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ABSTRACT

A mathematical framework for the convergence analysis of a
pipelined ADC with background gain calibration is presented. The
constraints on adaptation step size for mean convergence, for mean-
squared convergence, and for signal-to-adaptation-noise ratio are
derived. Furthermore, expressions for steady-state tap noise and for
signal-to-adaptation-noise ratio are derived. The analysis results are
verified with simulations.

1. INTRODUCTION

An analog-to-digital converter (ADC) compares an input sample
Vin at time n to a reference voltage Vref to generate a digital
approximation id[n] of the normalized input i[n] = Vin[n]/Vref .
A pipelined ADC is shown in Fig. 1. All signals are normalized
to Vref , so the input range is (−1, +1). The analog-to-digital sub-
converter (ADSC) generates an M -level digital estimation D[n] of
i[n] by comparing it to a set of M − 1 threshold levels. Using
a digital-to-analog sub-converter (DASC), this digital word is then
converted to an analog signal that is subtracted from i[n] to form the
residue z[n]. The residue is the input to a back-end ADC (ADCBE),
which generates a digital output zd[n] that is a digital estimate of the
back-end ADC input. The back-end ADC consists of an interstage
amplifier with gain 1/m0 that generates an output y[n], which is
then quantized to produce yd[n]. Assuming an ideal DASC with
gain of one, the ADC output is calculated by

id[n] = D[n] + m0yd[n]. (1)
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Fig. 1. Traditional pipelined ADC.

To prevent z[n] from exceeding the input range of ADCBE, the
magnitude of the residue z[n] must be less than m0. Even with
an optimal spacing of ADSC and DASC levels, this requires that
M ≥ 1/m0. In practice, due to errors in the stage ADSC and
offsets present in the stage, over-range is possible, so a value of
M > 1/m0 is often used. This choice allows large comparator
offsets without affecting converter linearity and is referred to as
redundancy with digital correction [1]. When this redundancy is
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present, the linearity of the ADC transfer function can be indepen-
dent of large errors in the ADSC thresholds. The primary remaining
sources of linearity error are errors in the interstage amplifier and
nonlinearity in the DASC. In a switched-capacitor implementation,
DASC nonlinearity can be measured and corrected in the digital
domain [2]. Hence, the primary source of ADC nonlinearity is
due to errors in the interstage gain 1/m0. These errors stem from
capacitor mismatch, insufficient op amp gain and charge injection.
To address this problem, digital self-calibration is often used, where
the value of m0 in (1) is adjusted to match the actual interstage
gain.

A background calibration technique to correct for interstage gain
errors was introduced in [3] and extended in [4], [5]. In this
method, a randomly modulated calibration signal is added to the
DASC output in a pipelined stage, and its effect is measured by
correlating the ADC output with the same modulation sequence. If
the amplitude of the calibration signal is known, then the magnitude
of m0 can be estimated.

2. GAIN CALIBRATED ADC

The background gain calibration technique presented in [3], [5]
is summarized by Fig. 2. A dither R[n]∆D is added to both the
output of the DASC and to the digital code D[n], where R[n] is a
random sequence of ±1, n is a time index, and ∆D is a constant.
This dither can be added using a digital-to-analog converter (DACd).
In [4], [5], the dither is added in the digital domain to the ADSC
output D[n], so that the DASC and the DACd are combined. The
dither thus introduced is used for gain calibration.
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Fig. 2. ADC with gain calibration; ADCcal is defined in Fig. 4.

Fig. 2 is difficult to analyze since the transfer function from i[n]
to u[n] is nonlinear. To simplify the analysis, Fig. 2 is transformed
as shown in Fig. 3. The advantage of the system in Fig. 3 is that it
consists of a traditional nonlinear part followed by a linear ADCBE.
The nonlinear part is not involved in calibration. Now the calibrating
ADC (ADCcal) and the added dither are contained within ADCBE.



ADSC

i[n]
ADCcal

DACd

RNG

∆D
R[n]∆D
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Fig. 3. ADC separated into linear ADCBE and nonlinear parts.

The analysis in this paper will focus on a linear model of ADCBE
as shown in Fig. 4. Some definitions are given in Table I. When
m̂[n − 1] = m0, zd[n] is defined as ẑd[n] in Fig. 4, and

zd[n] � yd[n]m0 + R[n]∆D (2)

with
yd[n] =

z[n]

m0
− R[n]∆D

m0
+ nq [n]. (3)

Substituting (3) into (2) gives:

zd[n] = z[n] + m0nq [n]. (4)

The estimated quantized-residual error (z̃d[n]) is defined as

z̃d[n] � zd[n] − ẑd[n]. (5)
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Fig. 4. Model of ADCBE including ADCcal.

TABLE I
DEFINITION OF TERMS.

Term Notation
1/(Amplifier gain) m0

Estimate of m m̂[n]
Error in estimate of m m̃[n]
Residual z[n]
Quantized residual zd[n]
Estimate of quantized residual ẑd[n]
Error in estimate of quantized residual z̃d[n]
Residual for calibration u[n]
Estimate of quantized residual for calibration ûd[n]
Dither amplitude ∆D
Random sequence of {+1,−1} R[n]

This analysis assumes the binary sequence R[n] is white and
stationary with zero mean. The residual sequence z[n] is also
assumed to be white and stationary. In addition, z[j] is assumed
to be independent of R[k] for all possible combinations of j, k.

The analysis is divided into three steps. Section 3 starts with the
mean convergence analysis. Mean-squared convergence is analyzed
in Section 4. Finally, steady-state performance is analyzed in
Section 5.

3. MEAN CONVERGENCE

A constraint on adaptation step-size (µ) for mean convergence is
derived in this section. Start with the update equation as defined in
[5] and shown in Fig. 4:

m̂[n] � m̂[n − 1] + µR[n]ẑd[n]. (6)

Subtracting m0 from both sides and noting that m̃[n] � m0−m̂[n]
gives:

m̃[n] = m̃[n − 1] − µR[n]ẑd[n]. (7)

Substituting ẑd[n] from (5) into (7) gives:

m̃[n] = m̃[n − 1] − µR[n](zd[n] − z̃d[n]). (8)

From Fig. 4 and (5), z̃d[n] can be shown to be:

z̃d[n] = m̃[n − 1]yd[n]. (9)

Substituting z̃d[n] from (9) into (8) and simplifying results in:

m̃[n] = m̃[n − 1]A[n] − µR[n]zd[n], (10)

where
A[n] � 1 + µR[n]yd[n]. (11)

Taking the expectation of (10) and noting that A[n] is independent
of m̃[n − 1] gives:

E{m̃[n]} = E{m̃[n − 1]}E{A[n]} − µE{R[n]zd[n]}. (12)

Expanding (12) using (11), (3), and (4), then further noting that
R[n] is independent of z[n] and has zero mean, results in:

E{m̃[n]} = E{m̃[n − 1]}
(

1 − µ
∆D

m0

)
+ µE{R[n]nq [n]}

(
E{m̃[n − 1]} − m0

)
. (13)

It is generally true [5] that if the input signal varies enough to
provide sufficient dither, then

E{R[n]nq [n]} ≈ 0. (14)

When (14) is true, (13) reduces to:

E{m̃[n]} = E{m̃[n − 1]}B, (15)

where
B � 1 − µ

∆D

m0
. (16)

Eq. (15) can be re-written in closed form as:

E{m̃[n]} = E{m̃[0]}Bn. (17)

From (17), it can be seen that the sequence E{m̃[n]} converges if
−1 < B < 1. This constrains µ to be in the range

0 < µ < 2m0/∆D. (18)

Thus when (18) is satisfied, E{m̂[n]} converges to m0.
It is interesting to note that E{m̂[n]} can converge to m0 in

one time step when µ = µopt � m0/∆D [6, p. 180]. In practice,
the optimum µ (µopt) cannot be used due to other limitations. A
large µ can cause excessive error power in m̂[n] (E{m̃2[n]}) and
excessive noise power in ẑd[n] (E{z̃2

d[n]}). In some cases, it can
cause E{m̃2[n]} and E{z̃2

d[n]} to diverge as shown in the next
two sections.



4. MEAN-SQUARED CONVERGENCE

The mean convergence criterion as shown in (18) is a necessary
but not a sufficient condition for the safe operation of the adaptive
calibration in (6). The criterion for mean-squared convergence
(limn→∞ E{m̃2[n]} < ∞) is also relevant in addition to the
criterion for mean convergence (limn→∞ E{m̃[n]} → 0).

The criterion for mean-squared convergence is derived below.
The steps in the derivation are: finding a relation between m̃2[n]
and m̃2[n − 1], taking expectation of m̃2[n], relating E{m̃2[n]}
to E{m̃2[n− 1]}, deriving an expression for E{m̃2[n]} assuming
mean convergence, and finding the convergence criterion for the
sequence E{m̃2[n]}.

To find the relation between m̃2[n] and m̃2[n − 1], start by
squaring both sides of (10) to get:

m̃2[n] = m̃2[n − 1]A2[n] + µ2zd
2[n]

− 2µR[n]m̃[n − 1]A[n]zd[n]. (19)

Taking the expectation of (19) and noting that m̃[n − 1] is
independent of A[n], and m̃[n−1] is independent of R[n]A[n]zd[n]
gives:

E{m̃2[n]} = E{m̃2[n − 1]}E{A2[n]} + µ2E{zd
2[n]}

− 2µE{m̃[n − 1]}E{R[n]A[n]zd [n]}. (20)

Assuming mean convergence,

E{m̃2[n]} mean conv.→ E{m̃2[n − 1]}C + D, (21)

where
C � E{A2[n]}, (22)

and
D � µ2E{zd

2[n]}. (23)

The expression in (21) can be re-written as:

E{m̃2[n]} mean conv.→ E{m̃2[0]}Cn + D

j=n−1∑
j=0

Cj . (24)

From (24), it can be seen that the sequence E{m̃2[n]} converges
if −1 < C < 1. (25)

Next, an expanded expression for C is derived to find the
constraint on µ for mean-squared convergence. Start by squaring
A[n] as defined in (11) to get

A2[n] = 1 + 2µR[n]yd[n] + µ2yd
2[n]. (26)

Expanding the right hand side of (26) using (3), taking expectation,
and using (14) gives:

C � E{A2[n]} = 1 − 2µ
∆D

m0
+ µ2E{yd

2[n]}. (27)

With (25) and (27), it can be shown that the constraint on µ for
mean-squared convergence is:

µ <
2∆D/m0

E{yd
2[n]} . (28)

When this inequality is satisfied, the mean-squared error in m̂[n]
does not diverge. This result does not imply that E{m̃2[n]}
converges to zero. In Section 5, the steady-state value for E{m̃2[n]}
is found.

5. STEADY-STATE PERFORMANCE

In the previous two sections, expressions were derived for mean
and mean-squared convergence. In Section 5-A an expression for
steady-state adaptation noise in m̂[n] is derived assuming mean-
squared convergence. Furthermore, steady-state signal-to-adaption-
noise ratio (SNRSS) and its limitation on µ are derived in Section
5-B.

A. Mean-squared error

Assuming mean-squared convergence, steady-state mean-squared
error can be found by taking the limit of (24) as time n tends to
infinity to give:

lim
n→∞

E{m̃2[n]} =
D

1 − C
. (29)

Plugging C from (27) and D from (23) into (29) gives the steady-
state mean-squared error in m̂[n]:

lim
n→∞

E{m̃2[n]} =
µE{zd

2[n]}
2∆D/m0 − µE{yd

2[n]} . (30)

For small µ, (30) can be approximated by

lim
n→∞

E{m̃2[n]} =
µE{zd

2[n]}
2∆D/m0

, (31)

and m̃[n] has a Gaussian distribution [7, pp. 103–107].
Section 5-B will show that µ is limited by the SNR requirement

on ADCBE. In practice this is often the most severe limitation on
µ.

B. signal-to-adaptation-noise ratio

The steady-state signal-to-adaptation-noise ratio at the output of
ADCBE is derived below. First, steady-state signal power is defined
as:

QSss � lim
n→∞

E{zd
2[n]}. (32)

Next, adaptation noise is defined here as z̃d[n]. Finally, steady-state
adaptation noise power is defined as:

QN ss � lim
n→∞

E{z̃2
d[n]}. (33)

Plugging z̃d[n] from (9) into (33) and noting that m̃[n − 1] is
independent of yd[n] gives:

QN ss =
(

lim
n→∞

E{m̃2[n − 1]}
)
E{yd

2[n]}. (34)

Plugging (30) into (34) gives:

QN ss =

(
µE{zd

2[n − 1]}
2∆D/m0 − µE{yd

2[n − 1]}
)

E{yd
2[n]}. (35)

Steady-state signal-to-adaptation-noise ratio is defined as:

SNRss � QSss

QN ss

. (36)

Substituting (32) for QSss and (35) for QN ss into (36) gives:

SNRss =
E{zd

2[n]}
E{zd

2[n − 1]}
2∆D/m0 − µE{yd

2[n − 1]}
µE{yd

2[n]} . (37)

Noting that both zd
2[n] and yd

2[n] are stationary gives:

SNRss =
2∆D/m0 − µE{yd

2[n]}
µE{yd

2[n]} . (38)

Eq. (38) further simplifies to:

SNRss =
2

µ

∆D/m0

E{yd
2[n]} − 1. (39)

Eq. (39) shows that SNRSS is inversely proportional to µ. Thus,
constraining SNRSS by a lower bound (SNRmin) would imply an



upper bound for µ (µmax). This can be shown by re-arranging (39)
to get:

µ < µmax = 2
∆D/m0

E{yd
2[n]}

1

SNRmin + 1
. (40)

Eq. (40) allows the designer to pick µ and ∆D to satisfy a specific
SNR requirement for ADCBE. In the next section, a practical
example is simulated to verify the analysis.

6. SIMULATION RESULTS

A back-end ADC (ADCBE) with parameters listed in Table II
was simulated. R[n] is a sequence of independent and identically
distributed (iid) random ±1s with zero mean (E{R[n]} = 0). z[n]
is a sequence of iid random real numbers uniformly distributed
within the interval

[−1
16

, 1
16

)
. Furthermore, z[j] is independent

of R[k] for all possible combinations of j, k. The constraints
on µ for this particular setup are calculated to be: µ < 4 for
mean convergence, µ < 3 for mean-squared convergence, and
µ < 1.1 × 10−5 for 9-bit SNR.

TABLE II
PARAMETERS FOR SIMULATED ADCBE .

Parameter Value Parameter Value
Stages 9 bits 9
Slicers per Stage 2 ∆D 1

16
1/m0 for first stage 8 1/m0 for last 8 stages 2
Range for z[n]

[ −1
16

, 1
16

)
Range for y[n] [−1, 1)
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Fig. 5. E{m̂[n]} versus time index for a) µ = 3.9, b) µ = 4.1.

Fig. 5 shows the theoretical and simulated expected value of the
error in m̂[n] for two cases: with µ = 3.9 (where it converges)
and with µ = 4.1 (where it diverges). Fig. 6 shows the theoretical
and simulated expected value of the mean-squared error in m̂[n]
for two cases: with µ = 2.9 (where convergence is reached) and
with µ = 3.1 (where divergence occurs). Both Fig. 5 and Fig. 6
show good agreement between theory and simulation.

Fig. 7 plots the theoretical and simulated signal-to-adaptation-
noise ratio (SNR) for ADCBE with µ = 10−6. Furthermore, SNR
including both quantization noise and adaptation noise (SNRtotal)
is also plotted. This plot shows that when adaptation noise is high,
SNRtotal is dominated by adaptation noise; when adaptation noise
is low, SNRtotal is dominated by quantization noise.
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Fig. 6. Tap-noise power versus time index for a) µ = 2.9, b) µ = 3.1.
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Fig. 7. Back-end SNR versus time index for µ = 10−6 .

7. CONCLUSION

The gain-calibrated ADC as described in [5] was analyzed. Three
constraints on µ were derived: a mean convergence constraint,
a mean-squared convergence constraint, and a constraint due to
SNR limitations. All three were verified with simulations. For most
practical applications, µ is constrained by SNR as shown in (40).
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