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Today’s Goals

• Out-of-order execution

• An alternate approach to machine parallelism: software 
scheduling & VLIW

• How do we ensure we have ample instruction-level 
parallelism?

• Branch prediction



Pentium Retrospective

• Limited in performance by “front end”

• Has to support variable-length instrs
and segments

• Supporting all x86 features tough!

• 30% of transistors are for legacy support

• Up to 40% in Pentium Pro!

• Down to 10% in P4

• Microcode ROM is huge
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Pentium Retrospective

• Pentium is in-order issue, in-order complete

• “Static scheduling” by the dispatch logic:

• Fetch/dispatch/execute/retire: all in order

• Drawbacks:

• Adapts poorly to dynamic code stream

• Adapts poorly to future hardware

• What if we had 3 pipes not 2?
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Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Storage (data) dependencies—aka data hazards

• Most instruction streams do not have huge ILP so …

• ... this limits performance in a superscalar processor



Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Procedural dependencies—aka control hazards

• Ditto, but even more severe

• Use dynamic branch prediction to help resolve the ILP issue

• Future lecture



Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Resource conflicts—aka structural hazards

• A SS/VLIW processor has a much larger number of potential 
resource conflicts

• Functional units may have to arbitrate for result buses and 
register-file write ports

• Resource conflicts can be eliminated by duplicating the 
resource or by pipelining the resource



Instruction Issue and Completion Policies

• Instruction-issue—initiate execution

• Instruction lookahead capability—fetch, decode and issue instructions 
beyond the current instruction

• Instruction-completion—complete execution

• Processor lookahead capability—complete issued instructions beyond 
the current instruction

• Instruction-commit—write back results to the RegFile or D$ (i.e., 
change the machine state)

In-order issue with in-order completion
In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order commit
Out-of-order issue with out-of-order completion



In-Order Issue with In-Order Completion

• Simplest policy is to issue instructions in exact 
program order and to complete them in the same 
order they were fetched (i.e., in program order)



In-Order Issue with In-Order Completion (Ex.)

• Assume a pipelined processor that can fetch and 
decode two instructions per cycle, that has three 
functional units (a single cycle adder, a single cycle 
shifter, and a two cycle multiplier), and that can 
complete (and write back) two results per cycle

• Instruction sequence:
I1: needs two execute cycles (a multiply)
I2
I3
I4: needs the same function unit as I3
I5: needs data value produced by I4
I6: needs the same function unit as I5



In-Order Issue, In-Order Completion Example
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In-Order Issue with Out-of-Order Completion

• With out-of-order completion, a later instruction may 
complete before a previous instruction

• Out-of-order completion is used in single-issue 
pipelined processors to improve the performance of 
long-latency operations such as divide

• When using out-of-order completion instruction issue 
is stalled when there is a resource conflict (e.g., for a 
functional unit) or when the instructions ready to 
issue need a result that has not yet been computed



IOI-OOC Example
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Handling Output Dependencies

• There is one more situation that stalls instruction issuing with IOI-OOC, assume

• I1 – writes to R3
I2 – writes to R3
I5 – reads R3

• If the I1 write occurs after the I2 write, then I5 reads an incorrect value for R3

• I2 has an output dependency on I1—write before write

• The issuing of I2 would have to be stalled if its result might later be overwritten by 
an previous instruction (i.e., I1) that takes longer to complete—the stall happens 
before instruction issue

• While IOI-OOC yields higher performance, it requires more dependency checking 
hardware (both read-before-write and write-before-write)



Out-of-Order Issue with Out-of-Order Completion

• With in-order issue the processor stops decoding instructions 
whenever a decoded instruction has a resource conflict or a data 
dependency on an issued, but uncompleted instruction

• The processor is not able to look beyond the conflicted instruction even 
though more downstream instructions might have no conflicts and thus 
be issueable

• Fetch and decode instructions beyond the conflicted one 
(“instruction window”: Tetris), store them in an instruction buffer (as 
long as there’s room), and flag those instructions in the buffer that 
don’t have resource conflicts or data dependencies

• Flagged instructions are then issued from the buffer without regard 
to their program order



