Lecture 16
Data Level Parallelism (3)

EEC 171 Parallel Architectures
John Owens
UC Davis

Credits

e © John Owens / UC Davis 2007-9.

e Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©

Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003-7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998, Bill Dally / SPI © 2007.

Where Do Your Cycles Go?

{ 2

QuicTime

http://images.google.com/imgres?imgurl=www2.tntech.edu/financialaid/images/cell%2520phone.gif&imgrefurl=http://www2.tntech.edu/financialaid/TTU%2520Fin%2520aid%2520phone%2520email.htm&h=188&w=164&prev=/images%253Fq%253Dcell%252Bphone%2526svnum%253D10%2526hl%253Den%2526imgsafe%253Doff%2526sa%253DN
http://images.google.com/imgres?imgurl=www2.tntech.edu/financialaid/images/cell%2520phone.gif&imgrefurl=http://www2.tntech.edu/financialaid/TTU%2520Fin%2520aid%2520phone%2520email.htm&h=188&w=164&prev=/images%253Fq%253Dcell%252Bphone%2526svnum%253D10%2526hl%253Den%2526imgsafe%253Doff%2526sa%253DN
http://www.howstuffworks.com/gif/xbox-new.jpg
http://www.howstuffworks.com/gif/xbox-new.jpg
http://www.eol.ca/services/images/dsl.jpg
http://www.eol.ca/services/images/dsl.jpg

Computing Today: Media Applications

Media applications are increasingly important
e Signal processing

e Video/image processing

e Graphics

Media applications are fundamentally different
Traditionally a tradeoff:

e Programmable processors perform poorly

e Custom processors perform well, but are not flexible

Goal: performance of a special purpose processor, programmability
of a general purpose processor

Stereo Depth Extraction

. 4 N
- s =

Right Camera Image

® 640x480 @ 30 fps
e Requirements
e 11 GOPS

® |magine stream processor

e 11.92 GOPS

High computation rate

e Depth requires 11 GOPS

High computation to memory ratio

e Depth: 60:1

Producer-consumer locality & little data reuse
e Pixels never revisited

Parallelism

e All pixels could be computed in parallel

Simple control structures

Kernels and Streams

Kernel

\
@ —

N

Streams
e A streamis a set of

elements of an
arbitrary datatype.

e A computational kernel
operates on streams.

e Typically: loops over

e Allowed operations: all input elements

push, pop

Stereo Depth Extraction Algorithm

e For each inputimage,

O@IVG with Gaussian (b@

O@IW with Laplacian (e@ edges)

e Compare two images

° (@ch pixel)

O@e over multiple dispa@tween images to find best match
streams kernels

Depth Extractor Implementation

Input Data
Kernel Stream

Output Data

Stream level specifies program structure

Kernel level describes function of each kernel

Stream Processing Advantages

Kernels exploit both instruction Kernels can be partitioned
(ILP) and data (SIMD) level across chips to exploit task
parallelism. parallelism.

—>| Depth Map ‘

Streams expose producer-

consumer locality. The stream model exploits
parallelism without the
complexity of traditional parallel
programming.

Microprocessor vs. Imagine: Programming Model

e Microprocessors
e Scalar execution model — little parallelism
e Lots of control hardware
e No restrictions on programming
e |[magine
e Simpler control allows more functional units
e leads to restrictions in programming model:
e No arbitrary memory references from kernels allow fast kernels

e Simple control structures (loops) allow SIMD

Implementation Goals

e Supply ample computation

e Must exploit parallelism
e [nstruction level (for a single element)

e Data level (across multiple elements)

e Deliver high data bandwidth

e Little traditional locality
e [nstead, producer-consumer locality

e Need to efficiently utilize our bandwidth

The Imagine Stream Processor

Host
Processor

Stream
Controller Microcontroller

I ALU Cluster 7

ALU Cluster 6

I ALU Cluster 5

Streaming Stream I ALU Cluster 4
Memory Register F

System File I ALU Cluster 3

I ALU Cluster 2

I ALU Cluster 1

ALU Cluster O

[Khailany et al., IEEE Micro Mar/Apr ‘o1]

Bandwidth Hierarchy Makes It Work

SIMD/VLIW
Control

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

Stream
Register File

ALU Cluster

ALU Cluster

ALU Cluster

Peak BW: 2.1GB/s 25.6 GB/s

e Media apps match what VLSI can provide.
[Rixner et al., Micro ’98]

Bandwidth Hierarchy: Depth Extractor

Memory/Global Data SRF/Streams Clusters/Kernels

1:23:317

Data Level Parallelism in Clusters

Microcontroller

l ALU Cluster 7
ALU Cluster 6
ll ALU Cluster 5

ALU Cluster 4
l ALU Cluster 3

l ALU Cluster 2
l ALU Cluster 1
l ALU Cluster O

e SIMD (single-instruction, multiple data) control of 8
clusters by 1 microcontroller

Cluster Organization

hfercluster Network

Local Register File

Cross Point

paihdashripaissALU outputs to

metr rtln
SRR LS e, between
Ci U‘@lé%‘..?ym\?e%eegyhcles of latency

» Most units fully pipelined (throughput is more important than
latency)

Depth: High Computation Rate

—>| Depth Map ‘

3

Each pixel requires hundreds of operations to process

Each kernel call performs a complex operation on every element in the stream
Imagine sustains 11.92 GOPS [cycle accurate simulation @ 400 MHZ]

198 frames/second on 8-bit-grayscale 320x240 stereo pair

30 disparities tested per pixel

Depth: High Computation to Memory Ratio

L

e 60 arithmetic operations per required
memory reference

Clusters

e Matches delivered bandwidths of data
bandwidth hierarchy

Imagine

DRAM: 2.1 GB/s

e For depth, Memory::SRF::Local RFs = SRF: 25.6 GB/s
1::23::317 Clusters: 435 GB/s

Depth: Producer-Consumer Locality

—>| Depth Map ‘

e Intermediate data is produced by one kernel and
immediately consumed by the next kernel

e For efficiency, minimize global memory traffic

Depth: Ample Parallelism

—>| Depth Map ‘

Instruction level: Kernel ops on single element of stream
Data level: Stream elements processed in parallel
Task level: Partitioning tasks among stream processors

In theory, ALL pixels in output image could be processed in parallel!

Video Processing: MPEG2 Encode

> >
Memory or
Network

Peripheral

Sustains 15.35
16-bit GOPS

Rate Control Feeback

287 frames/second
on 320x288
24-bit color image

Little locality

1.47 accesses per word of global data
Computationally intense

155 operations per global data reference

Signal Processing: QR Decomposition

Current block

1

“Zeroed” block

Blocks to be

updated — Updated

blocks
QR Matrix Decomposition
e Key component of Space-Time Adaptive Processing (STAP)
e Sustains 10.46 GFLOPS (32-bit floating-point)

® 1.44 ms per192x96 single-precision floating-pt QRD

hics: Polygon Rendering

The Stanford Real-Time
Shading Language
compiles shaders to
stream and kernel code.

Geometry

=

Sustains 4—-6 GOPS Rasterization

16.3M pixels/second

11.1M vertices/second Composition

Bandwidth Demand of Applications

I
Clusters

Memory
= (DRAM)

N SRF

—_

—_
f
o
S
N =
—
2
=
©
c
©
(08

DRAM: 2.1 GB/s
SRF: 25.6 GB/s

Clusters: 435 GB/s

0
Depth MPEG QRD STAP* Render RTSL
(average)

e Applications match memory bandwidth hierarchy

e Locality is captured: apps achieve 77-96% of performance of Imagine
with infinite SRF/memory bandwidth

Imagine Implementation Overview

® Chip Details
e 21M transistors

Tl 5-layer-Aluminum
0.15 pm standard cell
technology

16mm X 16mm
® 792-pin BGA
e Experimental Measurements
e 288 MHz
e 11.9 GFLOPS, 38.4 GOPS

o 13.8W

Datapath Blocks

Host Other Imagine
Processor Nodes, I/O

]
I

Network Interface
Host Stream

Interface F Controller

Microcontroller

C |
—| ALU Cluster 7 |

| ALU Cluster 6 |
—| ALU Cluster 5 |
Streaming ALU Cluster 4

'\Sﬂjzgg Rezitgte:rn']:"e :|| ALU Cluster 3 i
—| ALU C.)Iuster2 |
— ALU Cluster 1 |
—{ ALU Cluster 0 |

Imagine Stream Processor

CLUST?
CLUST6
CLUSTS
CLUST4
o MUASY !
CLUST2
CLUST1
CLUSTO

Summary

e Goal: Programmability of a general purpose processor, performance of a special
purpose processor

Stream programming model

e All data expressed as streams
e Computation done by kernels
e Model exposes parallelism, locality
Stream architecture
Fundamental primitive: stream
Data bandwidth hierarchy
e Media apps match what VLSI provides
Ample computation resources

VLSI implementation validates architectural concepts

Arithmetic is cheap, Communication is expensive

@ Arithmetic I | 0.3mm
— Y-
« Can put TeraOPs on a chip

- Typical ALU characteristics; B—32.itALU (to scale)
$0.02/GOPS, 10mW/GOPS

« Exploit with parallelism

©® Communication Decreasing
bandwidth
Typical off-chip characteristics;

$2/GB/s, 0.5W/GB/s
e
Bandwidth decreases with distance power

Power and latency increases with
distance _ 1clock
« But can be hidden with parallelism

«

Need locality to conserve global
bandwidth

parallel processing made

So we should build chips that look like this

Logical view

GLOBAL MEMORY

SWITCH

L3

SWITCH SWITCH

T111T “

NS {.5‘ ~parallel processing made simple

SPI

A~

Physical view

Data Parallel Unit (DPU)

Lane O Lane 15

InterLane Switch

ORF-
SCalar

Execution
Unit

Y2lIMS [e207]
UOUMS [e207]

VLIW
Sequencer

Instruction lll

Memory
96 KBytes

159
o
<
O
]
©
o
2
(=]
>
o
(]

Lane Register Lane Register
File 0 File 15
16 KBytes 16 KBytes

Instruction

Fetch Unit Stream Load/Store Unit

=" parallel processing made simple

SPI

AA

One kernel at a time is executed across
all lanes

DPU Dispatcher manages load/stores in
bulk

e Hardware scheduler for DMA transfers
and kernel calls

12-way VLIW instruction
* 1 scalar, 1 branch
* 5 arithmetic
« 41d/st, 1 comms

5 x 32-bit ALUs per lane
* Integer / fixed-point
« Subword SIMD; 4x8b, 2x16b

304 32-bit registers per lane

256 KBytes Lane Register File
for streams

InterLane full crossbar

Shared execution unit for scalars

DPU: 16 parallel lanes, 5 ALUs per lane

Inter-lane Switch

Lane 0

- [RF

RF

— RF

- [RF

RF

Instr
Sequencer

Jayojedsi

Instruction
Memory
96 KB

LRF
16 KB

Instruction
Fetch Unit

Stream Load/Store Unit

!

Feb 13, 2007

:

384b instruction
— 12-way VLIW

Five 32-bit ALUs
per lane

— Integer / Fixed-point

— Subword SIMD
support on 8b, 16b

Multiply-add
Add/Sub
Shift

Distributed
operand RFs

— 304 32-bit words per
lane

Hierarchy matches application bandwidth

|

45 GBytes/s
1 word/cycle/lane

1.4 TBytes/s
19 reads & 13 writes
words/cycle/lane

|

90 GBytes/s
2 words/cycle/lane

10.4 GBytes/s
666 Mbps DDR2
2x64b

DRF COM]

RF ALUO

DRF ALU4]

Lane Register Lane Register
File 0 File 15
16 KBytes 16 KBytes

External DRAM ’

parallel processing made

SPI

AA

@ >95% of accesses is typically from
operand RFs in DSP applications

© Static kernel VLIW schedule
* Including InterLane switch

@ 1:10:150 mem bandwidth ratio typical
across a large variety of DSP kernels

Measured results on Imagine Stream Processor
(Stanford University)

Peak DEPTH MPEG QRD

1. Load balancing: SPI
Time-multiplexing perfectly balances load N

Assume a pipeline of DSP kernels processing data
4>.—> K2 —» K3 —>» K4 ——>

© Space Multiplexed

* A common multi-core approach

« Each tile executes a different DSP
kernel, forwarding results to the
next tile

Hard to load balance

@ Time Multiplexed

« All lanes execute the same DSP 1 Dependencies

kernel, each operating on a different simplified;

stream element Interlane comms
can be made
Implicitly load-balanced explicit and
scheduled by
compiler

parallel processing made

2. Synchronization: SPI
SIMD/VLIW parallelism simplifies synchronization @~ ™7

16 x 10 cores VS. 16 SIMD x 10-way VLIW

CPUO CPU9 Seq

CPU158 CPU159

ME E—E Lane 15

Tight synchronization allows exploitation of finer
levels of granularity

E.g. neighboring pixel processing in each lane

parallel processing made

3. Locality: SPI
Explicit stream scheduling exploits locality

Assume a simple pipeline of DSP kernels processing data

S2 S3
» K2 >

__—

Load/store Execution
External Streams stored Kernel
memory in LRF execution

Load St
0

@-‘\ Store S3
<> -,

Load Si
(s3) | |2
Store S31

records

records

Explicit hierarchy conserves bandwidth
« On-chip memory allocation based on compiler data-flow analysis
« Data reuse and (only) load of needed data
« Overlapping load/store and execution improves memory latency tolerance

parallel processing made

f\/\

Loop
iteration #0

#1

#2

3. Locality:
H.264 motion search example

Streams stored
External memory . Kernels executed
in LRF

Load Current
CURRENT Batch of Macroblocks

FRAME I > FullScale

Macroblocks

Store for
Later Frames ¥ - Scale
HALF- Macroblocks

SCALE DECIMATE
REFERENCE Load Search MACROBLOCKS

FRAME Area TO QUARTER SCALE
\ 1% - Scale Reference

Macroblocks

FULL SEARCH ON
HALF-SCALE IMAGE
(2x2-MB range)

Store for
QUARTER' Later Frames 14 - Scale
SCALE Macroblocks

REFERENCE
FRAME \ Y4 - Scale Reference
Load Search Macroblocks FULL SEARCH ON
Area QUARTER-SCALE IMAGE
Y2 - Scale (8x4-MB range)
MOTION Motion Vectors

VECTORS
FOR 14 - Scale

INTEGER/ Motion Vectors ~ — ————3 FIND BEST

SUB-PIXEL MOTION VECTORS

MOTION Store Motion
VECTOR Vectors Best Motion

REFINEMENT € Vectors

parallel processing made

4. Predictability: Caches lack predictability and SPI
squander bandwidth (“wet noodle” control) N

Conventional Processor Stream Processor

99% hitrate; 1 miss costs 100s of cycles, Needed data and instructions dynamically
10,000s of ops! moved on-chip, managed by compiler

Manually choreographing caches is hard... Data and instruction movement in bulk hide
latency — 20:1 in compute to access ratio
typical for DSP kernels

Load Si 0

Store S3
0

Load St
| | ke

Store 831

parallel processing made

4. Predictability: Explicit data movement enables SPI
predictable execution unit scheduling

f\/\

VLIW Function Unit Opcode Slots

ORF -to - ORF Ld St InterLane Branch

Ry — — & > 8x8 FDCT kernel example
* Over 80% ALU utilization of peak
* C code + intrinsics

KKK

_i
o

d

« Each lane calculates one 8x8 block per
loop

73 cycles/loop, ~ 4.5 cycles/block

d i
dK & KKK

K KKK
dIK]

_a
[

KK KKK K

K

_i
[

&
d

gE e g

Explicit communication makes
delays predictable

}00|9 ‘suoljoniisul [auId)f

il

K

« Enhances compiler strategies to enable
high-level languages

Assembly not needed to achieve
performance

KKK
ql g
<

_i
[N

d

S

_i
[

4

_i
[

]

4
1 KKK
(00 (10 [
<

Kernel cycle count is guaranteed

d K KK

K KK
d

A KKK

&
Q&

a

ﬁa
VLN ANRN

8
(

[
[
K

_a
™

4

J]

@i
(
<K

1 L Il L L Il Il L L Il 1 L L L L Il Il L Il Il Il L Il L

{
{

parallel processing made

SPI

Storm-1 SP16HP — top level block diagram XA

@ System MIPS core
* Manages I/O, runs OS (e.g. Linux) Storm-1 SP16HP

© DSP MIPS core DSP Subsystem

* Runs main DSP application threads, runs

RTOS (e.g. Nucleus) Data-Parallel Unit

(DPU)
 Makes kernel function calls to the DPU

© Data-Parallel Unit (DPU)

* Processes kernels Multi-Layer System Bus / DMA Control

« Stream Processor execution model ‘
 Scales with number of lanes GBit Video
Ethernet StreamIO

© Memory and I/O Subsystem ‘

parallel processing made

Storm-1 SP16HP design

© 130nm TSMC LV 8LM Cu

© 34M transistors

© 700MHz core

© 82 pJ per 16b multiply-accumulate

28 B
= H
CD 3
m |7
3 »r
(®)

QF
(@R =
Sievat 3=
(5]

— g
(of &
=

('D -

@ Less than 10W typical

Hardware pipeline; 11-15 stages
F1 | F2 | F3 | F4 | D1 | D2 | D3

F1

F2

F3

F4 D1 D2 D3

RR

X3

CL

Instruction

_» Fetch

Decode/
Distribute

NS {.5‘ ~parallel processing made simple

Reg
Read

Execute

Cross
Lane

Write-
back

Data-Parallel Algorithms

e Efficient algorithms require efficient building blocks
e Six data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

Sort

Search

Sample Motivating Application

e How bumpy is a surface that we
represent as a grid of samples?

e Algorithm:

Loop over all elements

At each element, compare the value of that element to the average of its
neighbors (“difference”). Square that difference.

Now sum up all those differences.
e Butwe don’t want to sum all the diffs that are o.
e Soonly sum up the non-zero differences.

This is a fake application—don’t take it too seriously.

Picture courtesy http://www.artifice.com

Sample Motivating Application

for all samples:

neighbors[x,y] =
0.25 * (wvalue[x-1,y]+
value[x+1l,y]+
value[x,y+1]+
value[x,y-1]))
diff = (value[x,y] - neighbors[x,y])*2
result = 0

for all samples where diff !'= O:
result += diff

return result

Sample Motivating Application

for all samples:

neighbors[x,y] =
0.25 * (wvalue[x-1,y]+
value[x+1l,y]+
value[x,y+1]+
value[x,y-1]))
diff = (value[x,y] - neighbors[x,y])*2
result = 0

for all samples where diff !'= O:
result += diff

return result

The Map Operation

Given:
e Array or stream of data elements A
e Function f(x)

map(A, f) = applies fix) to allac A

How does this map to a data-parallel processor?

ample Motivating Application

for all samples:

4

¥V
]

neighbors[x,y] =
0.25 * (wvalue[x-1,y]+
value[x+1l,y]+
value[x,y+1]+
value[x,y-1]))

,
M‘QA{QA
PN

vl RV s

diff = (value[x,y] - neighbors[x,y])*2
result = 0
for all samples where diff !'= O:
result += diff

return result

Scatter vs. Gather

e Gather:p = a[i]
e Scafter:a[i] = p

e How does this map to a data-parallel processor?

Scatter Gather

Sample Motivating Application

% AN e
for all samples: o _%%%-%%ﬁu'

A

neighbors[x,y] =
0.25 * (wvalue[x-1,y]+
value[x+1l,y]+
value[x,y+1]+
value[x,y-1]))
diff = (value[x,y] - neighbors[x,y])*2
result = 0

for all samples where diff !'= 0:
result += diff

return result

Parallel Reductions

Given:
e Binary associative operator ® with identity |
e Ordered sets = [a,, a,, ..., a..] of n elements

reduce(®, s)returnsa, ®a, ® ... ® a,.

Example:
reduce(+, [31704163])=25

Reductions common in parallel algorithms

e Common reduction operators are +, x, min and max

e Note floating pointis only pseudo-associative

Efficiency

e Work efficiency:

e Total amount of work done over all processors
e Step efficiency:

e Number of steps it takes to do that work

e With parallel processors, sometimes you’re willing to
do more work to reduce the number of steps

e Even betterif you can reduce the amount of steps and
still do the same amount of work

Parallel Reductions

e 1D parallel reduction:

e add two halves of domain together repeatedly...

e ... untilwe’re left with a single row

p
+ >
N

Multiple 1D Parallel Reductions

e Canrun many reductions in parallel

e Use 2D grid and reduce one dimension

2D reductions

e Like 1D reduction, only reduce in both directions simultaneously

e Note: can add more than 2x2 elements per step
e Trade per-pixel work for step complexity

e Best perf depends on specific hardware (cache, etc.)

Parallel Reduction Complexity

e log(n) parallel steps, each step S does n/2S independent ops
e Step Complexity is O(log n)

e Performsn/2+n/4+...1=n-10perations
e Work Complexity is O(n)—it is work-efficient

e j.e.does not perform more operations than a sequential algorithm

e With p threads physically in parallel (p processors),
time complexity is O(n/p + log n)

e Compare to O(n) for sequential reduction

Sample Motivating Application

for all samples:

neighbors[x,y] =
0.25 * (wvalue[x-1,y]+
value[x+1l,y]+
value[x,y+1]+
value[x,y-1]))
diff = (value[x,y] - neighbors[x,y])*2
result = 0

for all samples where diff != 0:
result += diff

return result

Stream Compaction

Input: stream of 1s and os
[tT0110010]

Operation:“sum up all elements before you”

Output: scatter addresses for “1” elements
[01123334]

Note scatter addresses for red elements are packed!

Parallel Scan (aka prefix sum)

e Given:
e Binary associative operator ® with identity |
e Ordered set s =|[a,, a4, ..., an.1) of n elements

e (exclusive) scan(®, s) returns
[809 (aO @ al)a soey (aO @ al @ ooe @ an-1)]

e Example:

scan(+,[31704163]) =
[3 4 1111 15 16 22 25]

Common Situations in Parallel Computation

e Many parallel threads that need to partition data

e Split

e Many parallel threads and variable output per thread

e Compact / Expand / Allocate

Split Operation

e Given an array of true and false elements (and
payloads)

flag [T]F|F|T|FIF[T[F|
Payload 3|1 [7]0]4

[3lofefi]7]4]1]3]

e Return an array with all true elements at the beginning

e Examples: sorting, building trees

Variable Output Per Thread: Compact

e Remove null elements

e Example: collision detection

Variable Output Per Thread

e Allocate Variable Storage Per Thread

28 B BUN SO

e Examples: marching cubes, geometry generation

“Where do | write my output?”

In all of these situations, each thread needs to answer
that simple question

The answer is:

“That depends on how much
the other threads need to write!”

e In a serial processor, this is simple

e “Scan” is an efficient way to answer this question in
parallel

Parallel Prefix Sum (Scan)

e Given an array A = [a,, a4, ..., An-4]
and a binary associative operator @ with identity |,

scan(A) =[l, ao, (@ ® a4), ..., (@0 ® 3, @ ... ® An-,)]

Example: if ® is addition, then scan on the set

3170416 3]

returns the set

[03 4111115 16 22]

Application: Stream Compaction

Input: we want to preserve
the gray elements

Set a “1” in each
gray input

Scan

Scatter input to output,
using scan result as scatter
address

1M elements:
~0.6-1.3 mMS

16M elements:
~8-20 ms

Perf depends on #
elements retained

Application: Radix Sort

Input

Split based on least
significant bit b

e =Set a “1” in each “0” input

f = Scan the 1s

K—» totalFalses = e[max] + ffmax]

t=i-f + totalFalses

d=b?t:f

Scatter input using d as
scatter address

Sort 16 M 32-bit key-value
pairs: ~120 ms

Perform split operation on
each bit using scan

Can also sort each block and
merge

e Efficient merge on GPU an
active area of research

