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VLIW Advantages

• Advantages

• Simpler hardware (potentially less power hungry)

• Potentially more scalable

• Allow more instr’s per VLIW bundle and add more FUs



VLIW Disadvantages
• Programmer/compiler complexity and longer compilation times

• Deep pipelines and long latencies can be confusing (making peak 
performance elusive)

• Lock step operation, i.e., on hazard all future issues stall until 
hazard is resolved (hence need for predication)

• Object (binary) code incompatibility

• Needs lots of program memory bandwidth

• Code bloat

• Noops are a waste of program memory space 

• Loop unrolling to expose more ILP uses more program memory space



Review:  Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)

• Decisions on which instructions to execute simultaneously (in the range of 2 to 8 
in 2005) are being made dynamically (at run time by the hardware)

• E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500 IBM

• Static multiple-issue processors (aka VLIW)

• Decisions on which instructions to execute simultaneously are being made 
statically (at compile time by the compiler)

• E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit Parallel 
Instruction Computer)

• 128 bit “bundles” containing 3 instructions each 41 bits + 5 bit template field 
(specifies which FU each instr needs)

• Five functional units (IntALU, MMedia, DMem, FPALU, Branch)

• Extensive support for speculation and predication
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• How do we mitigate branches?

• Branch prediction

• How do we avoid branches?

• Predication

• Speculation

• How do we build high-performance, predicated, 
speculative VLIW-ish hardware?

• EPIC and Itanium

Today’s Outline



What is a basic block?

• “Experiments and experience indicated that only a 
factor of 2 to 3 speedup from parallelism was 
available within basic blocks.  (A basic block of code 
has no jumps in except at the beginning and no jumps 
out except at the end.)”
 — “Very Long Instruction Word Architectures and 
  the ELI-512”, Joseph A. Fisher



Branches Limit ILP

• Programs average about 5 instructions between 
branches

• Can’t issue instructions if you don’t know where the 
program is going

• Current processors issue 4–6 operations/cycle

• Conclusion: Must exploit parallelism across multiple 
basic blocks



Branch Prediction Matters
• Alpha 21264:

• (From Ranganathan and Jouppi, via Dan Connors)

Benchmark Misprediction 
Rate

Performance 
Penalty

go 16.5% 40%

compress 9% 30%

gcc 7% 20%
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Compiler: Static Prediction

• Predict at compile time whether branches will be 
taken before execution 

• Schemes

• Predict not-taken

• Predict taken

• Would be hard to squeeze into our pipeline

• Can’t compute target until ID



Compiler: Static Prediction

• Predict at compile time whether branches will be 
taken before execution 

• Schemes

• Backwards taken, forwards not taken

• How do we tell?

• Why is this a good idea?



Compiler: Static Prediction
• Predict at compile time whether branches will be 

taken before execution 

• Schemes

• Predict taken

• Backwards taken, forwards not taken (good 
performance for loops)

• No run-time adaptation: bad performance for data-
dependent branches

• if (a == 0) b =3; else b=4;



Hardware-based Dynamic Branch Prediction

• Single level (Simple counters) – predict outcome based on past branch behavior

• FSM (Finite State Machine)

• Global Branch Correlation – track relations between branches

• GAs

• Gshare

• Local Correlation – predict outcome based on past branch behavior PATTERN

• PAs

• Hybrid predictors (combination of local and global)

• Miscellaneous

• Return Address Stack (RAS)

• Indirect jump prediction



Mis-prediction Detections and Feedbacks

• Detections:

• At the end of decoding 

• Target address known at decoding, 
and does not match

• Flush fetch stage

• At commit (most cases)

• Wrong branch direction or target 
address does not match

• Flush the whole pipeline

• Feedbacks:

• Any time a mis-prediction is detected

• At a branch’s commit

FETCH

DECODE

SCHD

REB/ROB

COMMIT

WB

EXE

predictors



1-bit “Self Correlating” Predictor

• Let’s consider a simple model. Store a bit per branch: 
“last time, was the branch taken or not”. 

