
Lecture 14
Data Level Parallelism (2)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

Outline

• Vector machines (Cray 1)

• Vector complexities

• Massively parallel machines
(Thinking Machines CM-2)

• Parallel algorithms

Vector Processing

• Appendix F & slides by Krste Asanovic, MIT

Supercomputers

• Definition of a supercomputer:

• Fastest machine in world at given task

• A device to turn a compute-bound problem into an I/O bound problem

• Any machine costing $30M+

• Any machine designed by Seymour Cray

• CDC 6600 (Cray, 1964) regarded as first supercomputer

Seymour Cray

• “Anyone can build a fast CPU. The trick is to build a fast system.”

• When asked what kind of CAD tools he used for the Cray-1, Cray said
that he liked “#3 pencils with quadrille pads”. Cray recommended
using the backs of the pages so that the lines were not so dominant.

• When he was told that Apple Computer had just bought a Cray to
help design the next Apple Macintosh, Cray commented that he had
just bought a Macintosh to design the next Cray.

• “Parity is for farmers.”

Supercomputer Applications
• Typical application areas

• Military research (nuclear weapons, cryptography)

• Scientific research

• Weather forecasting

• Oil exploration

• Industrial design (car crash simulation)

• All involve huge computations on large data sets

• In 70s–80s, Supercomputer ≡ Vector Machine

Vector Supercomputers
• Epitomized by Cray-1, 1976:

• Scalar Unit + Vector Extensions

• Load/Store Architecture

• Vector Registers

• Vector Instructions

• Hardwired Control

• Highly Pipelined Functional Units

• Interleaved Memory System

• No Data Caches

• No Virtual Memory

Cray-1 (1976)
• 4 chip types (ECL):

• 16x4 bit bipolar
registers

• 1024x1 bit SRAM

• 4/5 input NAND
gates

• 138 MFLOPS
sustained,
250 MFLOPS peak

Cray-1 (1976)
Single Port

Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80 MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element Vector
Registers

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and Store

Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Code Example
Scalar Code
 LI R4, 64

loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)

 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2

 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

Vector Instruction Set Advantages
• Compact

• one short instruction encodes N operations

• Expressive, tells hardware that these N operations:

• are independent

• use the same functional unit

• access disjoint registers

• access registers in the same pattern as previous instructions

• access a contiguous block of memory (unit-stride load/store), or

• access memory in a known pattern (strided load/store)

• Scalable

• can run same object code on more parallel pipelines or lanes

Vector Arithmetic Execution

• Use deep pipeline (=> fast clock)
to execute element operations

• Simplifies control of deep
pipeline because elements in
vector are independent (=> no
hazards!)

V1 V2 V3

v3 <- v1 * v2

Six stage multiply pipeline

• Cray-1: 16 banks, 64b wide per bank, 4 cycle bank
busy time, 12 cycle latency

• Bank busy time: Cycles between accesses to same bank

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using one
pipelined functional

unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined

functional units

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

T0 Vector Microprocessor (1995)

LaneVector register
elements striped

over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory instructions hold all vector operands in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), were memory-
memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

Vector Memory-Memory vs. Vector Register Machines

• Vector memory-memory architectures (VMMA) require greater main memory
bandwidth, why?

• VMMAs make it difficult to overlap execution of multiple vector operations, why?

• VMMAs incur greater startup latency

• Scalar code was faster on CDC Star-100 for vectors < 100 elements

• For Cray-1, vector/scalar breakeven point was around 2 elements

• Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines since
Cray-1 have had vector register architectures

• (we ignore vector memory-memory from now on)

Automatic Code Vectorization
for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e

Guy Steele, Dr Dobbs Journal 24 Nov 2005

• “What might a language look like in which parallelism is the default?
How about data-parallel languages, in which you operate, at least
conceptually, on all the elements of an array at the same time?
These go back to APL in the 1960s, and there was a revival of
interest in the 1980s when data-parallel computer architectures
were in vogue. But they were not entirely satisfactory. I'm talking
about a more general sort of language in which there are control
structures, but designed for parallelism, rather than the sequential
mindset of conventional structured programming. What if do loops
and for loops were normally parallel, and you had to use a special
declaration or keyword to indicate sequential execution? That might
change your mindset a little bit.”

