Lecture 13 (part 2)
Data Level Parallelism (1)

EEC 171 Parallel Architectures
John Owens
UC Davis

Credits

e © John Owens / UC Davis 2007-9.

e Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©

Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003-7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

DLP OQOutline

e Today:

e SIMD instructions
e Upcoming:

e Vector machines

e Vector efficiency

Massively parallel machines

GPUs
Stream processors

Algorithms and programming models

What We Know

Processor

Control

Datapath

Processor

Control

Datapath

{ Network }

Processor

Control

Datapath

Cook analogy

e We want to prepare food for several banquets, each of
which requires many dinners.

e We have two positions we can fill:

e The boss (control), who gets all the ingredients and tells
the chef what to do

e The chef (datapath), who does all the cooking

Cook analogy

e |LPis analogous to:

e One ultra-talented boss with many hands

e One ultra-talented chef with many hands
e TLPis analogous to:
e Building multiple kitchens, each with a boss and a chef

e Putting more bosses and chefs in the same kitchen

Cook analogy

e DLPis analogous to:
e One boss

e Lots of cloned chefs

Flynn’s Classification Scheme

SISD - single instruction, single data stream

e Uniprocessors

SIMD - single instruction, multiple data streams

e single control unit broadcasting operations to multiple datapaths
MISD — multiple instruction, single data

e no such machine (although some people put vector machines in this
category)

MIMD — multiple instructions, multiple data streams

e aka multiprocessors (SMPs, MPPs, clusters, NOWSs)

Performance beyond single thread ILP

There can be much higher natural parallelism in some applications
(e.g., database or scientific codes)

Explicit Thread Level Parallelism or Data Level Parallelism

Thread: process with own instructions and data

e Thread may be a subpart of a parallel program (“thread”), or it may be
an independent program (“process”)

e Each thread has all the state (instructions, data, PC, register state, and
so on) necessary to allow it to execute

Data Level Parallelism: Perform identical operations on data, and
(possibly) lots of data

Continuum of Granularity

“Coarse”

Each processor is more
powerful

Usually fewer
processors

Communication is more
expensive between
processors

Processors are more
loosely coupled

Tend toward MIMD

“Fine”

Each processor is less
powerful

Usually more
processors

Communication is
cheaper between
processors

Processors are more
tightly coupled

Tend toward SIMD

ILP vs. TLP

e “SIMD is about exploiting parallelism in the data
stream, while superscalar SISD is about exploiting
parallelism in the instruction stream.”

http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

What We Know

VLIW Instruction Scheduling

What’s New

B Instructions
[] Data
W Results

Scalar vs. Vector

RN

—" Scalars

61

Vectors

Z

e “The basic unit of SIMD love is the vector, which is
why SIMD computing is also known as vector
processing. Avectoris nothing more than a row of
individual numbers, or scalars.”

SIMD architectures by Jon "Hannibal" Stokes
http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

Representing Vectors

e Multiple items within same data word

e Multiple data words

Motorola AltiVec

High-level structural overview for
PowerPC with AltiVec technology

Branch
Unit
INST INST INST

Integer Floating-Paint
Unit Unit
GPAs FPRs

Motorola AltiVec

4 x 32-bit elements

Vi |

Wi ssoTOROLA

Errarvratcryns Prockars Tarres

e [ntra element arithmetic and non- floating-point arithmetic
arithmetic functions. instructions

e integerinstructions floating-point rounding and

conversion instructions
integer arithmetic instructions

floating-point compare
integer compare instructions instruction

integer rotate and shift floating-point estimate
instructions instructions

floating-point instructions memory access instructions

Motorola AltiVec

T M kN

N,
0000000000000TBAG00000BA00000 ™,

| Q0000000000000 0000000000000 | vT

e Inter Element Arithmetic: Between packinstructions

elements in vector , ,
unpack instructions

e Example: Sum elements across

. merge instructions
vector, store in accumulator

: : : splat instructions
alignment support instructions P

: : ermute instructions
permutation and formatting P

instructions shift left/right instructions

Motorola AltiVec

Vector Permute

Contrd
T8 DE FAE1 01211 10A 141414 14JRV] s

UA 012345678 8A B'I'.: DEF 1D111113M151'E1?1B1 181B1 CACHEAF

e Inter Element Non-Arithmetic (vector permute)

AltiVec Architecture

e 32 128b-wide new architectural registers

e 16 8b elements, 8 16b elements, 4 32b (FP/int)
elements

e 2 fully-pipelined, parallel AltiVec units:

e Vector Permute Unit (pack, unpack, permute, load/
store)

e Vector ALU (all math)

e Latency: 1 cycle for simple instrs, 3—4 for complex

e No interrupts except load and store

MMX Instructions

2 x 32-bit elements

Wik |
VB |

\ + A\
!

