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ABSTRACT

A programmable clock generator that uses noise shaping can generate a wide range of
sampling frequencies with fine resolution for switched-capacitor filters (SCFs). In this paper,
different noise-shaping transfer functions for such a clock generator are compared through
simulation and measurement of two SCFs driven by the clock generator. A tone detector that

uses a bandpass SCF driven by the programmable sampling-clock generator is also described.
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1. INTRODUCTION
A switched-capacitor filter (SCF) provides an accurate and stable frequency response that
is determined by well-defined capacitor ratios and a crystal-derived sampling clock. The

frequency response of a SCF scales with its sampling frequency; therefore, the filter response

can be programmed by changing the sampling frequency fs. If the sampling clock fs is realized
by integer division of a high-frequency system clock f¢, only widely spaced sampling
frequencies can be generated. A programmable sampling-clock generator with noise shaping can

generate a wide range of sampling frequencies with fine resolution, as described in [1]. The

generated clock fs has nonuniformly spaced sampling edges that align with the edges of a fast

system clock f¢; such alignment helps to reduce coupling of switching noise from digital circuits

into the SCF. In [1], the jitter in the sampling edges was concentrated at high frequencies by a
sixth-order noise-shaping loop. When such a sampling-clock generator was used to clock a
bandpass SCF, the center frequency of the bandpass filter (BPF) was programmable with a
resolution of 0.08%. One drawback of this approach is that the input to the filter must be
bandlimited to well below fg to keep the effect of the clock jitter small, but this can often be
achieved by using an imprecise continuous-time lowpass filter before the SCF with a
programmable sampling frequency.

Measured results for two SCFs revealed that the signal-to-noise ratio (SNR) was limited
by circuit noise sources (from the op amps and switched capacitors) rather than by sampling
noise caused by the jitter in the sampling clock [1]. Based on these results, lower order noise-
shaping clock generators that give lower signal-to-sampling-noise ratio (SSNR) and require less
IC area are worth investigating. This paper considers such clock generators and presents

simulated and measured performance for different clock generators driving two SCFs.
2. CLOCK GENERATOR

To generate a sampling clock with predominantly high-frequency jitter, the clock

generator in Fig. 1 is used. The clock generator is composed of two major blocks: a quantizing,



noise-shaping loop and a number-controlled oscillator (NCO). The input is a constant D that
equals the fast-clock frequency divided by the desired sampling frequency (D = f/fs). The input
D is a B.F-bit number, that is, it has B integer bits and F fractional bits. The output of the noise-

shaping loop is a B-bit integer P[n], which is the instantaneous normalized sampling period at

time n. To produce the sampling clock fg the NCO divides the fast clock fc down by P[n].

Therefore, the nth sampling instant, 1, is given by
th =th-1 +P[n]Tc =nT + 1n], (hH

where T=1/f; is the desired sampling period, Tc=1/fc is the fast-clock period, and {n] accounts
for the jitter due to the nonuniform sampling.

Initially assume that d[n] = O in Fig. 1. (Nonzero dither d[n] will be considered in the
next section.) The feedback loop has a multi-level quantizer Q in the forward path and a finite-
impulse-response (FIR) feedback filter G(z) [2]. The quantizer truncates the fractional bits in its
input to produce a B-bit integer output P[n]. The quantization noise N[x], which is the difference
between the quantizer input and output, is fed back to the input through filter G(z). The transfer

function H7(z) from the quantization noise N[r] to the jitter 7{n] in the sampling clock is [1]

Mz2) G@)-1
H1(2) = Ny = 11

Tc. 2

Assuming N[n] is white, the spectrum of the jitter t{n] is set by H7(z). To assure low jitter in a

specified lowpass region, H7(z) typically has transmission zeros near or at dc [2].

3. COMPARING DIFFERENT G(z)

In [1}, a sixth-order G(z) gave a simulated SSNR at the filter output that exceeds 70 dB
for low input frequencies (f;, < 0.1fs) for a second-order BPF and a fifth-order LPF. (The noise
in the simulated SSNR includes only the noise in the samples due to jitter; it does not include
circuit noise.) However, measured results under the same conditions revealed that the output

SNR was typically limited to about 60 dB [1]. Therefore, the SNR was apparently limited by



circuit noise sources (from the op amps and switched capacitors) rather than by sarﬁpling noise.
Based on these results, lower order G(z) that give lower SSNR and are simpler to implement are
worth considering. The objectives when selecting a G(z) are:

1- A high simulated SSNR at the SCF output for input signals in a specified bandwidth, so that
the actual output SNR is limited by circuit noise rather than sampling noise.

2- Low noise gain, which is the sum of the absolute value of the coefficients of G(z) [3], to
keep the peak-to-peak jitter in fg small. The peak-to-peak jitter determines the minimum
half-clock period during which the op amp(s) in a SCF must settle [1].

3- Highpass (or perhaps white) jitter.

Five different G(z) that were investigated are listed in Table 1. Gq(z) is the sixth-order
transfer function that was used in [1]. The other four G(z) are lower order and are simpler to
implement since almost all of the coefficients of these G(z) are powers of two. Each G(z) gives
at least one zero at z = 1 in G(2)-1 to cancel the pole at z=1 in H(z) in (2). For G1(z) = 1,
HT(z) is a constant which means the jitter is white if N[n] is white. However, because D is a
constant, G1(z)-G4(z) generate periodic P[n], causing tones to appear in the spectrum of t[n] [4].
As a result, the sampling noise consists of tones rather than shaped noise [5,6]. To eliminate
these tones, a dither signal d is added to the input of the quantizer Q as shown in Fig. 1 [6]. This
dither is a 0.4-bit pseudo-random number that is uniformly distributed from 0 to 1. The total
noise N[»] in Fig. 1 is N[n] = d[n] + g[n], where d[n] is the dither and g[r] is quantization noise.

The noise gain for each G is listed in Table 1. The peak-to-peak jitter is determined by
the noise gain [1]. For Gy with no dither signal added, the peak-to-peak jitter is 4T (4 is the
noise gain of 3.5 rounded up to the next integer). Each of G1-G4 produces a peak-to-peak jitter
equal to twice the noise gain times T¢ because the added dither here doubles the peak-to-peak
value of N[n]. Therefore, only G| gives a peak-to-peak jitter (= 27T¢) that is less than the peak-

to-peak jitter with Gy.

4. SIMULATED AND MEASURED RESULTS



The clock generator of Fig. 1 was built with B = 6 and F = 6, using a Xilinx XC4005 so
that different G(z) could be implemented easily. The bit lengths used for the signals in the clock
generator are shown in parentheses in Fig. 1. As a measure of complexity, the percentage of
configurable logic blocks (CLBs) used in the Xilinx chip to implement the different clock
generators is given in Table 1. G1-G4 were built with a dither generator, and the complexity of
the dither generator is included in the CLB counts. The clock generator using Gg was also
implemented (without dither) for comparison. Measurements confirmed that clock generators
using these five different G(z) produced a wide range of sampling frequencies with the same
resolution. Therefore, they provided similar control over the frequency response of a SCF.

The five clock generators were used to clock two SCFs: a second-order BPF with Q = 10

and fop = 0.01fs and a fifth-order LPF with f 34 = 0.04f5. These transfer functions are plotted in
[1]. For the following simulations and measurements, the test conditions were: fc =2 MHz, D =
20.25 (which gives fs = 98.77 kHz), fi» = 1 kHz and Vj,= 1.5 Vp-p. (The SSNR is independent
of the input amplitude, so the choice of amplitude is not important [1].)

Fig. 2a and 2b show the simulated spectra of the samples of the input sine wave using G
and G4 in the noise-shaping loop, respectively. These samples are the input samples x[n] in the
model in Fig. 1b in [1]. The results for these two G are plotted because they are two extreme
cases: a first-order and fourth-order G(z). Note that the noise floors are shaped differently and
in agreement with the corresponding H7's in Table 1. In these simulations, the only noise is
sampling noise.

4.1 Lowpass SCF

The simulated spectra of the LPF output, IY(w)l, are shown in Fig. 3 for G; and G4. Both
spectra show the effect of the LPF's high-frequency attenuation on the noise floor. The passband
noise floor for G is much higher than for G4, and the simulated SSNR for G4 is 87.8 dB, which
is much higher than the SSNR of 68.4 dB for G.

Fig. 4 shows the measured spectra of the LPF output for G1 and G4. These spectra were

found by sampling the SCF output with a 14-bit ADC that is clocked by fs and then taking a FFT



of the samples. In both cases, the noise floor is higher at high and low frequencies than
simulated, which means that circuit noise is much larger than sampling noise. Comparing Figs.
4a and 4b, the noise floor for G4 in the SCF stopband is somewhat higher than for G, whereas
the passband noise floors are about the same. As a result, the measured SNR, which includes the
effect of sampling and circuit noise but excludes distortion, is larger for G1 than for G, as listed
in Table 2. In contrast, the simulated SSNR for G1 is smaller than the SSNR for G4. This
discrepancy between the relative SSNRs and SNRs in Table 2 is most likely caused by circuit-
noise sources, which are not included in the SSNR simulations. For comparison, the measured
SNR with a uniform sampling clock with fg = 100 kHz and D = 20 is 66.3dB for the LPF. This
value is larger than the measured SNRs in Table 2. Therefore, it appears that the effect of circuit
noise on the SNR is greater with a nonuniform sampling clock. Comparing the measured SNRs
at the LPF output for G1-G4 in Table 2, G gives the highest measured SNR.

4.2 Bandpass SCF

The simulated spectra of the BPF output, |Y(w)l, are shown in Fig. 5 for G1 and G4. The
noise floor for G is much higher than for G4 at low and high frequencies due to the extra zeros
in G4(z)-1. The simulated SSNR at the BPF output for G4 is 98.7 dB, which is much higher
than the SSNR of 82.9 dB for G;.

Fig. 6 shows the measured spectra of the BPF output for G1 and G4. Comparing Figures
6a and 6b, the noise floor for Gy is slightly higher than for G|. As a result, the measured SNR is
larger for G1 than for G4 (see Table 2). Again, this result disagrees with the results from SSNR
simulations since the simulated SSNR for G is much smaller than the SSNR for G4. The

simulated SSNRs and measured SNRs at the BPF output for all the G's are listed in Table 2.
Comparison of the measured SNRs for both SCFs reveals that G has the highest SNR and G4

has the lowest SNR among G1-G4. Therefore, considering measured SNR, peak-to-peak jitter,

and complexity, G1(z) is a good choice for these two SCFs.

5. TONE DETECTOR EXAMPLE



One possible application of this clock generator is in a dual-tone multi-frequency
(DTMF) receiver that uses a programmable BPF to detect one of many signaling tones. For
DTMF signalling, 8 different frequencies (697 Hz, 770 Hz, 852 Hz, 941 Hz, 1209 Hz, 1336 Hz,
1477 Hz, and 1633 Hz) with amplitudes between —2 dBm and -32 dBm must be detected [7]. A
block diagram of a DTMF tone detector is shown in Fig. 7. An imprecise second-order RC LPF

with f_ 34 << fs (f_3dB = 5 kHz) is used as a bandlimiting filter. After this RC LPF, the signal

passes through a high-Q programmable bandpass SCF (the same second-order BPF described in
Section 4, with Q = 10 and f, = 0.01f5). This BPF is programmed to pass a narrow band

centered at the tone frequency of interest. Its center frequency is set by changing D, the input to
the noise-shaping clock generator. Since f, = 0.01f; for this BPF, f; will be in the range from
69.7 kHz to 163.3kHz. The BPF center frequency is programmed by the noise-shaping clock
generator that uses G1. The filter output is then digitized and processed digitally to verify that a
signal with the correct frequency and sufficient amplitude is present. Different tones can be
detected by changing D to change the sampling frequency fs and the center frequency of the

BPF. With D = 6.6 bits and fi = 2 MHz, the center frequency of the BPF can be set to within

0.06% of any of the 8 DTMF tone frequencies. The values of D used to detect the DTMF tones
are given in Table 3. With simple amplitude qualification (using a peak detector) and frequency
qualification (using a counter to check for a constant and correct period) by the digital-signal
processor (DSP) (a Xilinx chip) in Fig. 7 [7], this bread-boarded system detects tones with a
frequency that is within +2.3% of the desired DTMF tone frequency with amplitudes between 10
dBV and -40 dBV.

6. CONCLUSION
A noise-shaping clock generator can use many different G(z) to generate a wide range of
sampling frequencies for SCFs. Based on simulation and measurement with five different G(z)
in two SCFs, a programmable clock generator that uses a simple first-order G(z) = z—1 and dither
can achieve acceptable performance for many filtering applications. First-order noise shaping is

sufficient because the resulting sampling noise is much smaller than the circuit noise.
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FIGURE CAPTIONS

Fig. 1. A block diagram of the clock generator, showing the noise-shaping loop in detail.

Fig. 2: Simulated spectrum of the SCF input samples x[n] using a) G1 in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.

Fig. 3: Simulated spectrum of the SC LPF output with a) G| in the noise-shaping loop and
b) G4 in the noise-shaping loop.

Fig. 4: Measured spectrum at the output of the SC LPF with a) G in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.

Fig. 5: Simulated spectrum of the SC BPF output with a) G1 in the noise-shaping loop and
b) G4 in the noise-shaping loop.

Fig. 6: Measured spectrum at the output of the SC BPF with a) G1 in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.

Fig. 7. DTMF tone detector using a SC BPF and a noise-shaping clock generator. (DSP is
a Xilinx XC4005)

Table 1: Comparison of different G(z)
Table 2: SNR at the filter outputs for different G(z) with D = 20.25.
Table 3: Values for the DTMF tone detector in Fig. 7 with fc =2 MHz.
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Fig. 1. A block diagram of the clock generator, showing the noise-shaping loop in detail.
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Fig. 2: Simulated spectrum of the SCF input samples x[n] using a) G1 in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.
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Fig. 3: Simulated spectrum of the SC LPF output with a) G in the noise-shaping loop and
b) G4 in the noise-shaping loop.



-1604 . . : .
0 10 20 30 40 50
Frequency (kHz)
(a)
0
-40.
-160 T . : .
0 10 20 30 40 50
Frequency (kHz)
(b)

Fig. 4: Measured spectrum at the output of the SC LPF with a) G in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.
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Fig. 5: Simulated spectrum of the SC BPF output with a) G1 in the noise-shaping loop and
b) G4 in the noise-shaping loop.
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Fig. 6: Measured spectrum at the output of the SC BPF with a) G1 in the noise-shaping
clock generator and b) G4 in the noise-shaping clock generator.
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Table 1: Comparison of different G(z)

LPF BPF
G(z) | Simulated | Measured | Simulated { Measured
| SSNR(dB)] SNR(dB) | SSNR(dB)| SNR(dB)
[ Go 84.2 61.9 6.6 63.0
Gy 68.4 61.7 82.9 63.8
Gy 84.2 60.4 99.9 61.7
G3 80.1 60.5 88.1 62.6
Gy 87.8 58.1 98.7 59.2

Table 2: SNR at the filter outputs for different G(z) with D=20.25.

DTMF BPF BPF
frequency fo=0.01fg fg
(Hz) (Hz) (kHz)
- _ octal decimal
697 697.17 69.717 34.54 28.6875
770 770.16 77.016 31.76 25.96875
852 852.20 85.220 27.36 23.46875
941 941.18 94.118 25.20 21.25
1209 1208.7 120.87 20.43 16.546875
1336 1336.1 133.61 16.76 14.96875
1477 1476.4 147.64 15.43 13.546875
1633 1632.7 163.27 14.20 12.25

Table 3: Values for the DTMF tone detector in Fig. 7 with fc =2 MHz.



