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Outline

• Vector machines (Cray 1)

• Vector complexities

• Massively parallel machines
(Thinking Machines CM-2)

• Parallel algorithms



Vector Processing

• Appendix F & slides by Krste Asanovic, MIT



Supercomputers

• Definition of a supercomputer:

• Fastest machine in world at given task

• A device to turn a compute-bound problem into an I/O bound problem 

• Any machine costing $30M+

• Any machine designed by Seymour Cray

• CDC 6600 (Cray, 1964) regarded as first supercomputer



Seymour Cray

• “Anyone can build a fast CPU. The trick is to build a fast system.”

• When asked what kind of CAD tools he used for the Cray-1, Cray said 
that he liked “#3 pencils with quadrille pads”. Cray recommended 
using the backs of the pages so that the lines were not so dominant. 

• When he was told that Apple Computer had just bought a Cray to 
help design the next Apple Macintosh, Cray commented that he had 
just bought a Macintosh to design the next Cray.

• “Parity is for farmers.”



Supercomputer Applications
•  Typical application areas

• Military research (nuclear weapons, cryptography)

• Scientific research

• Weather forecasting

• Oil exploration

• Industrial design (car crash simulation)

• All involve huge computations on large data sets

• In 70s–80s, Supercomputer ≡ Vector Machine



Vector Supercomputers
• Epitomized by Cray-1, 1976:

• Scalar Unit + Vector Extensions

• Load/Store Architecture

• Vector Registers

• Vector Instructions

• Hardwired Control

• Highly Pipelined Functional Units

• Interleaved Memory System

• No Data Caches

• No Virtual Memory



Cray-1 (1976)
• 4 chip types (ECL):

• 16x4 bit bipolar 
registers

• 1024x1 bit SRAM

• 4/5 input NAND 
gates

• 138 MFLOPS 
sustained, 
250 MFLOPS peak
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Vector Programming Model
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Vector Code Example
# Scalar Code
  LI R4, 64

loop:
  L.D F0, 0(R1)
  L.D F2, 0(R2)

  ADD.D F4, F2, F0
  S.D F4, 0(R3)
  DADDIU R1, 8
  DADDIU R2, 8
  DADDIU R3, 8
  DSUBIU R4, 1
  BNEZ R4, loop

# Vector Code
  LI VLR, 64 
  LV V1, R1
  LV V2, R2

  ADDV.D V3, V1, V2
  SV V3, R3

# C code
for (i=0; i<64; i++)
  C[i] = A[i] + B[i];



Vector Instruction Set Advantages
• Compact

• one short instruction encodes N operations

• Expressive, tells hardware that these N operations:

• are independent

• use the same functional unit

• access disjoint registers

• access registers in the same pattern as previous instructions

• access a contiguous block of memory (unit-stride load/store), or

• access memory in a known pattern (strided load/store) 

• Scalable

• can run same object code on more parallel pipelines or lanes



Vector Arithmetic Execution

• Use deep pipeline (=> fast clock) 
to execute element operations

• Simplifies control of deep 
pipeline because elements in 
vector are independent (=> no 
hazards!) 

V1 V2 V3

v3 <- v1 * v2

Six stage multiply pipeline



• Cray-1: 16 banks, 64b wide per bank, 4 cycle bank 
busy time, 12 cycle latency

• Bank busy time: Cycles between accesses to same bank

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator



Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
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A[5] B[5]
A[6] B[6]

Execution using one 
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unit
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Execution using 
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Vector Unit Structure
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6, 10, …

Elements 3, 
7, 11, …



T0 Vector Microprocessor (1995)
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Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory instructions hold all vector operands in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), were memory-
memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
  C[i] = A[i] + B[i];
  D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code



Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory architectures (VMMA) require greater main memory 
bandwidth, why?

• VMMAs make it difficult to overlap execution of multiple vector operations, why? 

• VMMAs incur greater startup latency

• Scalar code was faster on CDC Star-100 for vectors < 100 elements

• For Cray-1, vector/scalar breakeven point was around 2 elements

• Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines since 
Cray-1 have had vector register architectures

• (we ignore vector memory-memory from now on)



Automatic Code Vectorization
for (i=0; i < N; i++)
    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time 
reordering of operation sequencing

⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e



Guy Steele, Dr Dobbs Journal 24 Nov 2005

• “What might a language look like in which parallelism is the default? 
How about data-parallel languages, in which you operate, at least 
conceptually, on all the elements of an array at the same time? 
These go back to APL in the 1960s, and there was a revival of 
interest in the 1980s when data-parallel computer architectures 
were in vogue. But they were not entirely satisfactory. I'm talking 
about a more general sort of language in which there are control 
structures, but designed for parallelism, rather than the sequential 
mindset of conventional structured programming. What if do loops 
and for loops were normally parallel, and you had to use a special 
declaration or keyword to indicate sequential execution? That might 
change your mindset a little bit.”



Vector Stripmining
• Problem: Vector registers have finite length

• Solution: Break loops into pieces that fit into vector registers, “Stripmining”
 ANDI R1, N, 63   # N mod 64
 MTC1 VLR, R1     # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8      
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2 
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1   # Reset full length
 BGTZ N, loop   # Any more to do?

for (i=0; i<N; i++)
    C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder



Vector Inefficiency

Load
Mul

AddTime

• Must wait for last element of result to be written before 
starting dependent instruction



Vector Chaining
• Vector version of register bypassing

• introduced with Cray-1

Memory

V1

Load 
Unit Mult

V2 V3

Chain

Add

V4 V5

Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4



Vector Chaining Advantage

• With chaining, can start dependent instruction as soon as first 
result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction



Vector Instruction Parallelism
• Can overlap execution of multiple vector instructions

• example machine has 32 elements per vector register and 8 lanes

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle



Vector Startup
• Two components of vector startup penalty

• functional unit latency (time through pipeline)

• dead time or recovery time (time before another vector 
instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time



Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94% with 
128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element 
vectors

No dead time

64 cycles active



Vector Scatter/Gather

• Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

• Indexed load instruction (Gather)
LV vD, rD       # Load indices in D vector
LVI vC, rC, vD  # Load indirect from rC base
LV vB, rB       # Load B vector
ADDV.D vA, vB, vC # Do add
SV vA, rA       # Store result



Vector Scatter/Gather

• Scatter is indexed write

• Scatter example:
for (i=0; i<N; i++)
 A[B[i]]++;

• Gather then scatter …
LV vB, rB       # Load indices in B vector
LVI vA, rA, vB  # Gather initial A values
ADDV vA, vA, 1  # Increment
SVI vA, rA, vB  # Scatter incremented values



Vector Conditional Execution
• Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)
 if (A[i]>0) then
  A[i] = B[i];

• Solution: Add vector mask (or flag) registers

• vector version of predicate registers, 1 bit per element

• …and maskable vector instructions

• vector operation becomes NOP at elements where mask bit is clear

• Code example (vector mask is implicit in this instruction set):
CVM             # Turn on all elements 
LV vA, rA       # Load entire A vector
SGTVS.D vA, F0  # Set bits in mask register where A>0
LV vA, rB      # Load B vector into A under mask
SV vA, rA      # Store A back to memory under mask



Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result 

writeback according to mask



Compress/Expand Operations
• Compress packs non-masked elements from one vector register 

contiguously at start of destination vector register

• population count of mask vector gives packed vector length

• Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time conditionals and also for general selection 
operations



Vector Reductions
• Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
 sum += A[i];  # Loop-carried dependence on sum

• Solution: Re-associate operations if possible, use binary tree to 
perform reduction
# Rearrange as:
sum[0:VL-1] = 0                 # Vector of VL partial sums
for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1];   # Vector sum
# Now have VL partial sums in one vector register
do {
 VL = VL/2;                    # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)



A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology

• 500 MHz CPU, fits on single chip

• SDRAM main memory (up to 64 GB)

