types
and describes what instruction classes they may hold, together with some exam-
ples.

 The 5-bit template field within each bundle describes both the presence of
any stops associated with the bundle and the execution unit type required by each
instruction within the bundle. Figure G.7 shows the possible formats that the tem-
plate field encodes and the position of any stops it specifies. The bundle formats
can specify only a subset of all possible combinations of instruction types and
stops. To see how the bundle works, let’s consider an example.

Example Unroll the array increment example, ����  � ����  � � (introduced on page 305),
seven times (see page 317 for the unrolled code) and place the instructions into
bundles, first ignoring pipeline latencies (to minimize the number of bundles) and
then scheduling the code to minimize stalls. In scheduling the code assume one

Execution
unit slot 

Instruction
type

Instruction 
description Example instructions

I-unit A Integer ALU add, subtract, and, or, compare

I Non-ALU integer integer and multimedia shifts, bit tests,
moves

M-unit A Integer ALU add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP registers

F-unit F Floating point Floating-point instructions

B-unit B Branches Conditional branches, calls, loop branches

L + X L + X Extended Extended immediates, stops and no-ops

Figure G.6 The five execution unit slots in the IA-64 architecture and what instruc-
tions types they may hold are shown. A-type instructions, which correspond to inte-
ger ALU instructions, may be placed in either an I-unit or M-unit slot. L + X slots are
special, as they occupy two instruction slots; L + X instructions are used to encode 64-
bit immediates and a few special instructions. L + X instructions are executed either by
the I-unit or the B-unit. 

G-36 Appendix G Hardware and Software for VLIW and EPIC

bundle executes per clock and that any stalls cause the entire bundle to be stalled.
Use the pipeline latencies from Figure 2.2. Use MIPS instruction mnemonics for
simplicity.

Answer The two different versions are shown in Figure G.8. Although the latencies are
different from those in Itanium, the most common bundle, MMF, must be issued
by itself in Itanium, just as our example assumes.

Template Slot 0 Slot 1 Slot 2

0 M I I

1 M I I

2 M I I

3 M I I

4 M L X

5 M L X

8 M M I

9 M M I

10 M M I

11 M M I

12 M F I

13 M F I

14 M M F

15 M M F

16 M I B

17 M I B

18 M B B

19 M B B

22 B B B

23 B B B

24 M M B

25 M M B

28 M F B

29 M F B

Figure G.7 The 24 possible template values (8 possible values are reserved) and the
instruction slots and stops for each format. Stops are indicated by heavy lines and
may appear within and/or at the end of the bundle. For example, template 9 specifies
that the instruction slots are M, M, and I (in that order) and that the only stop is
between this bundle and the next. Template 11 has the same type of instruction slots
but also includes a stop after the first slot. The L + X format is used when slot 1 is L and
slot 2 is X. 



Speculation Support
• Control speculation (we’ve seen this)

• Memory reference speculation

• Loads moved above stores have a different opcode, ld.a (advanced load)

• Why?

• Advanced loads put their addresses in a table (ALAT)

• Stores check the ALAT when storing

• Exceptions 

• Poison bits set on speculative ops that cause exceptions

• Poison bits propagate, fault on non-speculative instructions

• Storing a poison bit == bad



Evaluating Itanium

• “The EPIC approach is based on the application of 
massive resources. These resources include more 
load-store, computational, and branch units, as well 
as larger, lower-latency caches than would be 
required for a superscalar processor. Thus, IA-64 
gambles that, in the future, power will not be the 
critical limitation, and that massive resources, along 
with the machinery to exploit them, will not penalize 
performance with their adverse effect on clock speed, 
path length, or CPI factors.”  —M. Hopkins, 2000



Itanium 2 (2005)

• 1.6 GHz, 4x performance of Itanium

• 592m xtors, 423 mm2, 130 W

• P4 Extreme is 125m xtors, 122 mm2

• 3 level memory hierarchy on chip

• 11 functional units

• 2 I-units, 4 M-units (2 ld, 2 st), 3 B-units, 2 F-units

• Fetches and issues 2 bundles (6 instrs) per cycle



Itanium 2 Pipeline: 8 Stages
• Front-end (IPG, Rotate)

• Prefetch 32B/clock (2 bundles)

• Branch predictor: “multilevel adaptive predictor”

• Instruction delivery (EXP, REN)

• Distributes up to 6 instrs to 11 functional units

• Renames registers

• Operand delivery (REG)

• Accesses RF, bypasses, scoreboards, checks predicate

• Stalls within one instr bundle do not cause entire bundle to stall

• Execution (EXE, DET, WRB)

• Executes instrs, exceptions, retires instrs, writeback



Itanium Features
• Dynamic branch prediction

• Register renaming

• Scoreboarding

• Many stages before execute

• Looks very complex!

• Why?

• Dynamic techniques help (e.g. branch prediction)

• Dynamic scheduling necessary for cache misses



Itanium 2 Performance



Transmeta motivation

• Intel/AMD goals:

• x86 compatibility

• Fastest performance

• Transmeta goals:

• x86 compatibility

• lowest possible power consumption

• reasonable performance

http://arstechnica.com/articles/paedia/cpu/crusoe.ars

http://arstechnica.com/articles/paedia/cpu/crusoe.ars
http://arstechnica.com/articles/paedia/cpu/crusoe.ars


HW vs. SW approaches



Crusoe is VLIW

• Functional units

• 1 FPU

• 2 ALUs

• 1 load-store unit

• 1 branch unit

• 64 registers

The Technology Behind Crusoe™ Processors

4

required for an all-hardware design of similar performance, the designers have likewise reduced power 
requirements and die size. However, future hardware designs can emphasize different factors and 
accordingly use different implementation techniques. 

Finally, the Code Morphing software itself offers opportunities to improve performance without altering 
the underlying hardware. The current system is a first-generation embodiment of a new technology that 
can be further optimized with experience and experimentation. Because the Code Morphing software 
would typically reside in standard Flash ROMs on the motherboard, improved versions can even be 
downloaded into processors in the field. 

Crusoe Processor Fundamentals

With the Code Morphing software handling x86 compatibility, Transmeta hardware designers created a 
very simple, high-performance, VLIW engine with two integer units, a floating point unit, a memory 
(load/store) unit, and a branch unit. A Crusoe processor long instruction word, called a molecule, can be 
64 bits or 128 bits long and contain up to four RISC-like instructions, called atoms. All atoms within a 
molecule are executed in parallel, and the molecule format directly determines how atoms get routed to 
functional units; this greatly simplifies the decode and dispatch hardware. Figure 1 shows a sample 128-
bit molecule and the straightforward mapping from atom slots to functional units. Molecules are executed 
in order, so there is no complex out-of-order hardware. To keep the processor running at full speed, 
molecules are packed as fully as possible with atoms. In a later section, we describe how the Code 
Morphing software accomplishes this.

Figure 1.  A molecule can contain up to four atoms, which are executed in parallel.

The integer register file has 64 registers, %r0 through %r63. By convention, the Code Morphing software 
allocates some of these to hold x86 state while others contain state internal to the system, or can be used 
as temporary registers, e.g., for register renaming in software. In the assembly code examples in this paper, 

Integer
ALU #0

Load/Store
Unit

Branch
Unit

Floating-Point
Unit

FADD ADD LD BRCC

128-bit molecule



Efficion is VLIW
• Functional units

• 2 FPUs

• 2 ALUs

• 2 load-store units

• 2 “execute” units

• 1 branch unit

• 1 control unit

• 1 alias unit

• 256b wide

5 Fall Processor Forum  October 5, 2004

High Instruction Level Parallelism

Each clock, Efficeon can issue from 

one to eight 32-bit instruction “atoms”. . . 

Load or

Store or

32-bit add

Load or

Store or

32-bit add

Integer 

ALU-1

Integer 

ALU-2
Alias Control

FP / MMX

SSE / SSE2
MMX

SSE /SSE2
Branch Exec-1 Exec-2

atom1        atom2        atom3        atom4        atom5     atom6        atom7         atom8

. . . to any of the above eleven logical execution units.

David Ditzel, 2004 Fall 
Processor Forum



Efficeon 2 Die Photo

20 Fall Processor Forum  October 5, 2004

Efficeon 2 Die Photo and Layout
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Level 2 Cache
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HyperTransport
Bus Interface
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LongRun2
Power 
Management

DRAM 
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Graphics
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Code Morphing
• x86 fed to Code Morphing layer

• CM translates chunk of x86 to VLIW

• Output stored in translation cache

• CM watches execution:

• Frequently used chunks are more 
heavily optimized

• Watches branches, can tailor 
speculation to history

• Some CM support in hardware



Limits to ILP
• Conflicting studies of amount

• Benchmarks (vectorized Fortran FP vs. integer C programs)

• Hardware sophistication

• Compiler sophistication

• How much ILP is available using existing mechanisms with increasing HW 
budgets?