• Consider a loop of 10 iterations before exit:

• for (…)
  for (i=0; i<10; i++)
    a[i] = a[i] * 2.0;

• What’s the accuracy of this predictor?



Dynamic Branch Prediction
• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table: Lower bits of PC address index table of 1-bit 
values

• Says whether or not branch taken last time

• No address check

• Problem: in a loop, 1-bit BHT will cause two mispredictions (avg is 9 
iterations before exit):

• End of loop case, when it exits instead of  looping as before

• First time through loop on next time through code, when it predicts exit 
instead of looping



Predictor for a Single Branch

state 2. Predict
Output T/NT

1. Access PC

3. Feedback T/NT
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General Form
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NT
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• Solution: 2-bit scheme where change prediction only 
if get misprediction twice:

• Red: stop, not taken

• Green: go, taken

• Adds hysteresis to decision making process

Dynamic Branch Prediction (Jim Smith, 1981)
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Simple (“2-bit”) Branch History Table Entry

D Q

Prediction for next branch.
(1 = take, 0 = not take) 

Initialize to 0.

D Q

Was last prediction correct?
(1 = yes, 0 = no) 

Initialize to 1.

Set to 1 if prediction bit was correct. 
Set to 0 if prediction bit was 

incorrect.
Set to 1 if prediction bit flips.

Flip bit if prediction is not 
correct and “last predict 

correct” bit is 0.

After we “check” 
prediction ...



Branch prediction hardware
• Branch Target Buffer (BTB): Address of branch index to 

get prediction AND branch address (if taken)

• Note: must check for branch match now, since can’t use 
wrong branch address

Branch PC Predicted PC

=?

PC of instruction
FETCH

Predict taken or untaken
Address of next

instruction fetched

Valid Branch
(BTB knows about branch)



Some Interesting Patterns
• Format: Not-taken (N) (0), Taken (T)(1)

• TTTTTTTTTT

• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 … : Should give perfect prediction

• NNTTNNTTNNTT

• 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 … : Will mispredict 1/2 of the time

• N*N[TNTN]

• 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 … : Should alternate incorrectly

• N*T[TNTN]

• 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 … : Should alternate incorrectly



Pentium 4 Branch Prediction
• Critical to Performance

• 20 cycle penalty for misprediction

• Branch Target Buffer

• 2048 entries

• 12 bits of history

• Adaptive algorithm

• Can recognize repeated patterns, e.g., alternating taken–not taken

• Handling BTB misses

• Detect in cycle 6

• Predict taken for negative offset, not taken for positive (why?)



Branch Prediction Summary
• Consider for each branch prediction

• Hardware cost

• Prediction accuracy

• Warm-up time

• Correlation

• Interference

• Time to generate prediction

• Application behavior determines number of branches

• More control intensive program…more opportunity to mispredict

• What if a compiler/architecture could eliminate branches?



Avoiding branches
• Consider the following code:

// x is either 0 or 1
if (x == 0) {
  a = b;
} else if (x == 1) {
  a = c;
}

• How many instrs does this take on average (as is)? 

• Write this code with no branches (4 instructions)



Conditional move
• Consider a “conditional move” instruction: 

CMOVZ dst, src, cond    # copies src to dst if cond != 0

• MIPS, Alpha, PowerPC, SPARC, x86 (Pentium) have 
this

• // x is either 0 or 1
if (x == 0) {
  a = b;
} else if (x == 1) {
  a = c;
}

• Write this code with no branches (2 instructions)



Predication
• Predication can be used to eliminate branches by making the 

execution of an instruction dependent on a “predicate”, e.g.,

  if (p) {statement 1 } else {statement 2 }

  would normally compile using two control-flow instructions. (Why?) 
With predication it would compile as
  (p) statement 1

  (~p) statement 2

• The use of (condition) indicates that the instruction is 
committed only if condition is true

• Predication can be used to speculate as well as to eliminate 
branches



Predication Main Idea

• Convert control dependence to data dependence
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Where to evaluate predicate

• Can we evaluate the predicate early in the pipeline 
(annul the predicated instruction), before it gets to 
the ALUs?