OOI-OOC Example
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Dependency Examples

• R3 := R3 * R5   True data dependency (RAW)
R4 := R3 + 1    Output dependency (WAW)
R3 := R5 + 1    Antidependency (WAR)



Antidependencies
• With OOI also have to deal with data 

antidependencies – when a later instruction (that 
completes earlier) produces a data value that destroys 
a data value used as a source in an earlier instruction 
(that issues later)

• The constraint is similar to that of true data 
dependencies, except reversed

• Instead of the later instruction using a value (not yet) 
produced by an earlier instruction (read before write), 
the later instruction produces a value that destroys a 
value that the earlier instruction (has not yet) used 
(write before read)



Dependencies Review
• Each of the three data dependencies …

• True data dependencies (read before write)

• Antidependencies (write before read)

• Output dependencies (write before write)

• … manifests itself through the use of registers (or other storage locations)

• True dependencies represent the flow of data and information through a program

• Anti- and output dependencies arise because the limited number of registers 
mean that programmers reuse registers for different computations

• When instructions are issued out-of-order, the correspondence between registers 
and values breaks down and the values conflict for registers 

storage 
conflicts



Storage Conflicts and Register Renaming

• Storage conflicts can be reduced (or eliminated) by increasing or duplicating the 
troublesome resource

• Provide additional registers that are used to reestablish the correspondence between 
registers and values

• Allocated dynamically by the hardware in SS processors

• Register renaming — the processor renames the original register identifier in the 
instruction to a new register (one not in the visible register set)

• R3 := R3 * R5  R3b := R3a * R5a
R4 := R3 + 1  R4a := R3b + 1
R3 := R5 + 1  R3c := R5a + 1

• The hardware that does renaming assigns a “replacement” register from a pool of 
free registers and releases it back to the pool when its value is superseded and 
there are no outstanding references to it    [future lecture!]
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Pentium Pro

1. Fetch      In order

2. Decode/dispatch  In order

3. Issue      Reorder

4. Execute     Out of order

5. Complete     Reorder

6. Writeback (commit) In order
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P6 Pipeline
• Instruction fetch, BTB access (3.5 stages)

• 2 cycles for instruction fetch

• Decode, x86->uops (2.5 stages)

• Register rename (1 stage)

• Write to reservation station (1 stage)

• Read from reservation station (1 stage)

• Execute (1+ stages)

• Commit (2 stages)



Pentium Pro backends

• Pentium Pro

• Pentium 2

• Pentium 3
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Where Do We Get ILP?

• All of these techniques require that we have ample 
instruction level parallelism

• Original P4 has 20 stages, 6 µops per cycle

• Lots of instructions in flight!



Hardware limits to superpipelining?

courtesy François Labonte, Stanford

Historical
limit:
about

12

CPU Clock Periods (FO4)
1985–2005

MIPS 2000
5 stages 
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Pro
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Power wall:
Intel Core Duo has 

14 stages



VLIW Beginnings
• VLIW: Very Long Instruction Word

• Josh Fisher: idea grew out of his Ph.D (1979) in 
compilers

• Led to a startup (MultiFlow) whose computers worked, 
but which went out of business ... the ideas remain 
influential.



History of VLIW Processors
• Started with (horizontal) microprogramming

• Very wide microinstructions used to directly generate control signals in 
single-issue processors (e.g., IBM 360 series)

• VLIW for multi-issue processors first appeared in the Multiflow and 
Cydrome (in the early 1980’s)

• Current commercial VLIW processors

• Intel i860 RISC (dual mode: scalar and VLIW)

• Intel I-64 (EPIC: Itanium and Itanium 2)   [future lecture]

• Transmeta Crusoe

• Lucent/Motorola StarCore, ADI TigerSHARC, Infineon (Siemens) Carmel



Static Multiple Issue Machines (VLIW)

• Static multiple-issue processors (aka VLIW) use the 
compiler to decide which instructions to issue and 
execute simultaneously

• Issue packet—the set of instructions that are bundled 
together and issued in one clock cycle—think of it as 
one large instruction with multiple operations