• Do we need to invent new HW/SW mechanisms to keep on processor performance 
curve?

• Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints 

• Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

• Motorola AltiVec: 128 bit ints and FPs

• Supersparc Multimedia ops, etc.



Overcoming Limits

• Advances in compiler technology + significantly new 
and different hardware techniques may be able to 
overcome limitations assumed in studies

• However, unlikely such advances when coupled with 
realistic hardware will overcome these limits in near 
future 



Upper Limit to ILP: Ideal Machine

Integer: 18–60
FP: 75–150
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Limits to ILP
• Most techniques for increasing performance increase power 

consumption 

• The key question is whether a technique is energy efficient: does it 
increase power consumption faster than it increases performance? 

• Multiple issue processor techniques all are energy inefficient:

• Issuing multiple instructions incurs some overhead in logic that grows 
faster than the issue rate grows

• Growing gap between peak issue rates and sustained performance

• Number of transistors switching = f(peak issue rate), and 
performance = f(sustained rate):
Growing gap between peak and sustained performance 
 ⇒ increasing energy per unit of performance



Limits to ILP
• Doubling issue rates above today’s 3–6 instructions per clock, say 

to 6 to 12 instructions, probably requires a processor to 

• Issue 3 or 4 data memory accesses per cycle, 

• Resolve 2 or 3 branches per cycle, 

• Rename and access more than 20 registers per cycle, and 

• Fetch 12 to 24 instructions per cycle. 

• Complexities of implementing these capabilities likely means 
sacrifices in maximum clock rate 

• E.g,  widest issue processor is the Itanium 2, but it also has the slowest 
clock rate, despite the fact that it consumes the most power!



Limits to ILP
• Initial HW Model here; MIPS compilers. 

• Assumptions for ideal/perfect machine to start:

• 1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided

• 2. Branch prediction – perfect; no mispredictions 

• 3. Jump prediction – all jumps perfectly predicted (returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation & an unbounded buffer of 

instructions available

• 4. Memory-address alias analysis – addresses known & a load can be moved before a 
store provided addresses not equal; 1&4 eliminates all but RAW

• Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited 
instructions issued/clock cycle; 



Limits to ILP HW Model comparison
New Model Ideal Power 5

Instructions 
Issued per clock 64 Infinite 4

Instruction 
Window Size 2048 Infinite 200

Renaming 
Registers 256 Int + 256 FP Infinite 48 integer + 

40 Fl. Pt.
Branch 

Prediction 8K 2-bit Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB L2, 
36 MB L3

Memory Alias Perfect v. Stack v. 
Inspect v. none Perfect Perfect



0

37.5

75.0

112.5

150.0

gcc espresso li fpppp doduc tomcatv

Infinite 2048 512 128 32

More Realistic HW: Window Impact
FP: 9–150

Integer: 8–63

IP
C



0

17.5

35.0

52.5

70.0

gcc espresso li fpppp doducd tomcatv

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
FP: 15–45
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C

 Window of 2048 instructions, 
maximum issue of 64 
instructions per clock cycle



Misprediction Rates (%)
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Memory Address Alias Impact

FP: 4–45
(Fortran,
no heap)

Integer: 4–9
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HW vs. SW to increase ILP
• Memory disambiguation: HW best

• Speculation: 

• HW best when dynamic branch prediction better than compile time 
prediction

• Exceptions easier for HW

• HW doesn’t need bookkeeping code or compensation code

• Very complicated to get right

• Scheduling: SW can look ahead to schedule better

• Compiler independence: does not require new compiler, 
recompilation to run well



Performance beyond single thread ILP

• ILP disadvantage: only given a serial stream of instructions

• Likely ripped out all parallelism expressed by the programmer

• There can be much higher natural parallelism in some applications 
(e.g., database or scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• thread may be a process part of a parallel program of multiple processes, or it may be 
an independent program

• Each thread has all the state (instructions, data, PC, register state, and so on) necessary 
to allow it to execute

• Data Level Parallelism: Perform identical operations on data, and lots of data



ILP Summary
• Leverage Implicit Parallelism for Performance: 

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP

• Works when can’t know dependence at compile time

• Can hide L1 cache misses

• Code for one machine runs well on another