• Or should we evaluate the predicate (annul the 
predicated instruction) late in the pipeline, after the 
operation has been through the ALU?



Predicates Are Good

• Implementing short alternative control flows

• Eliminating unpredictable branches

• Reducing the overhead of global code scheduling



Predicates Are Bad

• Annulled predicated instructions still take resources

• If the predicate is evaluated late, it might cause a data 
hazard

• What about executing an operation across multiple 
branches? 

• Possible speed penalty



Predication vs. Speculation

• Got a branch? Two possible paths of execution? Not 
sure what to do?

• Predication: “Do ‘em both! We’ll figure it out at the 
end.”

• Blackjack equivalent: Split

• Speculation: “Make your best guess. We’ll figure it out 
at the end.”

• Blackjack equivalent: Double down



Speculation
• Speculation is used to allow execution of future 

instructions that (may) depend on the speculated 
instruction

• Speculate on the outcome of a conditional branch 
(branch prediction)

• Compare to out-of-order machine with branch prediction

• Speculate that a store (for which we don’t yet know the 
address) that precedes a load does not refer to the 
same address, allowing the load to be scheduled before 
the store (load speculation)



Speculation
• Must have (hardware and/or software) mechanisms 

for

• Checking to see if the guess was correct

• Recovering from the effects of the instructions that were 
executed speculatively if the guess was incorrect

• In a VLIW processor the compiler can insert additional instrs 
that check the accuracy of the speculation and can provide a 
fix-up routine to use when the speculation was incorrect

• Ignore and/or buffer exceptions created by 
speculatively executed instructions until it is clear 
that they should really occur



Speculation to greater ILP
• Greater ILP: Overcome control dependence by 

hardware speculating on outcome of branches and 
executing program as if guesses were correct

• Speculation ⇒ fetch, issue, and execute instructions as 

if branch predictions were always correct 

• Dynamic scheduling ⇒ only fetches and issues 

instructions

• Essentially a data flow execution model: Operations 
execute as soon as their operands are available 



Speculation to greater ILP

• 3 components of HW-based speculation:

• Dynamic branch prediction to choose which instructions 
to execute 

• Speculation to allow execution of instructions before 
control dependences are resolved 

• + ability to undo effects of incorrectly speculated sequence 

• Dynamic scheduling to deal with scheduling of different 
combinations of basic blocks 



Adding Speculation to HW
• Must separate execution from allowing 

instruction to finish or “commit”

• This additional step called instruction 
commit

• When an instruction is no longer 
speculative, allow it to update the 
register file or memory 

• Requires additional set of buffers to hold 
results of instructions that have finished 
execution but have not committed

• This reorder buffer (ROB) is also used to 
pass results among instructions that may 
be speculated
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Problems with 1st Generation VLIW

• Increase in code size

• generating enough operations in a straight-line code 
fragment requires ambitiously unrolling loops

• whenever VLIW instructions are not full, unused 
functional units translate to wasted bits in instruction 
encoding



Problems with 1st Generation VLIW

• Operated in lock-step; no hazard detection HW

• a stall in any functional unit pipeline caused entire 
processor to stall, since all functional units must be 
kept synchronized

• Compiler might predict on function units, but caches 
hard to predict



Problems with 1st Generation VLIW

• Binary code compatibility

• Pure VLIW => different numbers of functional units and 
unit latencies require different versions of the code



EPIC Goal

• Support compiler-based exploitation of ILP

• Predication

• Compiler-based parallelism detection

• Support for memory reference speculation

• …



How EPIC extends VLIW

• Greater flexibility in indicating parallelism between 
instructions & within instruction formats

• VLIW has a fixed instruction format

• All ops within instr must be parallel

• EPIC has more flexible instruction formats

• EPIC indicates parallelism between neighboring 
instructions

• Extensive support for software speculation



Intel/HP IA-64 “Explicitly Parallel Instruction Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs

• Not separate register files per functional unit as in old 
VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?



Intel/HP IA-64 “Explicitly Parallel Instruction Computer (EPIC)”

• Itanium™ was first implementation (2001)

• Highly parallel and deeply pipelined hardware at 
800 MHz

• 6-wide, 10-stage pipeline at 800 MHz on 0.18µ process

• Itanium 2™ is name of 2nd implementation (2005)

• 6-wide, 8-stage pipeline at 1666 MHz on 0.13µ process

• Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 
KB L3



EPIC Instruction Format

• Major opcode (4 bits)

• Minor opcode

• Immediate operands (8–22 bits)

• Register result identifier(s) (6 or 7 bits)

• Register operand identifiers (7 bits)

• Qualifying predicates (6 bits)

• A few instructions do not have a QP (nearly all do!)

Major
Opcode

(4 bits)

Minor Opcode or
Immediate

(10 bits)

Register
Identifier

(7 bits)

Qualifying
Predicate

(6 bits)

41 bits

Register
Identifier

(7 bits)

Register
Identifier

(7 bits)



Instruction Slot 0
(41 bits)

128 bits

Instruction Formats: Bundles

• Instruction types

• M: Memory

• I: Shifts and multimedia

• A: ALU

• B: Branch

• F: Floating point

• L+X: Long

• Template encodes types

• MII, MLX, MMI, MFI, MMF, 
MI_I, M_MI

• Branch:  MIB, MMB, MFB, 
MBB, BBB

• Template encodes parallelism

• All come in two flavors: with 
and without stop at end

Instruction Slot 1
(41 bits)

Instruction Slot 2
(41 bits)

Template
(5 bits)

Template identifies types of instructions in bundle and 
delineates independent operations (through “stops”)

127 04545468687



EPIC Rules
G.6 The Intel IA-64 Architecture and Itanium Processor � 
���

the boundary between one instruction group and another. This boundary is indi-
cated by placing a stop between two instructions that belong to different groups.
To understand how stops are indicated, we must first explain how instructions are
placed into bundles.

IA-64 instructions are encoded in bundles, which are 128 bits wide. Each
bundle consists of a 5-bit template field and three instructions, each 41 bits in
length. (Actually, the 41-bit quantities are not truly instructions, since they can
only be interpreted in conjunction with the template field. The name syllable is
sometimes used for these operations. For simplicity, we will continue to use the
term “instruction.”) To simplify the decoding and instruction issue process, the
template field of a bundle specifies what types of execution units each instruction
in the bundle requires. Figure G.6 shows the five different execution unit types
and describes what instruction classes they may hold, together with some exam-
ples.

 The 5-bit template field within each bundle describes both the presence of
any stops associated with the bundle and the execution unit type required by each
instruction within the bundle. Figure G.7 shows the possible formats that the tem-
plate field encodes and the position of any stops it specifies. The bundle formats
can specify only a subset of all possible combinations of instruction types and
stops. To see how the bundle works, let’s consider an example.

Example Unroll the array increment example, x[i] = x[i] + s (introduced on page 305),
seven times (see page 317 for the unrolled code) and place the instructions into
bundles, first ignoring pipeline latencies (to minimize the number of bundles) and
then scheduling the code to minimize stalls. In scheduling the code assume one
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I-unit A Integer ALU add, subtract, and, or, compare

I Non-ALU integer integer and multimedia shifts, bit tests,
moves

M-unit A Integer ALU add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP registers

F-unit F Floating point Floating-point instructions

B-unit B Branches Conditional branches, calls, loop branches

L + X L + X Extended Extended immediates, stops and no-ops

Figure G.6 ����  � �� ���������� ����� ������ ��� ���� ������ 
� ���� �� ��� �� 
��� ��
 �� ��������
������ ������ ��� �� �
 �� ����� 
� �� ��� ��� �A-type instructions, which correspond to inte-
ger ALU instructions, may be placed in either an I-unit or M-unit slot. L + X slots are
special, as they occupy two instruction slots; L + X instructions are used to encode 64-
bit immediates and a few special instructions. L + X instructions are executed either by
the I-unit or the B-unit. 