Vector Stripmining
• Problem: Vector registers have finite length

• Solution: Break loops into pieces that fit into vector registers, “Stripmining”
 ANDI R1, N, 63 # N mod 64
 MTC1 VLR, R1 # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1 # Reset full length
 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Vector Inefficiency

Load
Mul

AddTime

• Must wait for last element of result to be written before
starting dependent instruction

Vector Chaining
• Vector version of register bypassing

• introduced with Cray-1

Memory

V1

Load
Unit Mult

V2 V3

Chain

Add

V4 V5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon as first
result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

Vector Instruction Parallelism
• Can overlap execution of multiple vector instructions

• example machine has 32 elements per vector register and 8 lanes

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Startup
• Two components of vector startup penalty

• functional unit latency (time through pipeline)

• dead time or recovery time (time before another vector
instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94% with
128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

Vector Scatter/Gather

• Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

• Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA, vB, vC # Do add
SV vA, rA # Store result

Vector Scatter/Gather

• Scatter is indexed write

• Scatter example:
for (i=0; i<N; i++)
 A[B[i]]++;

• Gather then scatter …
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A values
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values

Vector Conditional Execution
• Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)
 if (A[i]>0) then
 A[i] = B[i];

• Solution: Add vector mask (or flag) registers

• vector version of predicate registers, 1 bit per element

• …and maskable vector instructions

• vector operation becomes NOP at elements where mask bit is clear

• Code example (vector mask is implicit in this instruction set):
CVM # Turn on all elements
LV vA, rA # Load entire A vector
SGTVS.D vA, F0 # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV vA, rA # Store A back to memory under mask

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result

writeback according to mask

Compress/Expand Operations
• Compress packs non-masked elements from one vector register

contiguously at start of destination vector register

• population count of mask vector gives packed vector length

• Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time conditionals and also for general selection
operations

Vector Reductions
• Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
 sum += A[i]; # Loop-carried dependence on sum

• Solution: Re-associate operations if possible, use binary tree to
perform reduction
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
 VL = VL/2; # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology

• 500 MHz CPU, fits on single chip

• SDRAM main memory (up to 64 GB)

• Scalar unit

• 4-way superscalar with out-of-order and speculative execution

• 64 KB I-cache and 64 KB data cache

A Modern Vector Super: NEC SX-6 (2003)

• Vector unit

• 8 foreground VRegs + 64 background VRegs (256x64-bit
elements/VReg)

• 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1
mask unit per lane

• 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)

• 1 load & store unit (32x8 byte accesses/cycle)

• 32 GB/s memory bandwidth per processor

• SMP structure

• 8 CPUs connected to memory through crossbar

• 256 GB/s shared memory bandwidth (4096 interleaved banks)

SX-6 Die Photo

• 0.15 µm CMOS

• 60M transistors

• 432 mm2

• 500 MHz scalar, 1 GHz vector

!"#$%&'(!)*"*+"%&,#)-.!/0%-).10/2%-3 454667

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

9*4"%:)/%+$.-2);0<9<

===<'"#$%&"'(>'*#+".'0<'*#

7?>@)91$);0*-*

! 68'(&!1&9/&:;,&9,<!

! =6,&>?

! @74&114

! (66&,AB&3)*"*-&*C$&1%1

'&DAB&E%)2.-&0#0%

! !FG(&H*3&74&)I#03

!./-)%J&KL9

Die photo and photos on next page courtesy of Don Alpert

NEC Earth Simulator
• 5120 CPUs, 41 TFLOPS peak, 35 sustained

• Each node: 8 CPUs, 32 memory modules

• 16 GB local memory

• 32 GB/s to local memory per CPU

• Interconnect: full 640x640 crossbar

!"#$%&'(!)*"*+"%&,#)-.!/0%-).10/2%-3 45466(

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

9*4"%:)/%+$.-2);0<9<

===<'"#$%&"'(>'*#+".'0<'*#

?".-0)71#,%"-*.)7@5-$#

! /.1-0#$-1');.*'$55*.
7 8*3%$&.9&3*1%&).-%

*3&:;<&!=>?
7 !/0%-3)*"*-&@9#2

A B>#33/%C&DDD&%E%)/2#.9

7 <*)F%3
A !%0*-*2%&G&*9$&H
A ;*)F&?BI8C&4>J*K&*33.)#*2#L%

! A*:$
7 M&<N@3C&(4&,%1.-K&,.$/"%3
7 '?O8&".)*"&1%1.-K
7 <-.33+*-\%-).99%)2
7 (4O853&2.&".)*"&1%1 0%-&<N@

! A$-=*.(
7 ?B6&E&?B6&)-.33+*-
7 '4P(&O853&+#$#-%)2#.9*"&

+*9$J#$2F
7 !0%)#*"#Q%$&RS&3/00.-2&2.&

2-*93T%-&(H&3/+*--*K3 *9$&
#9$#-%)2&*))%33C&*9$&+*--#%-&
3K9)F-.9#Q*2#.9

!./-)%U&:;<

!"#$%&'!()")*"%&+#(,-!./%,(-0/.1%,2 343556

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

9*4"%:)/%+$.-2);0<9<

===<'"#$%&"'(>'*#+".'0<'*#

?*+)@A);$.B*.#146)7,+$.'*#+,-$.5

! C7)&$"-5)D4: +%"'$)&E)FGH
7 89":&3;<&0-,%&=>?2
7 @1&"%22&1A)9&;5<&B,%C.%9(:

! I1.5-)-1#$)14)@A)E$".)015-*.E
-0"-)-0$)-*+)5,+$.'*#+,-$.)15)
&"5$:)*4)")',5-*#)
#1'.*+.*'$55*.

!"#$%% &"#'(")*'+,+%
-./0'*,+12+.)3%%

456728%%

!"" 9:-"
#$%&'()*+,-$&.%/"0!12""

;<=>?@??"
""

1"" A,BC,**D2")$"+E"

3)45"6"("3-7'$)8%98%")4"#):0/!;10"<=>/":2?@""

FFGF@??"

""

A"" A,BC,**D2")$"+E"
3)45"6"("3-7'$)8%98%")4"#):0/!;10"<=>/":2?@""

FFGF@??"
""

:"" HI&"

3)45"B'*&8C")D"D.E8%A"AF0"G=>/"H!?1""

FGG>@??"

""

0"" 6J#'K%9,*B.+L"
G4I"J*K,L"4-,M&8%"N8.K"1;:"<=>"("6,$O%*PM/"1A2:""

<>MN@??"
""

@"" A,BC,**D2")$"+E"

3-7'$)8%98%")4"#):0/!"<=>/"A2!@""

NN>;@??"

""

F"" A,BC,**D2")$"+E"
3-7'$)8%98%")4"#):0/!"<=>/"10@2""

;M=?@??"
""

H"" A2OJ"

3M78K")QM&8+MC"R,$-"N8.K"1;1"<=>"("GQ%*K8&1222/"

!0A@""

;;;F@??"

""

?"" HI&"
7)8%*8M"@?2"S,%T."!;A<=>/"!1H2""

;GNP@??"
""

!2"" HI&"

7)8%*8M"@?2"S,%T."!;A<=>/"!1!@""

;P>N@??"

""

&

!-.,(%D&E-/;55F-,G&B-,&1A%&HIJ>@=K&*%9(A0),L M3453

!"#$%&'!()")*"%&+#(,-!./%,(-0/.1%,2 34355'

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

!"#$%&"'()!*#+,-$.)/.'01-$'-,.$2)33!

!*45,%-146)7$.81'$5

9*4"%:)/%+$.-2);0<9<

===<'"#$%&"'(>'*#+".'0<'*#

?".-0)71#,%"-*.

! @2ABC)!;D5

6 785&9:;)<&=-$%2

6 >?@&*)2%$&-=&2)0%&(-,%

)2&AB>&!C:7

! E)FG3H;7)+$.)!;D

6 8D&EFGH?!&2<21%0&/%)I

6 'JK9&EFGH?!&2.21)#=%$

! I$#*.J

6 D7&LM&/%,&=-$%

6 D5&EM&1-1)"&

! K*:$)L4-$.'*44$'-

6 785&N&785&(,-22*),

6 3J&LM42&#=1%,:=-$%&*)=$;#$1O&

! BC (M/ +*=$.)+$.)4*:$)

BCCB)N$5-)L48$4-1*45

What we’ve learned

• SIMD instructions

• Fixed width (usually 4), fit into standard scalar
instruction set

• Examples: MMX, SSE, AltiVec

• Vector instructions

• Operate on arbitrary length vectors

• HW techniques: vector registers, lanes, chaining, masks

What’s Next

• Massively parallel machines

• Big idea: Write one program, run it on lots of
processors

• First we’re going to look at hardware

• Thinking Machines CM-2

• Then we’re going to look at algorithms

Name That Film!

Thinking Machines
• Goals: AI, symbolic processing, eventually

scientific computing

• “In 1990, seven years after its founding,
Thinking Machines was the market leader in
parallel supercomputers, with sales of about
$65 million. Not only was the company
profitable; it also, in the words of one IBM
computer scientist, had cornered the market ‘on
sex appeal in high-performance
computing’.” (Inc Magazine, 15 September 1995)

• Richard Feynman, when told by Danny Hillis that
he was planning to build a computer with a
million processors: “That is positively the
dopiest idea I ever heard.”

• Founded 1982, profitable 1989, bankrupt in 1994

1-Slide Programming Model

• Specify a discrete domain for a program (“grid”)

• Example: Image processing, 512x128 image

• Assign a processor to each element in the grid

• Example: 1 processor per element, so 64k processors

• Write a program for one processor

• All processors run that program

Questions To Think About
• Should the program look like a serial program that

runs on one processor, or should it look like a parallel
program?

• How do different elements of the program talk to each
other?

• How do they synchronize, if necessary?

• What happens when some of the processors want to
branch one way and some want to branch another
way?

• What happens when processor store ops conflict?

CM-2 Overview

• “The Connection Machine processors are used
whenever an operation can be performed
simultaneously on many data objects. Data objects
remain in the Connection Machine memory during
execution of the program and are operated upon in
parallel. This model differs from the serial model,
where data objects in a computer's memory are
processed one at a time, by reading each one in turn,
operating on it, and then storing the result back in
memory before processing the next object.”

CM-2 Overview

• 16k–64k processors

• Up to 128 kB of memory per processor

• Processors communicate with each other and with
peripherals, all in parallel

• Front-end computer handles serial computation,
interface with CM-2 back-end

Virtual Processors
• Natural way to program in parallel is to assign one processor per

parallel element

• Example: Image processing 512x128 rectangle, 64k elements

• Think in these terms when you program!

• If you have 64k processors, great.

• If you don’t, create 64k virtual processors and assign them to the
physical processors

• In a 16k processor CM-2, that’s 4 virtual processors per physical
processor

• Data is striped across physical processors

• Benefit: Allows same program to run on different-sized machines

Communication Patterns

• Global operations

• scalar = sum(array)

• Matrix (row-column structure)

• Finite-differences (neighbor communication)

• Spatial to frequency domain (butterfly)

• Irregular communication

CM-2 and Communication
• Applications are generally structured:

• First step: gather data from other elements

• Second step: do local computation (no communication
necessary)

• CM-2 has:

• Ability to communicate with nearest neighbors using
special-purpose hardware (NEWS)

• General-purpose network to communicate with any
other processors

Communication Primitives
• send-with-overwrite

• send-with-logand

• send-with-logior

• send-with-logxor

• send-with-s-add

• send-with-s-multiply

• send-with-u-add

• send-with-u-multiply

• send-with-f-add

• send-with-f-multiply

• send-with-c-add

• send-with-c-multiply

• send-with-s-max

• send-with-s-min

• send-with-u-max

• send-with-u-min

• send-with-f-max

• send-with-f-min

Computation + Communication Primitives

• Scan

• Sum (or other op) of all preceding elements in a row

• Reduce

• Sum (or other op) of all elements in a row

• Global

• Sum (or other op) of ALL elements

• Spread

• Sum (or other op) of particular element is distributed to all in row

• Multispread

• Spread across multiple dimensions

CM-2 Hardware Overview82C c a M M

Figure 9. The CM-2 parallel processing unit

Parallel processing instructions issued by the front-end computer are received by the sequencer,

which interprets them to produce a series of single-cycle "nanoinstructions." The nanoinstructions

are broadcast over the instruction bus to thousands of data processors. Each data processor has its

own memory.

All processors can access their respective memories simultaneously. Alternatively, the sequencer can

access this memory serially, one 32-bit word at a time, over the scalar memory bus. The data proces-

sors can emit one datum apiece, and their combined value is delivered to the sequencer on the global

result bus. The data processors can exchange information among themselves in parallel through rout-

ing, NEWS, and scanning mechanisms; these are in turn connected to the I/O interfaces.

from/to Front End Computer

- -

Connection Machine Model CM-2 Technical Summarry82

CM-2 Data Processing Node
84 Connection Machine Model CM-2 Technical Summary.....

global bus

t to 11 other chips to 11 other chips

IIIII1Illt
I I

I +
I I

I I

I . I
22 22*

address

18

32
-tl

Figure 10. Two CM-2 processor chips with memory and floating-point chips

CM-2 processor chips are arranged in pairs. Each pair shares a group of memory chips, a floating-

point interface chip, and a floating-point execution chip. The memory chips provide a 44-bit-wide

data path; 22 bits (16 data and 6 ECC) go to each processor chip. The floating-point interface chip

handles these same 44 bits and also provides memory address control for indirect addressing. The

floating-point execution chip receives operands from the floating-point interface chip, 32 bits at a

time, and in the same manner gives the interface chip results to be stored back into memory.

insuucion bus

11 .l I

NEWS, I IE 1E
Router

Hypercube EID l
Interface

hK l BE e

1 I

NEWS,
Router

Hyperbe Il 13 |
Interface

eii

Memory
Floating-Point

and Memory

Interface

Floating-Point
Execution

(Single or Double

Precision)

IsdIsu~=~ludlsbd l=m

m
r .- '

Iml[maOmItqIM Iml[mlftm

r;
n
Y il

bradhidbd,t b.U II i m

I

I

Connection Machine Model CM-2 Technical Sumnmary84

II

B-

II I

CM-2 ALU
• 3-input, 2-output logic element

• ALU cycle:

• Read 2 data bits from memory

• Read 1 data bit from flag

• Compute two results:

• 1 written to data memory

• 1 written to flag

• Conditional on “context” flag

• Can compute any 2 boolean functions (1 byte each)

CM-2 k-bit add
• Clear flag “c” (carry bit)

• Iterate k times:

• Read one bit of each operand (2 bits)

• Read carry bit

• Compute sum, store to memory

• Compute carry-out, store to flag

• Last cycle stores carry-out separately (to check for
overflow)

CM-2 Router
• Any processor can send a message to any other

processor through the router

• (or) The router allows any processor to access any
memory location in the machine, in parallel between
processors

• Each CM-2 processor chip (16 processors) contains
one router node

• Network is a 12-cube

• Router node i is connected to router node j if |i-j| = 2^k

CM-2 Specialized Transfer

• Virtual processors on the same physical processor
don’t have to use the network at all

• 16 physical processors per chip–communication
doesn’t have to leave the chip

• Regular communication patterns (like nearest
neighbor) avoid router overhead / calculation of
destination address

• Use “NEWS” network

On to the CM-5 …

• CM-2 was designed for AI apps

• Not many AI labs could afford a $5M machine

• Instead it was used for (and DARPA was interested in)
scientific computing

• Successor, the CM-5, had MIMD organization and
commodity microprocessors (Sun SPARC) with
special-purpose floating-point and I/O hardware

• Also cool blinky lights