e 57 new instructions

e 2 operands perinstruction (like x86)

e No single-cycle permutes

Intel MMX Datatypes

Packed bytes (8x8 bits)
63 56 55 48 47 40 39 32 31

Packed word (4x16 bits)
63 48 47

Packed doublewords (2x32 bits)
63

Quadword (64 bits)
63

3006002

Figure 8-2. MMX™ Data Types

Intel MMX

Table 8-2. MMX™ Instruction Set Summary

Category

Wraparound

Unsigned
Saturation

Signed
Saturation

Arithmetic

Addition
Subtraction

Multiplication
Multiply and Add

PADDB, PADDW,
PADDD

PSUBB, PSUBW,
PSUBD

PMULL, PMULH
PMADD

PADDSB,
PADDSW
PSUBSB,
PSUBSW

PADDUSB,
PADDUSW
PSUBUSB,
PSUBUSW

Comparison

Compare for Equal

Compare for
Greater Than

PCMPEQB,
PCMPEQW,
PCMPEQD
PCMPGTPB,

PCMPGTPW,
PCMPGTPD

Conversion

Pack

Unpack High

Unpack Low

PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ
PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ

PACKSSWB, PACKUSWB

PACKSSDW

Logical

And

And Not

Or

Exclusive OR

Packed

Full Quadword

PAND
PANDN
POR
PXOR

Shift Left Logical
Shift Right Logical

Shift Right
Arithmetic

PSLLW, PSLLD
PSRLW, PSRLD
PSRAW, PSRAD

PSLLQ
PSRLQ

Data Transfer

Register to Register
Load from Memory
Store to Memory

Doubleword Transfers

Quadword Transfers

MOVD
MOVD
MOVD

MovaQ
MovQ
MovQ

Empty
MMX™ State

EMMS

MMX Details

e 8 MMX registers (64b each)

e Aliased with FP registers
o “EMMS” (exit MMX) switches between them

e Why is this a good idea?

e Why is this a bad idea?
e Supports saturating arithmetic

e Programmed with intrinsics

MMX Example

; DWORD LerpARGB(DWORD a, DWORD b, DWORD f);
global LerpARGB

To give you a better understanding ~HerRARGE:

of what can be done with MMX I've ; load the pixels and expand to 4

movd mml, [esp+4] ; mml

written a small function that blends movd mm2, [esp+8] ; mm2

pxor mm5, mmb5 ; mm5

two 32'b|t ARGB piXElS using 4 8- punpcklbw mml, mm5 ; mml
bit factors, one for each channel. To punpeklbw - mmz, mm> e

P ; load the factor and increase range to [0-256]
dO thIS In C++ y0U WOUld have to dO movd mm3, [esptl2] ; mm3 0 00 0 faA faR faG faB

the blending channel by channel. punpcklbw mm3, mm5 ; mm3 = 0 faA 0 faR 0 faG 0 faB
. movqg mmé6, mm3 ; mmé faA faR faG faB [0 - 255]
But with MMX we can blend all psrlw mmé6, 7 ; mmé faA faR faG faB [0 - 1]

channels at once paddw mm3, mmé ; mm3 = faA faR faG faB [0 - 256]

aA aR aG aB

bA bR bG bB
00O00O

aR 0 aG 0 aB

A 0 bR 0 bG 0 bB

; fb = 256 - fa
. . pcmpeqw mm4, mmé
The blending factor is a one byte psrlw mm4, 15

. psllw mm4, 8
value between o and 255, as is the psubw mm4, mm3

channel components. Each channel . res — (a*fa + brfb)/256
is blended using the following prullw mml, mm3

pmullw mm2, mmé4
formula. paddw mml, mm2

psrlw mml, 8

OXFFFF OxXFFFF OXFFFF OXFFFF
1 1 1 1

256 256 256 256

fbA fbR fbG fbB

aA aR aG aB
bA bR bG bB
rA rR rG rB
0 rA O rR 0 rG 0 rB

— (a* * ; k into eax
— + . ; bac
res (a fa+b (255 fa))/255 packuswb mml, mml ; 0000O0TIrA rR rG rB

movd eax, mml ; rA rR rG rB

http://www.programmersheaven.com/2/mmx ret

http://www.programmersheaven.com/2/mmx
http://www.programmersheaven.com/2/mmx

OpenEXR

Original OpenEXR Adjust 3 Stops Adjust 5 Stops
Image Brighter Brighter

... with original ... details emerge ... and even more

Exposure setting of from the shadows. details emerge from the
zero (0): shadows.

http://www.openexr.com/

e 16-bit FP format (1 sign, 10 mantissa, 5 exponent)

e Natively supported (paired “half”) in NVIDIA GPUs

http://www.programmersheaven.com/2/mmx
http://www.programmersheaven.com/2/mmx

SSE (Streaming SIMD Extensions)

Intel 4-wide floating point

Pentium Ill: 2 fully-pipelined, SIMD, single-precision
FP units

8 128-bit registers added to ISA

In HW, (historically) broke 4-wide instructions into 2 2-
wide instructions

e [nterrupts are a problem

e MMX + SSE: added 10% to PIlll die

Multimedia Extensions

Very short vectors added to existing ISAs for micros

Usually 64-bit registers split into 2x32b or 4x16b or 8x8b

Newer designs have 128-bit registers (Altivec, SSE2)

Limited instruction set:

e no vector length control

e no strided load/store or scatter/gather

e unit-stride loads must be aligned to 64/128-bit boundary

Limited vector register length:

e requires superscalar dispatch to keep multiply/add/load units busy

e |oop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors

