
Lecture 13 (part 2)
Data Level Parallelism (1)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

DLP Outline
• Today:

• SIMD instructions

• Upcoming:

• Vector machines

• Vector efficiency

• Massively parallel machines

• GPUs

• Stream processors

• Algorithms and programming models

What We Know
 Processor

Control

Datapath

 Processor

Control

Datapath

 Processor

Control

Datapath

Network

Cook analogy

• We want to prepare food for several banquets, each of
which requires many dinners.

• We have two positions we can fill:

• The boss (control), who gets all the ingredients and tells
the chef what to do

• The chef (datapath), who does all the cooking

Cook analogy

• ILP is analogous to:

• One ultra-talented boss with many hands

• One ultra-talented chef with many hands

• TLP is analogous to:

• Building multiple kitchens, each with a boss and a chef

• Putting more bosses and chefs in the same kitchen

Cook analogy

• DLP is analogous to:

• One boss

• Lots of cloned chefs

Flynn’s Classification Scheme

• SISD – single instruction, single data stream

• Uniprocessors

• SIMD – single instruction, multiple data streams

• single control unit broadcasting operations to multiple datapaths

• MISD – multiple instruction, single data

• no such machine (although some people put vector machines in this
category)

• MIMD – multiple instructions, multiple data streams

• aka multiprocessors (SMPs, MPPs, clusters, NOWs)

Performance beyond single thread ILP

• There can be much higher natural parallelism in some applications
(e.g., database or scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• Thread may be a subpart of a parallel program (“thread”), or it may be
an independent program (“process”)

• Each thread has all the state (instructions, data, PC, register state, and
so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical operations on data, and
(possibly) lots of data

Continuum of Granularity
• “Coarse”

• Each processor is more
powerful

• Usually fewer
processors

• Communication is more
expensive between
processors

• Processors are more
loosely coupled

• Tend toward MIMD

• “Fine”

• Each processor is less
powerful

• Usually more
processors

• Communication is
cheaper between
processors

• Processors are more
tightly coupled

• Tend toward SIMD

ILP vs. TLP

• “SIMD is about exploiting parallelism in the data
stream, while superscalar SISD is about exploiting
parallelism in the instruction stream.”

http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

What We Know

What’s New

• “The basic unit of SIMD love is the vector, which is
why SIMD computing is also known as vector
processing. A vector is nothing more than a row of
individual numbers, or scalars.”

Scalar vs. Vector

SIMD architectures by Jon "Hannibal" Stokes
http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

Representing Vectors

• Multiple items within same data word

• Multiple data words

Motorola AltiVec

Motorola AltiVec

• Intra element arithmetic and non-
arithmetic functions.

• integer instructions

• integer arithmetic instructions

• integer compare instructions

• integer rotate and shift
instructions

• floating-point instructions

• floating-point arithmetic
instructions

• floating-point rounding and
conversion instructions

• floating-point compare
instruction

• floating-point estimate
instructions

• memory access instructions

Motorola AltiVec

• Inter Element Arithmetic: Between
elements in vector

• Example: Sum elements across
vector, store in accumulator

• alignment support instructions

• permutation and formatting
instructions

• pack instructions

• unpack instructions

• merge instructions

• splat instructions

• permute instructions

• shift left/right instructions

Motorola AltiVec

• Inter Element Non-Arithmetic (vector permute)

AltiVec Architecture
• 32 128b-wide new architectural registers

• 16 8b elements, 8 16b elements, 4 32b (FP/int)
elements

• 2 fully-pipelined, parallel AltiVec units:

• Vector Permute Unit (pack, unpack, permute, load/
store)

• Vector ALU (all math)

• Latency: 1 cycle for simple instrs, 3–4 for complex

• No interrupts except load and store

MMX Instructions

• 57 new instructions

• 2 operands per instruction (like x86)

• No single-cycle permutes

Intel MMX Datatypes

8-11

PROGRAMMING WITH THE INTEL MMX™ TECHNOLOGY

8.1.2. MMX™ Data Types

The MMX™ technology defines the following new 64-bit data types (refer to Figure 8-2):

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.

Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.

Quadword One 64-bit quantity.

The bytes in the packed bytes data type are numbered 0 through 7, with byte 0 being contained
in the least significant bits of the data type (bits 0 through 7) and byte 7 being contained in the
most significant bits (bits 56 through 63). The words in the packed words data type are
numbered 0 through 4, with word 0 being contained in the bits 0 through 15 of the data type and
word 4 being contained in bits 48 through 63. The doublewords in a packed doublewords data
type are numbered 0 and 1, with doubleword 0 being contained in bits 0 through 31 and double-
word 1 being contained in bits 32 through 63.

The MMX™ instructions move the packed data types (packed bytes, packed words, or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the IA general-
purpose registers in 64-bit blocks. However, when performing arithmetic or logical operations
on the packed data types, the MMX™ instructions operate in parallel on the individual bytes,

Figure 8-2. MMX™ Data Types

3006002

63

Packed bytes (8x8 bits)

56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

63

Packed word (4x16 bits)

48 47 32 31 16 15 0

63

Packed doublewords (2x32 bits)

32 31 0

63

Quadword (64 bits)

0

Intel MMX

8-10

PROGRAMMING WITH THE INTEL MMX™ TECHNOLOGY

Table 8-2. MMX™ Instruction Set Summary

Category Wraparound Signed
Saturation

Unsigned
Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW,
PADDD

PSUBB, PSUBW,
PSUBD

PMULL, PMULH

PMADD

PADDSB,
PADDSW

PSUBSB,
PSUBSW

PADDUSB,
PADDUSW

PSUBUSB,
PSUBUSW

Comparison Compare for Equal

Compare for
Greater Than

PCMPEQB,
PCMPEQW,
PCMPEQD

PCMPGTPB,
PCMPGTPW,
PCMPGTPD

Conversion Pack

Unpack High

Unpack Low

PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ

PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ

PACKSSWB,
PACKSSDW

PACKUSWB

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR

Shift Shift Left Logical

Shift Right Logical

Shift Right
Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data Transfer Register to Register

Load from Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty
MMX™ State

EMMS

MMX Details

• 8 MMX registers (64b each)

• Aliased with FP registers

• “EMMS” (exit MMX) switches between them

• Why is this a good idea?