• Scalar unit

• 4-way superscalar with out-of-order and speculative execution

• 64 KB I-cache and 64 KB data cache



A Modern Vector Super: NEC SX-6 (2003)

• Vector unit

• 8 foreground VRegs + 64 background VRegs (256x64-bit 
elements/VReg)

• 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1 
mask unit per lane

• 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)

• 1 load & store unit (32x8 byte accesses/cycle)

• 32 GB/s memory bandwidth per processor

• SMP structure

• 8 CPUs connected to memory through crossbar

• 256 GB/s shared memory bandwidth (4096 interleaved banks)



SX-6 Die Photo

• 0.15 µm CMOS

• 60M transistors

• 432 mm2

• 500 MHz scalar, 1 GHz vector
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NEC Earth Simulator
• 5120 CPUs, 41 TFLOPS peak, 35 sustained

• Each node: 8 CPUs, 32 memory modules

• 16 GB local memory

• 32 GB/s to local memory per CPU

• Interconnect: full 640x640 crossbar
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What we’ve learned

• SIMD instructions

• Fixed width (usually 4), fit into standard scalar 
instruction set

• Examples: MMX, SSE, AltiVec

• Vector instructions

• Operate on arbitrary length vectors

• HW techniques: vector registers, lanes, chaining, masks



What’s Next

• Massively parallel machines

• Big idea: Write one program, run it on lots of 
processors

• First we’re going to look at hardware

• Thinking Machines CM-2

• Then we’re going to look at algorithms



Name That Film!



Thinking Machines
• Goals: AI, symbolic processing, eventually 

scientific computing

• “In 1990, seven years after its founding, 
Thinking Machines was the market leader in 
parallel supercomputers, with sales of about 
$65 million. Not only was the company 
profitable; it also, in the words of one IBM 
computer scientist, had cornered the market ‘on 
sex appeal in high-performance 
computing’.” (Inc Magazine, 15 September 1995)

• Richard Feynman, when told by Danny Hillis that 
he was planning to build a computer with a 
million processors: “That is positively the 
dopiest idea I ever heard.”

• Founded 1982, profitable 1989, bankrupt in 1994



1-Slide Programming Model

• Specify a discrete domain for a program (“grid”)

• Example: Image processing, 512x128 image

• Assign a processor to each element in the grid

• Example: 1 processor per element, so 64k processors

• Write a program for one processor

• All processors run that program



Questions To Think About
• Should the program look like a serial program that 

runs on one processor, or should it look like a parallel 
program?

• How do different elements of the program talk to each 
other? 

• How do they synchronize, if necessary?

• What happens when some of the processors want to 
branch one way and some want to branch another 
way?

• What happens when processor store ops conflict? 



CM-2 Overview

• “The Connection Machine processors are used 
whenever an operation can be performed 
simultaneously on many data objects. Data objects 
remain in the Connection Machine memory during 
execution of the program and are operated upon in 
parallel. This model differs from the serial model, 
where data objects in a computer's memory are 
processed one at a time, by reading each one in turn, 
operating on it, and then storing the result back in 
memory before processing the next object.”



CM-2 Overview

• 16k–64k processors

• Up to 128 kB of memory per processor

• Processors communicate with each other and with 
peripherals, all in parallel

• Front-end computer handles serial computation, 
interface with CM-2 back-end



Virtual Processors
• Natural way to program in parallel is to assign one processor per 

parallel element

• Example: Image processing 512x128 rectangle, 64k elements

• Think in these terms when you program!

• If you have 64k processors, great.

• If you don’t, create 64k virtual processors and assign them to the 
physical processors

• In a 16k processor CM-2, that’s 4 virtual processors per physical 
processor

• Data is striped across physical processors

• Benefit: Allows same program to run on different-sized machines



Communication Patterns

• Global operations

• scalar = sum(array)

• Matrix (row-column structure)

• Finite-differences (neighbor communication)

• Spatial to frequency domain (butterfly)

• Irregular communication



CM-2 and Communication
• Applications are generally structured:

• First step: gather data from other elements

• Second step: do local computation (no communication 
necessary)

• CM-2 has:

• Ability to communicate with nearest neighbors using 
special-purpose hardware (NEWS)

• General-purpose network to communicate with any 
other processors



Communication Primitives
• send-with-overwrite

• send-with-logand 

• send-with-logior

• send-with-logxor 

• send-with-s-add

• send-with-s-multiply 

• send-with-u-add

• send-with-u-multiply 

• send-with-f-add

• send-with-f-multiply 

• send-with-c-add

• send-with-c-multiply 

• send-with-s-max

• send-with-s-min 

• send-with-u-max

• send-with-u-min 

• send-with-f-max

• send-with-f-min 



Computation + Communication Primitives

• Scan

• Sum (or other op) of all preceding elements in a row

• Reduce

• Sum (or other op) of all elements in a row

• Global

• Sum (or other op) of ALL elements

• Spread

• Sum (or other op) of particular element is distributed to all in row

• Multispread

• Spread across multiple dimensions
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Figure 9. The CM-2 parallel processing unit

Parallel processing instructions issued by the front-end computer are received by the sequencer,

which interprets them to produce a series of single-cycle "nanoinstructions." The nanoinstructions

are broadcast over the instruction bus to thousands of data processors. Each data processor has its

own memory.

All processors can access their respective memories simultaneously. Alternatively, the sequencer can

access this memory serially, one 32-bit word at a time, over the scalar memory bus. The data proces-

sors can emit one datum apiece, and their combined value is delivered to the sequencer on the global

result bus. The data processors can exchange information among themselves in parallel through rout-

ing, NEWS, and scanning mechanisms; these are in turn connected to the I/O interfaces.

from/to Front End Computer

- -
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Figure 10. Two CM-2 processor chips with memory and floating-point chips

CM-2 processor chips are arranged in pairs. Each pair shares a group of memory chips, a floating-

point interface chip, and a floating-point execution chip. The memory chips provide a 44-bit-wide

data path; 22 bits (16 data and 6 ECC) go to each processor chip. The floating-point interface chip

handles these same 44 bits and also provides memory address control for indirect addressing. The

floating-point execution chip receives operands from the floating-point interface chip, 32 bits at a

time, and in the same manner gives the interface chip results to be stored back into memory.
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CM-2 ALU
• 3-input, 2-output logic element

• ALU cycle:

• Read 2 data bits from memory

• Read 1 data bit from flag

• Compute two results:

• 1 written to data memory

• 1 written to flag

• Conditional on “context” flag

• Can compute any 2 boolean functions (1 byte each)



CM-2 k-bit add
• Clear flag “c” (carry bit)

• Iterate k times:

• Read one bit of each operand (2 bits)

• Read carry bit

• Compute sum, store to memory

• Compute carry-out, store to flag

• Last cycle stores carry-out separately (to check for 
overflow)



CM-2 Router
• Any processor can send a message to any other 

processor through the router

• (or) The router allows any processor to access any 
memory location in the machine, in parallel between 
processors

• Each CM-2 processor chip (16 processors) contains 
one router node

• Network is a 12-cube

• Router node i is connected to router node j if |i-j| = 2^k



CM-2 Specialized Transfer

• Virtual processors on the same physical processor 
don’t have to use the network at all

• 16 physical processors per chip–communication 
doesn’t have to leave the chip

• Regular communication patterns (like nearest 
neighbor) avoid router overhead / calculation of 
destination address

• Use “NEWS” network



On to the CM-5 …

• CM-2 was designed for AI apps

• Not many AI labs could afford a $5M machine

• Instead it was used for (and DARPA was interested in) 
scientific computing

• Successor, the CM-5, had MIMD organization and 
commodity microprocessors (Sun SPARC) with 
special-purpose floating-point and I/O hardware

• Also cool blinky lights


