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If we substitute (A-3) into (A-3) and make use of (IV-3), we
have )

y+ 1

, Y by +L)K(s)
‘ Z, 0
|+ =—|= 7 (A-6)
e Y by K(s)
0
and

. Via
L/15= vl

L Y ob(y+ 1)K (s)

l_[ 0

v=n-4

Y b(y.j)K'(5)

0
Y b(v.))K(s)
=v, [1 —

Y by +1L)KI(s)

0

(A7)

After reduction of the numerator and denominator terms
(A-7) becomes
n=p
Y b(n=B.J)K'(s)
V,=—" 7 (A-8)
Ejb(n.j)K/(s)
0

The (A-8) coincides with the (IV-2).

AppeNDIX [
Fibonacci Numbers
Fibonacci numbers can be obtained tfrom the following sim-
plest recursive formula:

Fn=Fn—l+F172

; (n>2)
with the initial conditions
Fy=0, F =1
F, F, F. F, F, F; F, F, Fy, Fy F, Fy
0. 1, L2, 3 5 8 13, 21, 34, 55 89,

Formulas to generate them, however, are numerous and can
be found in [10].
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Exact Simulation of Feedback Circuit Parameters

Paul J. Hurst

Abstract —Techniques for finding the important parameters of a
single-loop feedback circuit at the closed-loop dc operating point are
presented. The main advantage of these techniques is that they allow
exact computer simulation of feedback parameters with a circuit simula-
tor such as SPICE. By maintaining the closed-loop dc bias peint in all
test circuits, the small-signal models for all nonlinear elements are
computed correctly by the circuit simulator. The methods presented for
simulating loop transmission are particularly valuable since they can be
used to accurately determine gain and phase margin using frequency-do-
main analysis, which is faster and more efficient than simulating step
response via transient analysis. The equations behind the two methods
for calculating loop transmission are presented as background. Exam-
ples are included to demonstrate the techniques.

I. INTRODUCTION

Feedback is present in virtually all analog circuits. Initial
design of feedback circuits requires some simplifying assump-
tions, such as large low-frequency loop gain, negligible forward
transmission through the feedback circuit, and negligible reverse
transmission through the forward amplifier. Such approxima-
tions simplify the design equations [1]-[3]. The properties of
feedback circuits are either described in terms of the return
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Fig. 1. (a) Ideal feedback circuit block diagram corresponding to (3).
S may be a voltage or a current. (b) Signal-flow diagram corresponding
to (2).

ratio of a dependent source, as was done in the early feedback
text by Bode [4], or in terms of the classical feedback block
diagram of Fig. 1(a) with unilateral forward gain a, unilateral
reverse transmission factor f, and loop gain af. (The term loop
gain will refer to af of Fig. 1(a) in this paper.!) Return ratio
(RR) and loop gain af of Fig. 1(a) are two different quantities;
both present useful information about the loop properties of a
given feedback circuit. Each has an associated set of equations
that can be applied to find the closed-loop parameters [1]-[6].

Procedures that allow the important feedback parameters to
be found exactly while maintaining the closed-loop dc operating
point are presented below. One technique finds RR; the other
finds f and af. The techniques are applicable to single-loop
feedback amplifiers [4], [5], [7], which include most op-amp
feedback circuits and many others. A single-loop feedback cir-
cuit is one in which there is one unique signal path that
traverses the feedback loop.

In the next section, the gain equations incorporating return
ratio and loop gain are reviewed, and an example is presented
to show that return ratio and loop gain can be quite different.
Then techniques for simulating return ratio and loop gain at the
closed-loop dc operating point are presented. For clarity, the
shunt-shunt feedback circuit in Fig. 2 is used in the discussions
below, but the techniques are completely general and can be
applied to all four types of feedback circuits. Some examples are
followed by a section that shows that return ratio is the loop
gain of an appropriately defined transfer function. The IEEE
conventions for dc and ac signals are used throughout the paper;
a capitalized signal variable with a capitalized subscript indi-
Cates a dc quantity (e.g.. I)y), a lower-case signal variable with
lower-case subscript indicates an ac quantity (e.g., i), and a
lower-case signal variable with upper-case subscript indicates a
total—ac plus dc—quantity (e.g., i;x)-

i
h Many tests use the terms “return ratio” and “loop gain” inter-
Changeably. However, as will be shown. the two are different.
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II. BackGrounDp AND EqQuATiONS
2.1. Feedback Circuit Analysis Method 1— Bode’s Return Ratio

In the original feedback text by Bode [4] and in other texts
[5}-{7], the closed-loop properties of feedback circuits are de-
scribed in terms of the return ratio of a dependent source in an
active device. The return ratio for a controlled source can be
found by 1) setting all independent sources to zero, 2) selecting
a dependent source, 3) breaking the connection between that
source and the rest of the circuit, 4) driving the circuit at the
break with an independent source of the same type with value
s,, and 5) finding the output s, from the dependent source.
Then the return ratio for that dependent source is RR= — s, /s,.
(S may be a current or a voltage.)

The formulas presented in this paper are valid for single-loop
feedback amplifiers [4], [S], [7]. For a single-loop amplifier with
multiple dependent sources, the return ratios for all dependent
sources in the active devices are the same, or, equivalently,
setting any dependent source to zero causes the return ratio for
all other dependent sources to go to zero.

The exact formula for the closed-loop gain of a feedback
amplifier as it relates to the return ratio of a dependent source
in an active device is [4]

b
A, = +d
" 1+ RR

(D

Formulas for b and 4 will now be given. Call the value of the
control parameter k. (In the case of a bipolar transistor’s
controlled source i. = g,'p,, K = &,,, and v, is the controlling
signal.) Then the calculation of b breaks into three parts:
b=>b, k-b, where

b, =transfer function from the input to the control signal
evaluated with k =0,

b, =transfer function from the dependent source to the out-
put evaluated with the input source set to zero, and

d =transfer function from input to output evaluated with
k=0.

From its definition, the return ratio is of the form RR=k -H,
where H is the transfer function from s, to the controlling
signal. Therefore, (1) can be rewritten as

A, =b, by+d=by

——— b, +d.
+kH °

(2)

<l 1+ RR
A block diagram corresponding to (2) is shown in Fig. 1(b).
Often d can be neglected for low-frequency analysis, but this
direct feedthrough term can be important at high frequencies.
RR = k- H is the gain around the loop in Fig. 1(b), which is not
necessarily equal to the gain af around the loop in Fig. 1(a).

2.2. Feedback Circuit Analysis Method 2— Two-Port Analysis

Classical feedback analysis relates the closed-loop properties
of feedback circuits to the open-loop properties of an appropri-
ately defined forward amplifier a, the reverse transmission fac-
tor f, and the loop gain af [1]-[3], [8]. There are many advan-
tages to using this analysis method.

1) The feedback circuit can be viewed as an implementation
of the classical feedback block diagram (Fig. 1(a)).

2) Simple equations relate the open-loop and closed-loop
properties of the feedback circuit, i.e., Z,, and Zj, arc
modified by the factor (1 + af).
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Fig. 2. Shunt-shunt feedback circuit to be analyzed. Resistor values
are Ry =500 k2. Rg =100 kQ. Op-amp parameters: R,,,=1/y,,, =

IMO R, =1/30, = IMQ. G, =y,,=10mQ~ !, v, =00}
3) The closed-loop gain expression
a
Ay = 3
= Tr (3)

is in a “standard” form that allows well-known results from
control theory to be used to predict closed-loop frequency
response from af and a or f.

Manipulation of feedback circuits into the ideal feedback
form of Fig. I(a) is carried out through two-port analysis [1]-[3],
[8]. The first step is identification of a feedback two-port and a
forward amplifier two-port.® They are analyzed separately as
two-ports. and the interconnection of these two two-ports is
manipulated into ideal feedback form with one forward con-
trolled source and one reverse controlled source. Once re-
arranged, this interconnection of two-ports agrees with Fig. 1(a)
since the ideal forward amplifiecr and feedback network are
unilateral.

An example of this procedure for the shunt-shunt feedback
circuit in Fig. 2 is shown in Fig. 3. (For convenience here and in
the majority of this paper, the shunt—shunt feedback configura-
tion and the associated y-parameters are used in figures and
examples. However, the methods are completely general and
can be applied to all four feedback configurations.) The parame-

ters a, f, and af can be calculated from the redrawn two-port in
Fig. 3(b):

i
b
él,_=}’1:=ylzf+h:a (4)
5 v, Vo, t ¥a
gale_ _ Yu 20 T Youy (5
i Yy ()’11a+y11f)'()’::a+Y:zf)

(In this paper, the source admittance y; and load admittance ye
are assumed to have been absorbed into y,;, and y,,,, respec-
tively. Also, a y-parameter written as y;; is a “total” parameter;

that is, y;; = y,;, + y;;.) The loop gain af is a crucial parameter
of a feedback circuit. For the shunt—shunt feedback circuit
example,
af__)’u)’lz__(Y21a+Y21f)'(y12a+Y12f) (6)
Yuyn (Yita ¥ Y11r) (Va2a + ¥22y)

2.3. An Example Comparing RR and af

While either method can be used to analyze a feedback
circuit, there are differences in the closed-loop formulas incor-
porating af and RR. In general, af is not the same as RR.
Many popular texts argue intuitively that measuring the return
ratio for a given dependent source is in some sense the same as

“Sometimes it is impossible to find such two-ports; examples are
multi-loop feedback circuits such as fig. 8.28 of {1] or fig. 5.11 of [6].
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Fig. 3. (a) Small-signal two-ports for a and f networks for a
shunt-shunt feedback circuit such as Fig. 2. (b) The ideal feedback form
for the two-ports in (a) where y ;= y i1+ V140 Y12 = Yi2p + Vizgr Vo =
Yaur+ Yare and Y2 = Yoo r + Vop,e

breaking the loop in Fig. 1(a), and therefore, RR = af [1], [2],
(4], [6], [9]. This is correct, however, only under certain specific
conditions that are discussed in Section VI.

To clearly point out the potential for large differences be-
tween af and RR, the low-frequency loop gain and return ratio
have been calculated for Fig. 2 using the element values in the
figure caption. The loop gain for this shunt-shunt feedback
circuit is
(Yarat ¥arp) (¥iaa + Yiag)

(Yira + Y1up) (Vaza + ¥22p)

af = —

1 -1
_1— .
(10 me - 100 m) ( 100 kQ)

T T T T i
(500kQ+ Mo 100k9)'(1MQ+ IOOkQ)
= 699. %

The RR is easily calculated by breaking the loop at the the
op-amp’s G,, generator:

Routa
+Rs+R

RR G .(RS“Rina)
outa

1MQ
500 Q1 MQ + 100 kQ + 1 MQ
-(500 k1 MQ) = 2326. (8)

The results are significantly different and point out the impor-
tance of correctly finding RR or af and using the proper
associated formulas when calculating closed-loop parameters. It
should be noted that the usual text-book assumptions |y,, | <

RSIR,.,

=10mQ
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Fig. 4. Measurement of RR including controlled sources to maintain
the correct dc bias: (a) Closed-loop dc reference circuit. (b) Measure-
ment of RR; at the closed-loop bias point. (c) Measurement of RR, at
the closed-loop bias point.

1214l and [y ,,] < |¥12¢l, which are true in this example, are not
sufficient to guarantee that RR = af.

III. SPICE SimuLaTiON OF RETURN RATIO

In transistor circuits, the controlled sources and the control-
ling nodes are internal to the devices and hence are not accessi-
ble for return ratio computation. A technique that finds the
return ratio by breaking the feedback loop at an arbitrary point
and using a combination of generalized return ratios to measure
the overall return ratio was presented in [10] as an extension of
method four in [11]. The approach described there finds the
return ratio for the controlled source(s) in the feedback ampli-
fier by breaking the loop at an arbitrary point and computing
both a current return ratio RR, and a voltage return ratio RR,.
RR, (RR) is found by setting all independent sources in the
linearized smali-signal circuit to zero, breaking the loop, inject-
ing a test current i, (test voltage ¢,), and measuring the return
current i, (return voltage v,) flowing into a short circuit (ap-
Pearing across an open circuit) at the other side of the break
point. Then the total return ratio RR is given by

-1 1 1
==+

-1

1 1
RR=[——+ 9)

RR; RR,

The dc operating point can be preserved during simulation of
RR, and RR,, as shown in Fig. 4. The closed-loop circuit in Fig.
4(a), with all ac sources set to zero, acts as a dc reference circuit.
Controlled sources, controlled by dc voltages and currents in the
reference circuit, are included in the RR ; and RR, test circuits
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Fig. 5. Measurement of f for the circuit in Fig. 2. (a) Small-signal
circuit concept. (b) dc reference circuit for (c). (c) Measurement of f at
the closed-loop dc operating point.
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at the breaks to replicate the closed-loop dc operating point.
The advantage of maintaining the dc operating point is that all
nonlinear elements in the feedback circuit, such as the transis-
tors and junction capacitances, are properly biased; therefore,
the circuit simulator automatically computes the correct small-
signal models for the linear analysis.

IV. SPICE SimuLaTiON OF Two-PorT
FeepBACK PARAMETERS

If a feedback circuit can be modeled by properly intercon-
nected a and f two-ports (Fig. 3(a)), then a single two-port
analysis can be performed on the entire closed-loop feedback
circuit and the resulting two-port parameters will be y, =
Yis Y Yue Y2 = Yizp t Viza Y21 =Yais + Vaia and yy, =
Y25 + Y22, which are the four parameters of the ideal feedback
two-port shown in Fig. 3(b). This observation is the basis of the
following simulation procedures.

4.1. Simulating f

The parameter f is the value of the reverse transmission—e.g..
the y,, term of the two-port in Fig. 3(b). Measurement of f for
the circuit in Fig. 2, ignoring dc bias, is shown in Fig. 5(a):
f=yp= irp /U, A general procedure for finding f fo'r any type
of feedback circuit at the closed-loop dc operating point is now



Vaias = + o
1*Vpe = v ours
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«©)

Fig. 6. Measurement of af =~ G- G,=—r,/r, for the circuit in
Fig. 2, including controlled sources to maintain the closed-loop dc
operating point in (b) and (c). The dc reference circuit is (a).

presented. The ideas are to employ a dc reference circuit that is
used to correctly set the operating point in the test circuit and to
measure f by driving the output node of the closed-loop feed-
back circuit and measuring all reverse transmission into an ac
short circuit or open circuit, depending upon the type of feed-
back. This two-step procedure is illustrated in Fig. 5(b) and (c)
and is described next.

Step 1: Draw the feedback circuit, labeling the ac input source
and output variable. The ac input source should be a current
source if there is shunt feedback at the input, a voltage source
for series feedback at the input. (Use Thevenin or Norton
equivalents as required.) Make two copies of this circuit. In the
first copy, if the ac input is a current (voltage) source, call the dc
voltage (current) across (through) the input source Vj (Ipe).
Now set the ac independent source to zero; this circuit will serve
as the dc reference.

Step 2: In the second circuit, drive the output with a con-
trolled source of the same type as the output variable, with
value +1 times the output of the first circuit. This controlled
source is either a voltage-controlled voltage source or a current-
controlled current source and will assure that the dc output
biasing is correct. Connect in series (parallel) with this con-
trolled voltage (current) source as independent ac voltage (cur-
rent) source s,. Also, replace the ac input source with an ideal
meter of the same type and same polarity (i.e., replace a current
source with an ideal ammeter (short circuit), or replace a voltage
source with an ideal voltmeter (open circuit)). Call the measured
quantity s;,. Connect in series (parallel) with this ideal current
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(voltage) meter a controlled voltage (current) source with value
Vaias = 1 Vpe Ugias =1-Ip¢). (This source assures that the dc
input biasing is correct.) The transfer function f =5, /s, is the
exact value of the reverse transmission evaluated at the closed-
loop dc bias point.

4.2. Simulating af

The loop gain af of Fig. 1(a) is a crucial parameter of a
feedback circuit. Given the circuit topology and its input and
output connections, af is uniquely defined. The loop-gain ex-
pression for shunt—shunt feedback was given in (6). A general
procedure for finding af at the closed-loop dc operating point is
now given and is illustrated in Fig. 6 for the shunt—shunt circuit
in Fig. 2. The procedure is based on the observation that af can
be broken into the cascade of two transfer functions: af = — G-
G, where, for the shunt-shunt case, G, = -y, /vy, and G, =
— ¥12/¥1;- G, can be measured by driving the input port with a
voltage source and measuring the output voltage. G, can be
measured by driving the output port with a voltage source and
measuring the voltage across the input port. Therefore, af is
measured by the two circuits in Fig. 6(b) and (c), which measure
G, and G,, respectively. The general procedure for simulating
af follows.

Step 1: Draw the feedback circuit, labeling the ac input source
and output variable as in Step 1 above. Make three copies of
this circuit. In the first copy, if the ac input is a current (voltage)
source, call the dc voltage (current) across (through) the input
source Vpe (Ipe). Now set the ac independent source to zero:
this circuit will serve as the dc reference.

Step 2: In the second circuit, replace the ac input current
(voltage) source with an ac voltage (current) source. Call this
new ac test source s,. Connect in series (parallel) with s, a
controlled voltage (current) source with value Vgiag=1Vj¢
(I'gias = 1" Ipe)- This controlled source will force the bias in the
second circuit to match that of the dc reference circuit.

Step 3: In the third circuit, drive the output with a controlled
source of the same type as the output variable, with value +1
times the output of the second circuit. (This controlled source is
either a current-controlled current source or a voltage-con-
trolled voltage source.) Replace the ac input source with an
ideal meter of the opposite type but the same polarity (i.e., a
current source is replaced by an ideal voltmeter, a voltage
source is replaced by an ideal ammeter). Call the measured
value s,. The transfer function af = — s, /s, is the exact value of
the loop gain af evaluated at the closed-loop dc operating point.

In Fig. 6(b), the ac input source v, drives the amplifier and
the feedback circuit in the forward direction. This voltage drive
at the summing node short circuits the fed-back current, and
therefore the output is v, = — y, U, /y,. Likewise, Fig. 6(c)
measures only reverse transfer,’ and as such af is being com-
puted as

(10)

The dc input sources and controlled sources assure that the
proper dc biasing is maintained in the second and third circuits.

A difficulty can arise if ideal amplifiers are employed. For instance,
in Fig. 6{(c), if the op-amp has zero output impedance, then two voltage
sources would be connected together at the output node. This unrealis-
tic situation can be avoided by adding a negligibly small output
impedance to the op-amp.
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Fig. 7. Return ratio (a) and loop gain (b) simulation results for the

circuit in Fig. 2 (phase is plotted with a dashed line) with component
values ZS=1/(s-2 pF). ZF=1/(s-20 pF). ZL ==Q. The op-amp
model is Z;,, =*Q, Z ., =10 MQ, and a,(s)=1000/(1 + s /2.52¢7).

These techniques for finding f and af are exact. The usual
approximations that simplify hand analysis (i.e., ignoring feed-
forward through the feedback network and ignoring reverse
transmission through the amplifier) are not required here.

V. EXAMPLES

Fig. 7 shows return-ratio and loop-gain plots for the circuit in
Fig. 2 with capacitive feedback. (The element values are given in
the caption of Fig. 7.) Differences are evident between the plots
in Fig. 7: a) the loop-gain plot shows the effect of the feedfor-
ward zero due to the feedback capacitor, whereas the return-
ratio plot is a two-pole response, and b) the —3-dB frequencies
of the two plots are not the same. These plots again point out
that, while both RR and af present useful information about
the feedback loop, they are not equal in general.

An example of loop-gain simulation for a series-shunt feed-
back circuit is shown in Fig. 8. The loop-gain plot in Fig. 8 was
produced by SPICE simulation of the test circuits shown in Fig.
8(b)~(d). Fig. 9 illustrates how the loop-gain simulation tech-
nique can be applied to a shunt-shunt feedback circuit that
does not have a current source input. Only a Norton equiva-
lence of the ac input is necessary; the dc input voltage source
can remain intact for biasing. The loop-gain simulation proce-
dure described above can be carried out, starting with Fig. 9(b).
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Fig. 7. Return ratio (a) and loop gain (b) simulation results for the

circuit in Fig. 2 (phase is plotted with a dashed line) with component
values ZS=1/(s-2 pF), ZF =1/(s-20 pF). ZL =xQ. The op-amp
model is Z,,, ==, Z ., =10 M, and a,(s)=1000/(1 + 5 /2.52¢7).

These techniques for finding f and af are exact. The usual
approximations that simplify hand analysis (i.e., ignoring feed-
forward through the feedback network and ignoring reverse
transmission through the amplifier) are not required here.

V. ExaMPLES

Fig. 7 shows return-ratio and loop-gain plots for the circuit in
Fig. 2 with capacitive feedback. (The element values are given in
the caption of Fig. 7.) Differences are evident between the plots
in Fig. 7: a) the loop-gain plot shows the effect of the feedfor-
ward zero due to the feedback capacitor. whereas the return-
ratio plot is a two-pole response, and b) the — 3-dB frequencies
of the two plots are not the same. These plots again point out
that, while both RR and af present useful information about
the feedback loop, they are not equal in general.

An example of loop-gain simulation for a series-shunt feed-
back circuit is shown in Fig. 8. The loop-gain plot in Fig. 8 was
produced by SPICE simulation of the test circuits shown in Fig.
8(b)-(d). Fig. 9 illustrates how the loop-gain simulation tech-
nique can be applied to a shunt-shunt feedback circuit that
does not have a current source input. Only a Norton equiva-
lence of the ac input is necessary; the dc input voltage source
can remain intact for biasing. The loop-gain simulation proce-
dure described above can be carried out, starting with Fig. 9(b).
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Fig. 9. (a) A shunt-shunt feedback circuit shown in the commonly
used voltage gain configuration; (b) the same circuit after converting the
ac input voltage to a current. The dc input voltage source remained in
place, thereby assuring the proper biasing on the MOSFET switch.

The advantage of performing the feedback simulations at the
closed-loop dc operating point can be emphasized by looking at
these last two circuits. Simulation at the closed-loop dc operat-
ing point ensures accurate computation of the small-signal mod-
els for transistors in the op-amps, as well as for any nonlinear
elements in the feedback network such as the MOSFET switches
in Figs. 8 and 9.

The simulation methods for af and f require that the feed-
back circuit under test be of the form of two properly intercon-
nected two-ports. While it is generally easy to visually determine
from the schematic if the feedback network is a two-port, such a
determination for the forward amplifier may be more difficult.
An assumption that the forward amplifier can be modeled as a
two-port can be tested during the simulations. For example,
differences in the measured currents flowing into the op-amp
inverting input and out of the noninverting input in Fig. 6(b) or
Fig. 8(c) indicate that the op-amp cannot be modeled by a
two-port.

VL. ReLATING RETURN Ratio T Loop Gain af*

Since the return ratio is clearly a measure of loop transmis-
sion, it should be possible to interpret it as a loop gain in some
way. In fact, the return ratio for a controlled source is the same
as the loop gain &'f’ if the output variable is taken as the
voltage across (current through) a controlled voltage (current)
source and if the input source is a current source across the
controlling voltage or a voltage source in series with the control-
ling current.’ An example of such a circuit, with new output vg,,,

4Further discussion on this topic can be found in {12].

5If there are multiple dependent sources, the output can be taken
from any dependent source and the input can be placed across any of
the controlling signals.
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Routa

Fig. 10. A shunt-shunt feedback circuit (Fig. 2 redrawn) with the
output t,, taken across the VCVS.

is shown in Fig. 10. In such a case, the loop-gain simulation
sends a signal from the controlled source back to the input port
where the controlling signal is measured (Step 3 above) and
then from the input port to the controlled source (Step 2 above).
This simulation is essentially identical to .+ return-ratio computa-
tion (in two parts) for the controlled source, since an RR
computation also sends a signal around the loop starting and
ending at the controlled source.

There is an alternative way to prove this point. Under the
conditions above, the direct feedthrough d is zero and b, is
unity. In addition, it can be shown that a=b, k (see below):
therefore, the numerators of (2) and (3) are the same. Since (2)
and (3) must give the same closed-loop gain, it follows that
RR=d4f".

To show that a=b, k, consider a shunt-shunt feedback
circuit. Under the conditions above, the output v(, must be
directly across a voltage-controlled voltage source (VCVS), and
the input is a current source driving the port across which the
controlling voltage v,, is measured (e.g., Fig. 10). Therefore,
vy = k 1y, With o), across a VCVS, yy ==Q"" and y5, =
x07! but k=—y /¥y SINCE Uy == Yalin /Y5 IS the
Thevenin equivalent open-circuit voltage at the output in Fig. 3.
Also, 1/}, =i /il =ov, Which is equivalent to b, since
by = Uiy /inlk=0 = Uin /iinlef=ov = 1/¥}. Therefore, a =
=¥/ Ynyu={(=yy /yn) (/¥ )=k by

For a sample calculation, consider Fig. 10, which is Fig. 2
redrawn. With the model of the op-amp in Thevenin form and
the output of the feedback circuit across the VCVS, k =
=G Rype=— Y21/ ¥ Now R, must be considered as part
of the feedback network. Using the element values given in the
caption of Fig. 2, the loop gain a'f" is

arf!=

(Yi2a + Yi25)

=(_GmR ua)' ’ ’
T (Ve T Y1y)

=(-10mQ~ " 1 MQ)

-1
(lOOkQ+1MQ)

=2326. (11)

T T 1
(soom+ MO 100k9.+1MQ)

This 'f’ is identical to the return ratio computed in (8).
(Although not included here, a shunt-series analysis using g-
parameters with the output equal to the current out of the G,
controlled source gives a’f” = 2326.)
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Since RR corresponds to af for some input /output pair, RR
can be used to check stability and predict closed-loop perfor-
mance for the corresponding transfer function. Since the poles
of the transfer function depend on the network, not on the
specific input and output chosen (unless the particular transfer
function happens to introduce a zero that cancels a pole), using
RR rather than the correct af to check the stability of any
transfer function is acceptable, but simulation of the correct
loop gain is preferred.

VII. CoNcLusiON

Systematic techniques for performing computer simulation of
single-loop feedback circuit parameters have been presented.
The techniques can be used by analog circuit designers and may
find applications in automated analog design software. The
results of the computer simulations are exact; no simplifying
approximations are necessary. The practical difficulty of main-

. taining the proper dc operating point while measuring the loop
parameters of the feedback circuit has been solved by using
controlled sources and a dc reference circuit. This allows the
circuit simulation program to accurately compute the linear
small-signal equivalent for all nonlinear elements in the feed-
back loop. These techniques are particularly useful for handling
complex feedback circuits with nonlinear elements.

As background, discussions of return-ratio-based and classical
feedback circuit analysis were included with an example that
clearly shows that RR and af can be quite different. Also, an
interpretation of return ratio as the loop gain of an appropri-
ately defined transfer function has been presented.

These simulation methods were illustrated by two examples
and have been used successfully on more than a dozen other
CMOS shunt-shunt feedback circuit designs employing op-amps.
The methods use frequency-domain analysis, which is preferred
over transient analysis since the former requires much less
computation and is therefore much faster than the latter, al-
though some transient simulations must be run to check slew
rate and to verify the settling time.
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A Bound Involving n-Dimensional Instantaneous
Frequency

Alan C. Bovik

We state and prove an integral inequality that bounds the
absolute difference

€(x) =|m(x) - r(x)| (D

where

m(x) =|w(x)exp(jxTuy)*exp[ju(x)]] (2)

is the response of a modulated n-dimensional real linear filter w
to a complex exponential signal with n-dimensional instanta-
neous frequency Vu(x), and where

(e) = |W[Vu(x) = uq]| 3
where W is the Fourier transform of w. The quantity e(x)
provides an estimate of the error incurred by using m(x) as an
estimate of m(x), e.g., if Vu(x) is unknown. Such estimates may
be applied to the problem of measuring the n-dimensional
instantaneous frequency of nonstationary phase-modulated sig-
nals of the form exp[ju(x)], by solving Vu(x) in terms of the
known modulation frequency u, and the known filter w, possi-
bly subject to additional constraints such as smoothness of
Vu(x). In fact, the bound is expressed in terms of a smoothness
functional (Sobolev norm) of Vu(x) and a generalized measure
of the localization (duration) of w. Such signals occur in a
variety of multidimensional system applications, such as audio
signal recognition or composition, and in the analysis of pat-
terned images.

We denote points in R” by t =(t,,¢,,--+,1,), dt =drdt, -
dr,, and the partial derivatives of u: R" — R twice-differentia-
ble at ¢ by 82 /(31,01 Ju(t) = u"/X(¢t), unless n =1, in which case
3 /@t )ut) = u"(¢).

Theorem: Let w: R™ — R be any function for which |¢,1,w(¢)!”
is integrable on R” for i, j=1,---,n, and let u: R” - R be any
twice-differentiable function for which |ut/(¢)}? is integrable
on R" for i,j=1,--,n, where ¢g>n and (1/p)+(1/g)=1.If
e(x) is given by (1)-(3), then

1

2 n n -

u Y % [ it lwol de|”
i j=1 R"

‘< Gmae-n | F

‘[i i‘&JwUKofm]? @

i=1j=1
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