1. The SNR at the output of the channel is 25 dB. An AGC adds noise n that is 10 dB below the noise at the channel output. What is the SNR after the AGC?

\[\text{SNR} = 25 \text{dB} \quad \text{SNR} = ? \]

2. \[x[n] = g[n] r[n] \]

A discrete-time AGC is shown above. Let \(r[n] = A \cdot (-1)^n \). Use \(g = G \) and \(\mu = 0.01 \).
a) simulate this AGC. Use \(G[0] = 1 \) and \(A = 0.2 \) Plot \(G(n) \) and \(x(n) \) vs. \(n \).

b) repeat a) with \(A = 5 \).

c) Compare the results of a) and b).

d) Try 3 different values of \(\mu \). What changes when \(\mu \) changes?

e) Let \(g = G + 0.01G^3 \). Simulate the AGC. Does this nonlinearity cause a problem? Why or why not?

f) Introduce a dc offset at the input to the d-time integrator of 0.1. What is its effect? Explain. (Use \(A = 0.2 \).)

g) Add an offset of 0.1 to \(r[n] \). What is its effect? Explain. (Use \(A = 0.2 \).)
3. Plot the magnitude and phase vs. frequency for the \(\frac{z^{-1}}{1-z^{-1}} \) integrator. Compare its mag & phase to that of a C-t integrator: \(\frac{1}{s} \). How are they similar? How do they differ? (using simulation results)

4. Compute the Peak/rms ratio for the channel input and output below:

- \(\text{Input: } a(n) \)
- \(\text{Channel: } \frac{0.25z^{-1}}{1-0.75z^{-1}} \)
- Sample rate = bit rate
- = bit rate.

\[\text{Peak} = \text{peak magnitude} \]
\[\text{rms} = \sqrt{\text{Var}(\cdot)} \]