• Why is this a bad idea?

• Supports saturating arithmetic

• Programmed with intrinsics

MMX Example
; DWORD LerpARGB(DWORD a, DWORD b, DWORD f);
global _LerpARGB

_LerpARGB:

 ; load the pixels and expand to 4 words
 movd mm1, [esp+4] ; mm1 = 0 0 0 0 aA aR aG aB
 movd mm2, [esp+8] ; mm2 = 0 0 0 0 bA bR bG bB
 pxor mm5, mm5 ; mm5 = 0 0 0 0 0 0 0 0
 punpcklbw mm1, mm5 ; mm1 = 0 aA 0 aR 0 aG 0 aB
 punpcklbw mm2, mm5 ; mm2 = 0 bA 0 bR 0 bG 0 bB

 ; load the factor and increase range to [0-256]
 movd mm3, [esp+12] ; mm3 = 0 0 0 0 faA faR faG faB
 punpcklbw mm3, mm5 ; mm3 = 0 faA 0 faR 0 faG 0 faB
 movq mm6, mm3 ; mm6 = faA faR faG faB [0 - 255]
 psrlw mm6, 7 ; mm6 = faA faR faG faB [0 - 1]
 paddw mm3, mm6 ; mm3 = faA faR faG faB [0 - 256]

 ; fb = 256 - fa
 pcmpeqw mm4, mm4 ; mm4 = 0xFFFF 0xFFFF 0xFFFF 0xFFFF
 psrlw mm4, 15 ; mm4 = 1 1 1 1
 psllw mm4, 8 ; mm4 = 256 256 256 256
 psubw mm4, mm3 ; mm4 = fbA fbR fbG fbB

 ; res = (a*fa + b*fb)/256
 pmullw mm1, mm3 ; mm1 = aA aR aG aB
 pmullw mm2, mm4 ; mm2 = bA bR bG bB
 paddw mm1, mm2 ; mm1 = rA rR rG rB
 psrlw mm1, 8 ; mm1 = 0 rA 0 rR 0 rG 0 rB

 ; pack into eax
 packuswb mm1, mm1 ; mm1 = 0 0 0 0 rA rR rG rB
 movd eax, mm1 ; eax = rA rR rG rB

 ret

To give you a better understanding
of what can be done with MMX I've
written a small function that blends
two 32-bit ARGB pixels using 4 8-
bit factors, one for each channel. To
do this in C++ you would have to do
the blending channel by channel.
But with MMX we can blend all
channels at once.

The blending factor is a one byte
value between 0 and 255, as is the
channel components. Each channel
is blended using the following
formula.

res = (a*fa + b*(255-fa))/255

http://www.programmersheaven.com/2/mmx

http://www.programmersheaven.com/2/mmx
http://www.programmersheaven.com/2/mmx

OpenEXR

• 16-bit FP format (1 sign, 10 mantissa, 5 exponent)

• Natively supported (paired “half”) in NVIDIA GPUs

OpenEXR http://openexr.com/about.html

1 of 2 5/17/07 12:20 AM

Home

About OpenEXR

Show Me -
History -

Features -

OpenEXR samples

Using exrdisplay

Documentation

Downloads

Related links

Mailing lists

About OpenEXR

Show Me ...

The following pictures show the same OpenEXR image; yet the amount

of detail you can see when comparing the three is substantially

different. R2-D2 stands out clearly, but hidden in the top right corner

shadows is Darth Vader. Using the Viewer, you can adjust the amount

of exposure on the fly to see more details emerge, as the following

images show.

Original OpenEXR

Image

... with original

Exposure setting of

zero (0):

Adjust 3 Stops

Brighter

... details emerge

from the shadows.

Adjust 5 Stops

Brighter

... and even more

details emerge from the

shadows.

(click for larger image) (click for larger

image)

(click for larger image)

History

ILM developed the OpenEXR format in response to the demand for

higher color fidelity in the visual effects industry. When the project

began in 2000, ILM evaluated existing file formats, but rejected them

for various reasons:

8- and 10-bit formats lack the dynamic range necessary to store

high-contrast images captured from HDR devices.

16-bit integer-based formats typically represent color component

values from 0 ("black") to 1 ("white"), but don't account for

over-range values (e.g., a chrome highlight) that can be captured

by film negative or other HDR devices. For images intended only

for display or print reproduction, clamping at "white" may be

sufficient; but for image processing in a visual effects house,

highlights often need to be preserved in the image data.

http://www.openexr.com/

http://www.programmersheaven.com/2/mmx
http://www.programmersheaven.com/2/mmx

SSE (Streaming SIMD Extensions)

• Intel 4-wide floating point

• Pentium III: 2 fully-pipelined, SIMD, single-precision
FP units

• 8 128-bit registers added to ISA

• In HW, (historically) broke 4-wide instructions into 2 2-
wide instructions

• Interrupts are a problem

• MMX + SSE: added 10% to PIII die

Multimedia Extensions
• Very short vectors added to existing ISAs for micros

• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b

• Newer designs have 128-bit registers (Altivec, SSE2)

• Limited instruction set:

• no vector length control

• no strided load/store or scatter/gather

• unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:

• requires superscalar dispatch to keep multiply/add/load units busy

• loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors

