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Determination of Stability Using Return Ratios in
Balanced Fully Differential Feedback Circuits

Paul J. Hurst, Senior Member, I[EEE, and Stephen H. Lewis, Member, IEEE

Abstract— This paper describes SPICE [1] simulation tech-
niques that can be used to find the return ratios for the differ-
ential and common-mode feedback loops in balanced, fully dif-
ferential circuits. Since each of these loops may contain muitiple
feedback paths, conditions under which these two return ratios
are sufficient for determining stability of the balanced feedback
circuit are described. To allow the use of these techniques with
switched-capacitor common-mode feedback circuits, a special
simulation technique is presented that finds the dc bias for the
return-ratio simulations.

I. INTRODUCTION

ULLY differential structures are often used in integrated

circuits because they offer many advantages over their
single-ended counterparts. Some of the advantages are im-
proved immunity to power-supply noise, greater output voltage
swing, and cancellation of even-order distortion. These bene-
fits come at the expense of increased complexity.

Fig. 1 shows the schematic of a fully differential feedback
amplifier. It consists of an operational amplifier (op amp),
two input impedances, two feedback impedances, and two
load impedances. It has two feedback paths: one from the
positive op-amp output to the inverting op-amp input, and the
other from the negative op-amp output to the noninverting
op-amp input. Therefore, the circuit is an example of a
multiple-loop feedback network. Determination of stability
of multiple-loop feedback circuits through frequency-domain
analysis is difficult in general (2]-[4]. If the structure is
perfectly balanced, however, the analysis is simplified by using
differential-mode (DM) and common-mode (CM) concepts
[5], (6]. This is because DM signals do not give rise to CM
signals (and vice versa) in a balanced structure. Furthermore, if
the DM and CM feedback loops can be modeled as single-loop
feedback circuits (which are defined in (2}, [3]), frequency-
domain stability analysis simplifies to finding one return ratio
for each loop.

The return ratio associated with a controlled source is a
measure of loop transmission in a single-loop feedback circuit
{2], [31, {7), [8]. The return ratio is important because it can
be used to check stability of the feedback circuit. Techniques
that can be used in SPICE to simulate the return ratio of a
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Fig. 1.

An example of a fully differential feedback circuit.

single-loop feedback circuit have been reported previously
[8]1-[10]. These techniques were developed for single-ended
amplifiers and are extended here to the perfectly balanced
differential case. Because the DM and CM loops cannot
always be modeled as single-loop feedback circuits, this paper
also describes the conditions under which one return ratio
for each loop is sufficient for determining the stability of
the balanced feedback circuit. One important problem that
arises in practice is that direct frequency-domain simulation of
circuits that use switched-capacitor common-mode feedback
is difficult because such feedback is inherently discrete in
time. To overcome this problem, a special simulation technique
for these circuits that finds the dc operating point during the
return-ratio simulation is presented.

This paper is organized as follows. Basic assumptions are
stated in Section II. The return-ratio concept is reviewed in
Section ITI. In Section IV, conditions under which one return
ratio is sufficient for determining stability of a multiple-loop
circuit are described. Then the special case of switched-
capacitor CM feedback loops is covered in Section V. An
example is given in Section VI. Conclusions are presented
in Section VII. Appendices A and B contain detailed proofs
and derivations of key equations in Sections IV and V,
respectively.

II. ASSUMPTIONS AND TERMINOLOGY

Unless stated otherwise, the following assumptions hold
throughout this paper.

1) The differential circuit is perfectly symmetric [S], [11].

2) The feedback network has a unique dc operating point.

3) Every circuit under study can be reduced to a single-
loop feedback circuit or to a multiple-loop circuit with
a break point as described in Section IV.

4) The linear feedback network under analysis is composed
of controlled sources and passive elements.

1057-7130/95804.00 © 1995 [EEE
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Fig. 2. Circuits for SPICE simulation of RR using replica biasing for a
single-ended single-loop feedback circuit. (a) The dc reference circuit. (b)
Circuit for measurement of RRy . (¢) Circuit for measurement of RRy.

5) The term “stability” here refers to small-signal stability
at the given dc operating point.
The IEEE standards for voltages and currents are observed
in this paper; i.e., v; is an ac voltage, V; is a dc voltage, and
vy is a total (ac + dc) voltage.

[II. BACKGROUND

The key characteristic of a single-loop feedback circuit is
that there is a unique signal path that traverses the feedback
loop from a dependent source in an active device to its
controlling signal. The loop transmission of a single-loop
transistor feedback circuit can be evaluated by computing the
return ratio (RR) for a dependent source in an active device
(2], (3], [7]. [8]. The expression for the closed-ioop gain Ger,
in terms of RR is

Ger = +d, (h)

(73
1+RR
where a is the forward gain through the dependent source and
d is the forward transmission around the dependent source
(that is, when the chosen dependent source is set to zero) [2],
(8], [12]. Under the assumptions in Section II, the poles of
a(s), d(s), and RR(s) are in the left-half of the s plane {2],
[8]. The presence of a right-half plane pole in G can be
discovered from a Nyquist plot of RR(s) or from the gain
and/or phase margins of RR(s) {2], [3].

Techniques for finding the retum ratio by using a combi-
nation of generalized voltage and current return ratios were
presented in [9} and [10). These methods are reviewed below
and in Figs. 2-4, where the single-loop feedback circuit under
simulation is drawn as a block with two terminals, labeled
“drive” and “measure.” Inside the feedback circuit, the signal
flow is from the drive terminal to the measure terminal. When
these terminals are connected together, the feedback loop is
intact.

feedback circuit feedback circuit
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Fig. 3. Circuits for SPICE simulation of RR using inductors and capacitors
at the break point. (a) Circuit for measurement of RRy . (b) Circuit for
measurement of RR;.
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Fig. 4. Circuits for SPICE simulation of RR using ac signals that do
not open the loop. (a) Circuit for measurement of RR{,. (b) Circuit for
measurement of RR'.

1) The return ratio of a single-loop feedback circuit can be
found by breaking the circuit at an arbitrary point to find
a voltage return ratio RRy and current return ratio RR;
[91. RRv (RR;) is found by setting all independent
sources in the linearized small-signal circuit to zero,
breaking the feedback loop, driving with a test voltage
vy (test current i,), and measuring the return voltage
v, (retumn current i.) appearing across an open circuit
(flowing into a short circuit) at the other side of the break
point. Then RRy = —v, /v (RR; = —i,/1¢), and the
total return ratio is given by

aro L, L] @
“ | RRv RR; ’

A key problem with this approach is that breaking the
feedback loop to inject the ac test signals disrupts the
dc operating point. The closed-loop dc operating point
can be preserved during simulation of RRy and RR;
by using replica biasing {13}, as illustrated in Fig. 2.
Fig. 2(a) shows the dc reference circuit. It is a replica
of the circuits used to find RRy (Fig. 2(b)] and RRy
[Fig. 2(c)] before the loop is broken. at the break point
X. In Fig. 2(a), all independent ac sources are set to
zero; the dc voltage from the break point to ground
is VgrEak, and the dc current flowing through the
break point is [greax. Controlled sources that depend
on these quantities are used to reproduce the bias in
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Fig. 2(b) and (¢). To find the RR, the calculations in (2)
can be carried out by post processing the SPICE output.
The resulting R R is accurate for all frequencies.

One drawback of this approach is that breaking the
feedback loop sometimes produces a node that has no
dc path to ground because capacitors block all such paths
at the break point. To overcome this problem, dc paths
to ground can be introduced by adding negligibly large
resistances from the breaks to ground. To make sure
that the effect of the added resistances is properly incor-
porated into the dc bias point, these resistances should
be added to all three simulation circuits [Fig. 2(a)~(c)].
One convenient way to do this is to enter the feedback
network as a subcircuit that is used repeatedly for all
simulations.

Large inductors and capacitors can be used to produce
ac open and short circuits at the break point for ac
simulation of RRy and RR; (8], [14]. Fig. 3(a) and
(b) show circuits that use these elements to find RRy
and RR;, respectively. The inductors and capacitors are
connected so that the ac signals are injected and sensed
without affecting the dc feedback loop. This approach
uses (2) to find the RR for frequencies above a low-
frequency limit that is determined by the size of the
inductors, capacitors and circuit impedances.

Finaily, the closed-loop dc operating point can be pre-
served by injecting the test signals without breaking
the loop. (See method four in [10] or [15].) Fig. 4(a)
shows that an ac test voltage source can be connected
between the measure and drive terminals. From KVL,
this injected test voltage sets the difference between
the voltages v4 and v,. These voltages can be used to
find a voltage return ratio, RR}, = —v,/vq4. Similarly,
Fig. 4(b) shows that an ac test current source can be
connected from ground to a point that connects the
measure and drive terminals. As shown, the test current
divides into the currents 7, and 74, which can be used
to find a current return ratio, RR} = —i,/i4. Since the
feedback loop is not broken during these simulations,
RR}, and RR) differ from RRy and RRy, respectively.
To find RR, the following equation can be applied
through post processing of the SPICE output.

2)

3

~—

1 1 1
[+RR _ 1+RRE, "1+ RE,

3

The ac test sources used here do not interfere with
the dc bias. This approach requires the least complicated
circuits but the most complicated calculation and may
be numerically unstable when the phase margin is very
smail. To make the resulting RR as accurate as in
method 1 for all frequencies, greater numerical precision
is required here than there because the magnitudes of
neither RR}, nor RR} approach zero as the frequency
approaches infinity in general. (Instead, these magni-
tudes become reciprocals in the limit with values that
depend on the ratio of the impedances on the left and
the right of the break {10].)
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Any of these techniques can be extended to find the DM
and CM retumn ratios in balanced fully differential feedback
circuits by identifying two symmetrical break points that break
both the DM and CM feedback loops [16]. If these breaks
are driven by purely differential signals, only the DM loop
is excited, and the differential voltage and current return
ratios can be measured. Similarly, if the breaks are driven
by purely CM signals, only the CM loop is excited and
the CM return ratios can be measured. While the DM and
CM return ratios are found through direct simulation of the
balanced circuit, conditions under which these return ratios
determine the stability of the balanced circuit are most easily
described through the corresponding DM and CM half circuits.
The simplest condition under which this is true is when the
corresponding DM and CM half circuits are both single-loop
feedback circuits. However, a key problem is that the DM and
CM half circuits are often not single-loop feedback circuits.
As a result, one return ratio for the DM loop and one for
the CM loop are not always enough to determine stability of
the original circuit. When one or both half circuits contain
multiple feedback paths, other conditions exist under which
these two return ratios are sufficient for determining stability
of the balanced circuit. These conditions are described in the
next section from the standpoint of single-ended, muitiple-
loop feedback circuits that could represent the DM or CM
half circuits of balanced fully differential feedback circuits.

IV. MULTIPLE FEEDBACK LOOPS

In single-loop feedback circuits, stability can be checked by
finding the gain and/or phase margins of a single return ratio.
When multiple feedback loops are present, however, multiple
return ratios must be examined under various conditions to
check stability in general [2]-[4], {17]. In some special cases,
however, stability of a multiple-loop circuit can be determined
from a single return ratio. This section presents examples of
multiple-loop feedback and also conditions under which the
stability of a multiple-loop network can be determined. from
a single return ratio.

Fig. 5(a) shows an example feedback circuit that includes an
op amp with a tail current source (MCS) that biases the input
differential pair. Fig. 5(b) and (c) shows the corresponding
DM and CM half circuits, respectively. The DM half circuit
is a single-loop feedback network because the only feedback
path is from the drain to the gate of M1 through ZF in parailel
with Cyq(M1). For simplicity, Cya(M1) = 0 will be assumed
at first. Nonzero Cgq(M1) can be included as part of ZF or
treated as a separate local feedback loop as described below.
In contrast, the CM half circuit has multiple feedback loops
because there is global feedback around the op amp as well
as local feedback through the source degenerating impedance,
2Zo(MCS).

In many fuily differential op amps, special circuits are used
to control the common-mode output voltage, Vo {18]. Fig. 6
shows an example in which there are two CM feedback loops.
One loop is through the passive feedback network (e.g., ZF
and ZI) and back.to the outputs through M1 and M2. The
second loop is through the CM-sense block (which consists of
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Fig. 5. (a) A feedback circuit that uses an op amp with current source biasing of the input differential pair. (b) The singie-loop DM haif circuit. (c)

The muitiple-loop CM half circuit.

the two impedances of value ZCM) and back to the outputs
through MCM, M1, and M2. In the remainder of this paper,
loops similar to this second loop, where a CM-sense block is
used to sense the CM output voltage, will be referred to as
CMSFB (CM-sense feedback) networks.

If the DM half circuit is a single-loop feedback circuit,
and if the structure is balanced, the presence of multiple CM
feedback loops does not affect the simulation of RR(DM).
A similar statement can be made for the less common case of
multiple DM feedback loops with a single CM feedback loop.
To determine RR(DM) in a circuit that contains a CMSFB
loop, the break points can be chosen either to maintain or
break the CMSFB loop. In Fig. &a), for example, the break
points marked by the X's maintain the CMSFB loop while
those marked by the large dots break this loop. Since the dc
operating point is maintained, either approach is acceptable.

As noted above, multiple return ratios must be examined
to determine the stability of a general multiloop network.
Extension of RR simulation to general multiple-loop circuits
is a topic that is open for investigation. In two special cases

that are presented next, however, the small-signal stability of
a multiple-loop network can be determined based on a single
return ratio. '

The first special. case applies to circuits with any numbes of
local feedback loops inside one global feedback loop. This is
referred to here as embedded local feedback. If each embedded
local feedback loop is stable by itself, then stability can be
checked by breaking the global feedback loop while keeping
all the local feedback loops intact and calculating the gain
and/or phase margins [19]. For example, Fig. 7(a) shows a
signal-flow diagram for such a system with one local feedback
loop, where gl—4 and f3-4 are stable (i.e., they have only
left-half plane poles). The system is. redrawn in Fig..7(b) in
the form of a single-loop system. If the g3~f3 loop is stable,
system stability can be determined by breaking the global loop
at the X, c

This concept can be extended to feedback circuits as fol-
lows. If each embedded local feedback circuit can be modeled
as a combination of a~stable controlled source and input and
output impedances that consist of only passive elements, the
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Fig. 6. (a) A fully differential feedback circuit using a CM sense feedback

loop to control the CM output voltage. (b) The op amp in (a), including the
CM sense feedback loop.
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Fig. 7. (a) A multiple loop network with an embedded (or minor) loop.

(b) (a) redrawn with the embedded loop replaced by an equivalent transfer
functon.

multiple-loop circuit reduces to a single-loop circuit. Then
the stability can be checked by finding the RR at a break
point that opens the global loop but leaves the local feedback
loops intact. As an example, consider the three-stage feedback
amplifier in Fig. 8. The first and third stages are each modeled
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by three elements. By assumption, G, (s) and G,.3(s) are
stable, and Zin1, Zin3, Zous1, and Z,,3 are passive networks.
The second stage is a MOSFET gain stage that has local
feedback around M2 provided by Rg in parallel with Cua
of M2. If this second stage can be modeled in the same way
as the other stages, with stable G,,2(s) and passive Z;,3(s)
and Z,y¢2(s), stability of the entire amplifier can be checked
by breaking the circuit at a point that breaks the global loop
but leaves the local loop intact (such as at the X in Fig. 8),
and applying one of the RR simulation methods reviewed in
Section III.

The requirement that Z;,2(s) and Z,y:2(8) can be modeled
by a connection of passive components (or, equivalently, that
Zin2(8) and Z,ye2(8) are rational, positive real functions of
s [20]) is overly restrictive. For instance, assume that Z,,;,
can be modeled by a —1 MQ resistor in parallel with a 10
pF capacitor. If Zj,3 is a 200 k2 resistor, then the parallel
combination of Z;n3 and Z,.:; can be replaced by a purely
passive network (i.e., 250 k2 in parallel with 10 pF) and
the resulting circuit satisfies the assumptions in Section II.
Therefore, a less-restrictive condition on the impedances Z;,,»
and Z,,:2 is that they must yield a passive network when
viewed in combination with the passive components to which
they are connected.

The other special case of multiloop feedback applies to
circuits in which there exists a single break point that simul-
taneously breaks all feedback loops. Fig. 9 shows an example
of such a circuit. It contains two feedback loops, which can
both be broken at the X [either if Cyq(M1) = C,u(M2) = 0
or if nonzero Cyq(Ml1) and Cy4(M2) are included in Z1 and
Z3, respectively). In general, suppose there are n feedback
loops with at least one common break point. To analyze the
small-signal stability of such a network, pick one controlled
source from each loop, and call the values of those n selected
controlled sources k,,, m = 1, 2, --- n. Also, assume that
the circuit reduces to a single-loop network when all of the
n selected controlled sources are set to zero except one, i.e.,
the circuit is single loop with respect to k., if k; = 0 for all
i # m. Under these assumptions, Appendix A shows that the
stability of the system is determined by the zeros of

1+ Y RRm(s) =1+ RRuw(s)
m=}

where RR,, is the (single-loop) return ratio computed for k.,
when the other n — 1 selected sources are set to zero. Since
RR,, is a single-loop return ratio, it has only left-half plane
poles. Therefore RR )¢y also has only left-half plane poles
because it is a sum of the RR,,. As a result, the system
stability can be determined by examining the gain and phase
margins of RRysy as in (1). Appendix A shows that RRyy
can be found by simulating the return ratio as described in this
paper at a break point that simultaneously breaks all feedback
loops.

These two special cases, applied independently or together,
allow the extension of the return-ratio simulation techniques
reviewed in Section I to many practical, fully differential
circuits whose half circuits are not single-loop feedback net-
works.

4
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Fig. 8. A three-stage feedback circuit. The second stage consists
shown explicitly).

Fig. 9. An exampie of a circuit with muitiple feedback loops and one break:
point that opens ail loops.

V. SaMpPLED-DaTA CMSFB Loors

Switched-capacitor (SC) CMSFB is oftenr used in fully
differential SC circuits [21]. Fig. 10(a) shows an example of
a circuit that uses a SC CMSFB network. It consists of two
switched capacitors of value Cs, two hold capacitors of value
Cy, and several switches that are controiled by a two-phass
nonoverlapping clock (Pl and P2). Voltages Vou and Vg are
dc bias voltages; Ve is the desired CM output voltage and
Vp is the nominal bias voltage for node icm. Although all fous
capacitors sense the CM output at frequencies above dc, only:
the switched capacitors sense the dc component of the CM
output. As a result, many clock cycles are required after the
application of power for the circuit to converge to its steady»
state, dc CM output voltage. On the other hand, to carry out
stability simulations using ac analysis in SPICE, each switchs
must be either on or off. This means that the circuit used for
SPICE simulation to determine stability will not also set up the
CM dc operating point. To overcome this problem, a circuit

'
v
A
"
1
1
)
1
)
1
‘ ———‘
'
'
v
'
:
’
'
.

*Zin3

Stage 2 Stage 3

of transistor M2 with local feedback through Rpe and C,a(M2) (which is not

that is functianally equivalent to the SC network at dc can be
used to force correct dc biasing during SPICE ac analysis. -
An equivalent circuit can be found by analyzing the S€
CMSFB loop. Fig. 10(b) shows a CM half circuit for the S€
CMSFB portion of Fig. 10(a). Switched-capacitor Cs and hold
capacitor Cg, together with the amplifier, form a SC integrator
that is in a unity-gain feedback loop. If the dc CM output
voltage, Voc, is finite, C's must not transfer charge onto Cx
during P1 in steady state. This is true if the voltage across Cs
during P2, Vou — Vg, is equal to the voltage across Cg during
P1, Voc — V;.! Therefore, an equivalent circuit must force
Voc - Vi =Vem — VB, (5a)
or

Vi =Voc — Vem + Va. (5b)

An equivalent circuit that satisfies (5b) is shown in Fig. 10(c).
An inductor is connected between the icm node and the
controlled sources that replicate the dc bias voltages. Because
the dc voltage drop across the inductor is zero, (5b) is
satisfied. When performing- a DM simulation, the inductor
value is unimportant since both sides of the inductor operate
at ac ground when differential signals are applied. For a CM¢
simulation, however, the inductor should be large enough to
effectively disconnect the controlled sources from the icm
node at all frequencies of interest.

The SC CMSFB loop provides one CM feedback path.
Another CM. feedback™ path is typically. present, such as
through ZF in Fig. 1. The special cases described in Section

'In practice, the switches in Fig. 10(a) are realized with MOSFET's. This
analysis ignores the d¢ leakage currents associated with the MOSFET junction
diodes and any dc bias current that lows into amplifies A. Such dc currenta
cause Voc - V; to differ from Voag — VB by an amount that depends on
the leakage currents, as shown in Appendix B. Alsa, the effects of clock feed«
through and chaonel charge are ignored here and in Appendix B. They camr
cause an offset in the common-mode output voitage, which can be modeled
by changing Vo as« S
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Fig. 10. (a) An op-amp feedback circuit showing the switched-capacitor CM
sense feedback (CMSFB) loop. (b) The CM half circuit for the CMSFB loop.
{c) The CM half circuit of (b) with an inductor and controiled sources added
to provide dc feedback. .

[V provide a means to deterrnine stability in many practical
cases with multiple CM loops.

VI. AN EXAMPLE

A fully differential sample-and-hold circuit is shown in
Fig. 11. This circuit uses MOSFET switches controlled by
nonoveriapping clocks P1 and P2 and has a SC CMSFB

3t

network. When P2 is high, feedback is provided around the
op amp through the C'r and Cg capacitors. The feedback has
been broken at two symmetric break points, and the drive and
measure terminals are labeled. To verify the RR simulations
carried out by SPICE, a circuit that can be analyzed by hand
is desired and the following assumptions are made:

1) The linear op-amp model in Fig. 12 is used.

2) Clock P1 is low, and clock P2 is high.

3) MOSFET switches that are off (operating in the cutoff
region) are open circuits.

4) MOSFET switches that are on (operating in the triode
region) are linear resistors. These include three trans-
mission gates: two labeled as SF and connected to the
Cr capacitors and one iabeled as SI and connected to
the C capacitors.

Under these conditions, RR(DM) is

2ngIZ2

T ,
VA —_—+Z
1+RON(SF)+3C'F+ 2

RR(DM) =

(6)

where Zy = (1/3C;04){|{1/3Cr + Ron(SI)/2] and Z; =
R,4||[1/8(Cod + Cr + CL)). Also, RR(CM) is:

gchocZS CH

2

where Z,; = (ZROC)H(Q/‘?Coc)a Zog = Rod”(l/scod)' and
23 = (1/sC)[1/sCF + Ron(SF) + 1/3Ci0q] with C} =
Cr + [CH(Cic/2}/(Cu + Cic/2)).

Fig. 13 shows the SPICE simulation circuits, which use
method 3 of Section III. The feedback circuit in Fig. 11 is
shown simply as a box here with the drive and measure
terminals iabeled. As described in Section IV, an inductor
connects controlled sources to the icm node in the SPICE files.
When the test signals are differential, RR(DM) is found [e.g.,
setting vep = —vgn, RRy(DM) = —(vrp — vrn)/(Vap = Van}].
On the other hand, when the test signais are common mode,
RR(CM) is found [e.g., setting vy = V¢n, RRy(CM) =
—(vrp + Vrn)/(vdp + van)]. Using the component values in
the captions of Figs. 11 and 12, HSPICE [24] simulation
results for RR(DM) and RR(CM) are piotted in Figs. 14
and 15, respectively. For the DM and CM cases, the maximum
difference between the |RR} from simulation and from the
corresponding equation [(6) or (7)} is less than 0.002 dB
for the frequencies plotted. The maximum difference between
the phase of RR from simulation and the corresponding
calculation is less than 0.02°.

HSPICE input and output files that simulate the return
ratios for Fig. 11 are available through anonymous ftp at
ftp:/Htp.ece.ucdavis.edu/pub/sscri/return_ratio.  Information
about the files is provided there in the README files.

VII. CONCLUSION

This paper has described frequency-domain SPICE simula-
tion techniques that can be used to find the RR of the DM and
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Fig. 11. An example fully differential sampie-and-hold circuit with four terminais, labeled “measurep,” “measuren,” “drivep,” and “driven.” Component

values are Cr = 0.3 pF, C; = 0.5 pF, Cr = 2 pF, Cy = 0.5 pF,
k2. Switches that are off are modeled as opea circuits.

CM loops in fully differential feedback circuits. The stability

of such circuits is determined by these two return ratios when:

1. the corresponding half circuits are single-loop feedback
circuits, or

2. the corresponding half circuits are multiloop feedback

circuits that conform to conditions given in Section IV.

The main advantage of these simulation techniques is that
they can be used to measure the gain and/or phase margins,
which can be used to determine stability in a small-signal
sense. To determine whether the circuits are stable for large
signals, the step response for a large input should also be
observed in the time domain.

If a circuit is not perfectly balanced, then feedback loops
that were not studied in this paper exist. In an unbalanced
circuit, a CM op-amp input can produce a DM op-amp output,
which may feed back a CM signal to the op-amp input. Such
a feedback loop could cause instability. When the circuit is
unbalanced due to typical component mismatches, however,
these cross terms are small [11] and would rarely produce an
instability. In the rare case where such an instability does exist,
it could be found by a final time-domain SPICE simulation if
the mismatch that causes nonzero cross terms is known.

Finally, limited node access in SPICE sometimes hinders the
calculation of RR. This is because SPICE does not now allow
access to nodes within a transistor model. For example, the
gate-to-drain capacitance of a MOS transistor often provides
a feedback path. To test the stability of this feedback path,

Cs = 0.5 pF. When P2 is high, Ron(SF) = 1 kQ and Ron(SD = 1

the capability of choosing a break point within the transistor
model would be desirable.

APPENDIX A
MULTIPLE FEEDBACK LOOP CIRCUITS
WITH A COMMON BREAK POINT

This Appendix shows that, under certain- conditions, the
stability of a multiloop circuit can be determined by computing
only one return ratio. The key condition is that the circuit
contains n feedback loops that have at least one common
break point that simuitaneously breaks all n feedback loops.
To analyze this problem, pick one controlled source from each
loop and label the values of those n selected controlled sources
ki, i =1, 2, --- n. In addition to the assumptions in Section
II, assume here that:

1) There exists a single break point that simultaneously

breaks all feedback loops.
The feedback circuit reduces to a single-loop network
when all but one of the n selected controlled sources are
set to zero, i.e., the circuit is single loop with respect to
kj if ki = 0 for all 1 # j.

3) The current or voltage produced by each controlled
source is a linear function of only one voltage or current
in the network..

By Assumption I;-the signal flow graph for the feedback

network can be drawn as in Fig. 16(a) [3], (22}, where the
signal at the common break point is y, a scalar voltage

2)
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SR R
_L ©m
gm(ui-VBIASS) in{ Coo _D

Cie u
Fig. 12. A differential op-amp model for simulation and analysis of Fig. 11.
Component values are Cioq = 1.25pF, gm = 1mS, Rog = IMQ, Cog = 1
pF, gme = 1 mS, Roc = 1 MQ, Coc = 1 pF, Cc = 1 pF.

T

’m dn i
°m ' tn |
+ + m dn
@ |
measuren driven measuren driven

feedback circuit feedback circuit

measurep drivep measurep drivep
o | |
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tp
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Fig. 13. Circuits for SPICE simulation of RR(DM) and RR(CM) in a
differential circuit, using method 3 of Section III (see Fig. 4).

or current. In the following description of Fig. 16(a), let 4
represent an index ranging from 1 to n. Then:

1) pis a n x 1 vector in which each element, p;, is the
control signal (voltage or current) associated with the
controlled source, k;.

K is a n x n matrix that maps p to s by s = Kp. By
Assumption 3, K is a diagonal matrix whose diagonal
values are k;,i = 1,2, ---n.

s is a nx 1 vector in which each element, 3;, is the signal
(voltage or current) that is directly controlled by k;.
The signal flow from 8 to y is described by y = aT’s,
where al is the transpose of a.

The signal flow from y to p is given by p = —hy,
where h is n x 1.

The feedback loop is from p to s, through y, and back
to p.

The transfer function matrix from in to out in Fig. 16(a}
is [3]

2)

3
4
5)

6)

CK[I, + haTK]|"'B + D, (Al)

where B, C, and D are matrices that are determined by the
circuit [3], and I, is the n x n identity matrix. Equation
(Al) is the multidimensional extension of (1). The matrix
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Fig. 14. Plots of HSPICE simulation results for the magnitude and phase
of RR(DM). .
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Fig. 15. Plots of HSPICE simuiation results for the magnitude and phase
of RR(CM).

- -

10G

D is the forward transmission when all k; = 0. The terms
CKB give the forward gain through the controlled sources,
and [T, + ha” K]~ is analogous to 1/(1 + RR). The stability
of the feedback circuit is determined by the zeros of [:2]

det[L, + ha” K], (A2)
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Fig. 16. (a) Signal-low diagram for a network with multiple feedback loops
and a common break point. (b) A model for the network at node X, when the
signal y is a voltage. (c) The feedback is broken at node X.

which are the poles of the transfer function. The product
halK is a n x n matrix. Renaming the product aTK =
(aiky, azky, -+ ankn) = g7 and using the fact that det (I, +
anmR-vnxn] = det [Im + Rmmemxn] [23], (A2) can be
simplified:

det [I, + haT K] = det [I, + hg”]
= det[I; + g7 hj

=1+g’h. (A3)

The last equality follows because the determinant of a scalar
equals that scalar. The term 1 + gTh, which appears in
the denominator of the transfer function, has two important
properties. First, the scalar g7h is equivalent to the usual
return ratio since the poles of the transfer function are the zeros
of 1+ gTh. Second, gTh = a1kihy +azkzhz+ - -+ anknhn
is the sum of the n return ratios associated with the n single-
loop feedback loops. This second property follows because the
mth term in gTh, amkmhm, is the return ratio for k, with
all other controlled sources set to zero.

Next, it will be shown that g7h can be found by breaking
the multiloop feedback circuit at the common break point,

computing RR; and RRy, and combining them according to
(2) to find the return ratio for the muitiloop circuit,” RRyr =
g7h. Fig. 16(b) shows the feedback network of Fig. 16(a)
with a circuit model shown at the break point, which is labeled
as node X. Here, the signal y at the break is assumed to be a
voltage. (A similar argument can be made if y is a current.)
The circuit model used in Fig. 16(b) includes a Thevenin
equivalent circuit that drives node X and an impedance Zr to
ground that is the impedance seen looking to the left of node
X. The controlled voltage source in Fig. 16(b) outputs Bals.
This factor 3 = (Z; + Zo)/Zr compensates for the effect
of the Z; — Zo voltage divider to give y = aTs. Fig. 16(c)
shows the feedback broken at node X. The right-hand node is
labeled zm; the left-hand node is labeled zd. The open-circuit
voltage at zmn is BaTs. When a test voitage v, drives node
zd, p = ~hv; and s = Kp = Khv,. Therefore, the return
voltage at zm is

v, = —BalKhu,, (A4)
and
RRy =~ s
Ut
=8aTKh (AS)

When a test current i, drives node zd, the voltage developed
at zd is vy, = Zri; and p = —hvg. The short-circuit return
current from node rm to ground is the voltage BaTs =
BaTKp divided by Zo,

T
;= Pa Kbz (A6)
Zo
Therefore,
RR;=-Z=
113
TKhZ
= _ﬂfz___’_ (AT)
o .

When these two quantities are combined according to (2), the
result is

1 117!
RRyp = [_RRV + ——RRI]

1 1
7aTKh T BaTKhZ;

-1

Zy + Zo ]_1
Zi1+20 Z1+20

=aT’Kh [
=a’Kh, (A8)
which is the demmd result.

2The proof is given bere only for (2). Similar steps will show that (3) can
also be used to find RRa¢r .
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For example, consider the circuit with two feedback loops in
Fig. 9. For simplicity, assume that the small-signal transistor
model consists only of a transconductance (iq = gmvgs). (All
other small-signal-model elements can be absorbed into the
impedances Z,Z5.) Each feedback loop includes a controlled
source associated with one transistor. Let k1 = gmn, and
ko = gma2. The circuit satisfies all the assumptions listed at the
beginning of this appendix when the feedback loops are broken
at the X. Therefore, the return ratio computed according to (2)
[or (3), see fn. 2] at break point X is sufficient for testing
stability, and this total return ratio is equal to the sum of the
return ratios for the two controlled sources, each computed
when the other controlled source is zero. To verify these
statements, the transfer function for the circuit is computed
first, and it is

Z ZL
_mZ +
Uout: Jm1 L21+Z~2 Zy + 7> (A9)
Vi ZZ 4 ’
mn 1+ gmil —— m2ZL =~
+ gmi L21+Zz+g 2L 7

where Z; = Z5\|(Z) + Z2)||(Zs + Z4). The return ratio for
gm1 With gmz = 0 is

. Zs
R(gm th gm2 =0) = gm1Z1 =——5, AlQ
RR(gm1 with gm2 )91L21+Z2 (A10)
and the return ratio for g with gmy = 0 is
RR( with =0) = gm22 Zs (AL1)
gm2 gm1 =VU) = gm24L Tat Za

The denominator of (A9) is one plus the sum of the two return
ratios in (AS) and (A6).

RRyyr will now be found by computing RR; and RRy.
Breaking at the X allows computation of the two return ratios,
and the results are

RR[ = (Zl + ZQ)H(Z:} + Zq)

. L —_—1, (Al2

RRy =275 ‘igml (A13)

2y + 23 Im2 Z3+ 24|
When (A12) and (A13) are combined according to (2), the
RR for this multiple-loop circuit is

1 1 17t
RRuyp = | ==
ML [RR,*RRV]
Z A
=Gm - +9m —F, (Al
g IZ[‘Zl+Z2+g 2ZLZ;+Z4 (A14)

which equals the sum of (A10) and (All) and equals the
denominator of (A9) minus 1.

A direct calculation of RRasz can be carried out using
RRyr = g7 h = aT Kh. The controlled sources in the circuit
are described by 741 = gm1vgs1 and ig2 = gmavg,2; therefore,
PT = (vgs1, Vgs2) and sT = (igy, iq2). The matrix of control
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values is

(A1S5)

0
K= gm1i
{ 0 Im2

With y = Uy, it follows that aT = (Zr, Zr) and hT
(Z2/(Zy + Za), Z4/(Z3 + Z4)), and therefore,

RRyr =aTKh
Zs Z4

= g Zp —2 2 (Al6
glLZ1+Zz Z4’( )

+ gm2ZL 23 T

in agreement with the previous calculations.

APPENDIX B
DERIVATION OF AN EQUIVALENT CIRCUIT
FOR THE SC CMSFB Loor AT DC

The analysis in Section V ignores the dc bias current that
flows into the amplifier A and the dc leakage current associated
with the reverse-biased source and drain junctions of the
MOSFET’s that act as the switches in Fig. 10. Furthermore,
the analysis in Section V ignores the parasitic capacitance on
the input of the amplifier because this capacitance is irrelevant
when the input bias current and the leakage currents are zero.
Fig. 17(a) shows the CM half circuit for Fig. 10(b) where the
ideal switches have been replaced by MOS transistors and the
amplifier input capacitance, Cp, is included. The transistor
dimensions are those associated with the CM half circuit.
Fig. 17(b) redraws this CM haif circuit. .Here the transistors
are modeled by ideal switches, and two current sources that
represent the drain- or source-bulk leakage currents that affect
this analysis are shown. The leakage current of the drain-bulk
junction of M2 is I;; in Fig. 17(b). The leakage currents of
the source-bulk junction of M2 and of the drain-bulk junction
of M4 are lumped together into Iy2. All other leakage currents
are supplied by a voltage source or by the op-amp output and
therefore do not affect this analysis. (Any bias current that
flows into the —A amplifier can be lumped into I;;.)

The charge-balance equation in Fig. 17(b) at time n + 1,
which corresponds to the end of Pl, is

(Cs + Cu)lvoc(n+1) —vi(n +1)]
+ Cp[O —-vp{n+ 1)] =
Cs[Vem = Va) + Crlvoc(n + 1/2) — vr(n + 1/2)]

I 1;)T
+ Cpl0—vi(n+1/2)] + E-—Ji—%i,

where T is the period of the sampling clock and T'/2 is the
time P1 or P2 is high (assuming a negligible nonoverlap time).
The last term on the right is a function of the leakage currents
I, and Ij,, and it accounts for the currents flowing through
the capacitors during P1. At time n + 1/2, which corresponds
to the end of P2, the charge-balance equation is

(B

Crlvoc(n +1/2) = vi(n +1/2)] + Cpl0 = vi(n + 1/2)]

T

= Cylvoc(n) - vi(n)] + Cp[0 — v;(n)] + 5 (B2)



816 [EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING. VOL. 42; NO. 12, DECEMBER 199%

CH
1
I
V: icm
\Y
Cs -A oc
P1{[ M1 m2_JkPt |
P24 M3 Ma_} P2 !Cp
Vewm \%:
(@)
Voc
Voc

(c)

Fig. 17. (a) The CM half circuit of Fig. 10(b) showing the MOSFET
switches and the parasitic capacitance on the amplifier input (Cp). (b) (a)
with ideal switches in place of the transistors but including current sources
I and I3 to model the key leakage currents of the MOSFET source and
drain junction diodes. (c) Fig. 10(c) with a resistor R added to adjust V; due
to leakage currents.

The last term on the right accounts for the current I;; flowing
through the capacitors during P2: (Current ;2 is shunted to
Vg during P2.) The next step in finding the dc solution during

P1 is to substitute (B2) into (Bl) to yield

(Cs + Cu)voc(n + 1) = vr(n + 1)} =
Cs[Vem ~ Va] + Crlvoc(n) — vr(n))]
InT  (In+1m)T
2 2 ‘
When the circuit has reached steady state (i.e., n — o0), each
node voltage at time n equals the corresponding node voltage
at time n+1. For example, voc (n+1)|n—oe = voc(n)|n—co-
This condition, when applied to (B3), gives

(2[_]1 -+ IJ2)T
2Cs

on P1. This equation is similar to (5a) with the addition of the
current-dependent error:

+

(B3)

voc(20) —vr(o0) = Vou — Ve + (B4)

(215 + 152)T
= 2Cs . (BS)
In steady state, the error, AV, is independent of Cy and Cp
because the dc leakage current flows only through the switched
capacitor, Cg. This error can be included in the simulation by
adding a resistor R in series with the inductor as shown in
Fig. 17(c). Since Cs is not switched during ac simulations,
both currents I;; and [, flow through B when P1 is high.
Let R = Rp; here, which represents R on P1. To develop-a
voltage drop of AV,

AWy

(2051 + I1;2)T

(Inn+1I52)Rp1 = 2Cs

(B6a)
or

@+ 52y
I

R = (20 + 172)T
P1 112
20s (14 222
In

T 2Cs(In+ 1)

(B6b)

Note that Rp, depends on the current ratio [y3/1y1. If VI =
Vg, then the diode voltages are similar and therefore 52/,
is about equal to the ratio of the junction areas. For example,
if M1-M4 in Fig. 17(a) are identical, I;2/Iy1 ~ 2. This
area ratio, when substituted into (B6b), leads to a simplified
equation for Rpy,
4T
T (BT
The dc solution at the end of P2 can be found using (B1) and
(B2), noting that voc = —Avy (always), and letting n — oo,
which means that each node voltage at time n — 1/2 equals
the corresponding node voltage at time n + 1/2. The result is

voc(oo +1/2) —vr(c0 +1/2) =
(21 + 1;2)T +
2Cs :

Rpt ~

nT

Cp
Z(C'H+ _1+A)

This equation is similar to (5a) with the addition of the current-
dependent error:

Vem — Vp + . (B8)

AV = (2In + In)T'+ InT
2Cs 2w+ -8
~ HY 1Y A
- InT
= —— B
AV + FTo _( 9)
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where Cy = Cy + Cp/(1 + A). The error, AV3, differs
from AV in (B5) by an amount that depends on Cy and Cp
because I;; flows through Cy in parallel with Cp/(1 + 4)
during P2, which can be seen by applying the Miller effect
in reverse on Cp. Again, this error can be generated in the
simulation by the resistor R in series with the inductor in
Fig. 17(c). Here, let R = Rpy, which represents R on P2.
Since I, Rpy; = AVy, Rpy should be chosen as:

<2+ §J2>T T
J1
=t L Bl
Rpg 2C5 + 20;{ (B10)
Using I;3/1;1 = 2 as above gives
4T T
Rpy = — + -, Bll
R To M T (BID

Although the exact value of Rpy depends on both Cp and
A (which are both unknown in most practical cases), the
dependence is small if Cp/(1 + A) « Cy. Furthermore, the
effect of these leakage currents can be completely ignored
in most cases. For example, with a (large) [;; = 1 nA and
Ij2 =217 =2 nA and Cs = 1 pF, (B5) gives

(215 + I2)T
Vie— i<
AN 2Cs

= (2 V/msec)T. (B12)

If T =1 usec, AVy = 2 mV, which is insignificant in most
cases. However, for the same currents with Cs = 0.1 pF and
T = 100 psec, then AV = 2 V, which is a voltage drop that
should not be neglected.

Finally, note that Fig. 17(c) shows a CM half circuit, and
the desired equivalent resistance would actually have to be
included in Fig. 10(a) for simulation. A resistance of R/2 used
in Fig. 10(a) is equivalent to the resistance R in the CM half
circuit in Fig. 17(c). (Halving the resistance in the balanced
circuit holds the error constant because the leakage currents in
the balanced circuit are double those in the CM half circuit.)
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