• The mix of instructions in the packet (bundle) is usually 
restricted—a single “instruction” with several 
predefined fields

• The compiler does static branch prediction and code 
scheduling to reduce (ctrl) or eliminate (data) hazards



Static Multiple Issue Machines (VLIW)

• VLIW’s have

• Multiple functional units (like SS processors)

• Multi-ported register files (again like SS processors)

• Wide program bus



An Example: A VLIW MIPS

• Consider a 2-issue MIPS with a 2 instr bundle

• Instructions are always fetched, decoded, and issued 
in pairs

• If one instr of the pair can not be used, it is replaced 
with a noop

• Need 4 read ports and 2 write ports and a separate 
memory address adder

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits



A MIPS VLIW (2-issue) Datapath
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Code Scheduling Example
• Consider the following loop code:

lp: lw  $t0,0($s1)  # $t0=array element
  addu $t0,$t0,$s2 # add scalar in $s2
  sw  $t0,0($s1)  # store result
  addi $s1,$s1,-4  # decrement pointer
  bne $s1,$0,lp  # branch if $s1 != 0

• Must “schedule” the instructions to avoid pipeline stalls

• Instructions in one bundle must be independent

• Must separate load use instructions from their loads by one cycle

• Notice that the first two instructions have a load use dependency, the 
next two and last two have data dependencies 

• Assume branches are perfectly predicted by the hardware



The Scheduled Code (Not Unrolled)

• How many clock cycles?

• How many instructions?

• CPI? Best case?

• IPC? Best case?

ALU or branch Data transfer CC
lp: 1

2
3
4
5



Loop Unrolling
• Loop unrolling—multiple copies of the loop body are 

made and instructions from different iterations are 
scheduled together as a way to increase ILP

• Apply loop unrolling (4 times for our example) and 
then schedule the resulting code

• Eliminate unnecessary loop overhead instructions

• Schedule so as to avoid load use hazards

• During unrolling the compiler applies register 
renaming to eliminate all data dependencies that are 
not true dependencies



Unrolled Code Example
• lp: lw $t0,0($s1)   # $t0=array element

  lw $t1,-4($s1)   # $t1=array element
  lw $t2,-8($s1)   # $t2=array element
  lw $t3,-12($s1)  # $t3=array element
  addu $t0,$t0,$s2  # add scalar in $s2
  addu $t1,$t1,$s2  # add scalar in $s2
  addu $t2,$t2,$s2  # add scalar in $s2
  addu $t3,$t3,$s2  # add scalar in $s2
  sw $t0,0($s1)   # store result
  sw $t1,-4($s1)   # store result
  sw $t2,-8($s1)   # store result
  sw $t3,-12($s1)  # store result
  addi $s1,$s1,-16  # decrement pointer
  bne $s1,$0,lp    # branch if $s1 != 0



The Scheduled Code (Unrolled)

• Eight clock cycles to execute 14 instructions for a

• CPI of 0.57 (versus the best case of 0.5)

• IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC
lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1

lw  $t1,12($s1) 2
addu  $t0,$t0,$s2 lw  $t2,8($s1) 3
addu  $t1,$t1,$s2 lw  $t3,4($s1) 4
addu  $t2,$t2,$s2 sw  $t0,16($s1) 5
addu  $t3,$t3,$s2 sw  $t1,12($s1) 6

sw  $t2,8($s1) 7
bne   $s1,$0,lp sw  $t3,4($s1) 8



What does N = 14 assembly look like?

• Two instructions 
from a scientific 
benchmark 
(Linpack) for a 
MultiFlow CPU 
with 14 operations 
per instruction.



Defining Attributes of VLIW

• Compiler:

• 1. MultiOp: instruction 
containing multiple 
independent operations

• 2. Specified number of 
resources of specified types

• 3. Exposed, architectural 
latencies

Add Add Mpy Mem Mem

Register File

add nop nop load store

VLIW instruction =
5 independent 

operations

Icache



Compiler Support for VLIW Processors

• The compiler packs groups of independent 
instructions into the bundle

• Because branch prediction is not perfect, done by code 
re-ordering (trace scheduling)

• We’ll cover this in a future lecture

• The compiler uses loop unrolling to expose more ILP 

• The compiler uses register renaming to solve name 
dependencies and ensures no load use hazards occur



Compiler Support for VLIW Processors

• While superscalars use dynamic prediction, VLIW’s 
primarily depend on the compiler for extracting ILP

• Loop unrolling reduces the number of conditional 
branches

• Predication eliminates if-the-else branch structures by 
replacing them with predicated instructions

• We’ll cover this in a future lecture as well

• The compiler predicts memory bank references to help 
minimize memory bank conflicts



VLIW Advantages

• Advantages

• Simpler hardware (potentially less power hungry)

• Potentially more scalable

• Allow more instr’s per VLIW bundle and add more FUs



VLIW Disadvantages
• Programmer/compiler complexity and longer compilation times

• Deep pipelines and long latencies can be confusing (making peak 
performance elusive)

• Lock step operation, i.e., on hazard all future issues stall until 
hazard is resolved (hence need for predication)

• Object (binary) code incompatibility

• Needs lots of program memory bandwidth

• Code bloat

• Noops are a waste of program memory space 

• Loop unrolling to expose more ILP uses more program memory space



Review:  Multi-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and software

• Data dependencies – aka data hazards

• True data dependencies (read after write)

• Use data forwarding hardware

• Use compiler scheduling

• Storage dependence (aka name dependence)

• Use register renaming to solve both

• Antidependencies (write after read)

• Output dependencies (write after write)



Review:  Multi-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software

• Procedural dependencies – aka control hazards

• Use aggressive branch prediction (speculation)

• Use predication

• Future lecture



Review:  Multi-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software

• Resource conflicts—aka structural hazards

• Use resource duplication or resource pipelining to reduce (or 
eliminate) resource conflicts

• Use arbitration for result and commit buses and register file 
read and write ports



Review:  Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)

• Decisions on which instructions to execute simultaneously (in the range of 2 to 8 
in 2005) are being made dynamically (at run time by the hardware)

• E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500 IBM

• Static multiple-issue processors (aka VLIW)

• Decisions on which instructions to execute simultaneously are being made 
statically (at compile time by the compiler)

• E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit Parallel 
Instruction Computer)

• 128 bit “bundles” containing 3 instructions each 41 bits + 5 bit template field 
(specifies which FU each instr needs)

• Five functional units (IntALU, MMedia, DMem, FPALU, Branch)

• Extensive support for speculation and predication



CISC vs RISC vs SS vs VLIW
CISC RISC Super-

scalar VLIW

Instr size

Instr format

Registers

Memory 
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Instruction 
flow
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What is a basic block?

• “Experiments and experience indicated that only a 
factor of 2 to 3 speedup from parallelism was 
available within basic blocks.  (A basic block of code 
has no jumps in except at the beginning and no jumps 
out except at the end.)”
 — “Very Long Instruction Word Architectures and 
  the ELI-512”, Joseph A. Fisher



Branches Limit ILP

• Programs average about 5 instructions between 
branches

• Can’t issue instructions if you don’t know where the 
program is going

• Current processors issue 4–6 operations/cycle

• Conclusion: Must exploit parallelism across multiple 
basic blocks



Branch Prediction Matters
• 21264:

• (From Ranganathan and Jouppi, via Dan Connors)

Benchmark Misprediction 
Rate

Performance 
Penalty

go 16.5% 40%

compress 9% 30%

gcc 7% 20%
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Compiler: Static Prediction

• Predict at compile time whether branches will be 
taken before execution 

• Schemes

• Predict taken

• Would be hard to squeeze into our pipeline

• Can’t compute target until ID



Compiler: Static Prediction

• Predict at compile time whether branches will be 
taken before execution 

• Schemes

• Backwards taken, forwards not taken

• Why is this a good idea?



Compiler: Static Prediction
• Predict at compile time whether branches will be 

taken before execution 

• Schemes

• Predict taken

• Backwards taken, forwards not taken (good 
performance for loops)

• No run-time adaptation: bad performance for data-
dependent branches

• if (a == 0) b =3; else b=4;



Hardware-based Dynamic Branch Prediction

• Single level (Simple counters) – predict outcome based on past branch behavior

• FSM (Finite State Machine)

• Global Branch Correlation – track relations between branches

• GAs

• Gshare

• Local Correlation – predict outcome based on past branch behavior PATTERN

• PAs

• Hybrid predictors (combination of local and global)

• Miscellaneous

• Return Address Stack (RAS)

• Indirect jump prediction



Mis-prediction Detections and Feedbacks

• Detections:

• At the end of decoding 

• Target address known at decoding, 
and does not match

• Flush fetch stage

• At commit (most cases)

• Wrong branch direction or target 
address does not match

• Flush the whole pipeline

• Feedbacks:

• Any time a mis-prediction is detected

• At a branch’s commit

FETCH

DECODE

SCHD

REB/ROB

COMMIT

WB

EXE

predictors



1-bit “Self Correlating” Predictor

• Let’s consider a simple model. Store a bit per branch: 
“last time, was the branch taken or not”. 

• Consider a loop of 10 iterations before exit:

• for (…)
  for (i=0; i<10; i++)
    a[i] = a[i] * 2.0;

• What’s the accuracy of this predictor?



Dynamic Branch Prediction
• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table: Lower bits of PC address index table of 1-bit 
values

• Says whether or not branch taken last time

• No address check

• Problem: in a loop, 1-bit BHT will cause two mispredictions (avg is 9 
iterations before exit):

• End of loop case, when it exits instead of  looping as before

• First time through loop on next time through code, when it predicts exit 
instead of looping



Predictor for a Single Branch

state 2. Predict
Output T/NT

1. Access PC

3. Feedback T/NT

T

Predict Taken Predict Taken1 0T

NT

General Form

1-bit prediction

NT

Feedback



• Solution: 2-bit scheme where change prediction only 
if get misprediction twice:

• Red: stop, not taken

• Green: go, taken

• Adds hysteresis to decision making process

Dynamic Branch Prediction (Jim Smith, 1981)

T

T NT

NT

Predict 
Taken

Predict Not 
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Predict 
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Predict Not 
TakenT

NT
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NT



Simple (“2-bit”) Branch History Table Entry

D Q

Prediction for next branch.
(1 = take, 0 = not take) 

Initialize to 0.

D Q

Was last prediction correct?
(1 = yes, 0 = no) 

Initialize to 1.

Set to 1 if prediction bit was correct. 
Set to 0 if prediction bit was 

incorrect.
Set to 1 if prediction bit flips.

Flip bit if prediction is not 
correct and “last predict 

correct” bit is 0.

After we “check” 
prediction ...



Branch prediction hardware
• Branch Target Buffer (BTB): Address of branch index to 

get prediction AND branch address (if taken)

• Note: must check for branch match now, since can’t use 
wrong branch address

Branch PC Predicted PC

=?

PC of instruction
FETCH

Predict taken or untaken
Address of next

instruction fetched

Valid Branch
(BTB knows about branch)



Some Interesting Patterns
• Format: Not-taken (N) (0), Taken (T)(1)

• TTTTTTTTTT

• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 … : Should give perfect prediction

• NNTTNNTTNNTT

• 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 … : Will mispredict 1/2 of the time

• N*N[TNTN]

• 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 … : Should alternate incorrectly

• N*T[TNTN]

• 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 … : Should alternate incorrectly



Pentium 4 Branch Prediction
• Critical to Performance

• 20 cycle penalty for misprediction

• Branch Target Buffer

• 2048 entries

• 12 bits of history

• Adaptive algorithm

• Can recognize repeated patterns, e.g., alternating taken–not taken

• Handling BTB misses

• Detect in cycle 6

• Predict taken for negative offset, not taken for positive (why?)



Branch Prediction Summary
• Consider for each branch prediction

• Hardware cost

• Prediction accuracy

• Warm-up time

• Correlation

• Interference

• Time to generate prediction

• Application behavior determines number of branches

• More control intensive program…more opportunity to mispredict

• What if a compiler/architecture could eliminate branches?