G-36 Appendix G Hardware and Software for VLIW and EPIC

bundle executes per clock and that any stalls cause the entire bundle to be stalled.
Use the pipeline latencies from Figure 2.2. Use MIPS instruction mnemonics for
simplicity.

Answer The two different versions are shown in Figure G.8. Although the latencies are
different from those in Itanium, the most common bundle, MMF, must be issued
by itself in Itanium, just as our example assumes.

Template Slot 0 Slot 1 Slot 2

0 M I I

1 M I I

2 M I I

3 M I I

4 M L X

5 M L X

8 M M I

9 M M I

10 M M I

11 M M I

12 M F I

13 M F I

14 M M F

15 M M F

16 M I B

17 M I B

18 M B B

19 M B B

22 B B B

23 B B B

24 M M B

25 M M B

28 M F B

29 M F B

Figure G.7 The 24 possible template values (8 possible values are reserved) and the
instruction slots and stops for each format. Stops are indicated by heavy lines and
may appear within and/or at the end of the bundle. For example, template 9 specifies
that the instruction slots are M, M, and I (in that order) and that the only stop is
between this bundle and the next. Template 11 has the same type of instruction slots
but also includes a stop after the first slot. The L + X format is used when slot 1 is L and
slot 2 is X. 



Speculation Support
• Control speculation (we’ve seen this)

• Memory reference speculation

• Loads moved above stores have a different opcode, ld.a (advanced load)

• Why?

• Advanced loads put their addresses in a table (ALAT)

• Stores check the ALAT when storing

• Exceptions 

• Poison bits set on speculative ops that cause exceptions

• Poison bits propagate, fault on non-speculative instructions

• Storing a poison bit == bad



Evaluating Itanium

• “The EPIC approach is based on the application of 
massive resources. These resources include more 
load-store, computational, and branch units, as well 
as larger, lower-latency caches than would be 
required for a superscalar processor. Thus, IA-64 
gambles that, in the future, power will not be the 
critical limitation, and that massive resources, along 
with the machinery to exploit them, will not penalize 
performance with their adverse effect on clock speed, 
path length, or CPI factors.”  —M. Hopkins, 2000



Itanium 2 (2005)

• 1.6 GHz, 4x performance of Itanium

• 592m xtors, 423 mm2, 130 W

• P4 Extreme is 125m xtors, 122 mm2

• 3 level memory hierarchy on chip

• 11 functional units

• 2 I-units, 4 M-units (2 ld, 2 st), 3 B-units, 2 F-units

• Fetches and issues 2 bundles (6 instrs) per cycle



Itanium 2 Pipeline: 8 Stages
• Front-end (IPG, Rotate)

• Prefetch 32B/clock (2 bundles)

• Branch predictor: “multilevel adaptive predictor”

• Instruction delivery (EXP, REN)

• Distributes up to 6 instrs to 11 functional units

• Renames registers

• Operand delivery (REG)

• Accesses RF, bypasses, scoreboards, checks predicate

• Stalls within one instr bundle do not cause entire bundle to stall

• Execution (EXE, DET, WRB)

• Executes instrs, exceptions, retires instrs, writeback



Itanium Features
• Dynamic branch prediction

• Register renaming

• Scoreboarding

• Many stages before execute

• Looks very complex!

• Why?

• Dynamic techniques help (e.g. branch prediction)

• Dynamic scheduling necessary for cache misses



Itanium 2 Performance


