## University of California, Davis College of Engineering Department of Electrical and Computer Engineering

# **EEC110B LABORATORY**

# I. OBJECTIVES AND GENERAL DIRECTIONS

The object of this laboratory is to reinforce the class lecture material, to teach the use of basic lab equipment, to teach laboratory skills, both general and troubleshooting, and to develop good experimental note-taking habits. You should purchase a bound lab notebook, preferably one with grid lines. All your pre-lab calculations, lab notes, data, and reports should be kept in the lab notebook. Lab reports need not repeat information that is published in this lab manual. However, your lab notebook and manual together should contain enough information to repeat the experiments. It will be graded at the end of each experiment.

To simplify the grading process, the lab manual includes a page to summarize the results from each experiment. These pages are included at the end of the lab manual. The appropriate summary page should be attached to the beginning of each lab report in your lab notebook. All requested information, both experimental results and calculated values, should be .copied onto this page. Any items left blank on the summary page will receive no credit. All corresponding calculations, required graphs and measurements of the lab along with any notes on the various circuits should appear in the report following the results page. Items appearing on the summary page without supporting calculations in the body of the report will also receive no credit. Any questions in the lab instructions should be answered at the END of the report.

# **II. PREPARATION FOR LABS**

Time spent in the lab is to be used building and testing circuits, NOT learning the lab material and calculating circuit values. Read the labs and do any required calculations **before** coming to the lab.

# **III. BASIC LAB GROUND RULES**

The work area in the lab must be left in the following condition at the end of the lab period:

- (1) All test equipment neatly placed on the bench.
- (2) All components replaced in their proper boxes or drawers in the storage cabinet.
- (3) Wires hung up neatly on the wall in their proper section.

# **IV. GRADING**

Grading will be based on:

- (1) pre-lab calculations (where applicable)
- (2) lab report
- (3) student's lab skills
- (4) lab demonstrations

Acknowledgment - The class laboratory experiments were written by P. Chan, C. Eldering, P. Gray, P. Hurst, R. Levinson, S. Lewis, J. Pierret, and R. Spencer.

## САЗО45, САЗО46 Турез

## General-Purpose Transistor Arrays For Low Power Applications at Frequencies from DC through the VHF Range

## THREE ISOLATED TRANSISTORS AND ONE DIFFERENTIALLY CONNECTED TRANSISTOR PAIR

The CA3045 and CA3046 each consist of five general-purpose glicon n-p-n transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair.

The transistors of the CA3045 and CA3046 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits. However, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The CA3045 is supplied in a 14-lead dual-in-line hermetic (welded-seal) ceramic package and the CA3045F in a 14-lead dual-in-line hermetic (frit-seal) ceramic package.

The CA3046 is electrically identical to the CA3045 but is supplied in a dual-in-line plastic package for applications requiring only a limited temperature range.

| ABSOLUTE MAXIMUM RATINGS AT TA = 25°C                                                                                                                | ` CA3                                  | 045                                                | CA3045F,                                         |                                 |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------|--------------------|
| Bour Dissignation                                                                                                                                    | Each<br>Transistor                     | Total<br>Package                                   | Each<br>Transistor                               | Total<br>Package                |                    |
| Ta up to 55°C                                                                                                                                        | -                                      | _                                                  | <sup>*</sup> 300                                 | 750                             | mW'                |
| $T_{A} > 55^{\circ}C$                                                                                                                                | -                                      | _                                                  | Derate a                                         | t 6.67                          | mW/ºC              |
| T <sub>A</sub> up to 75 <sup>o</sup> C                                                                                                               | 300                                    | 750                                                | <u> </u>                                         | . <del></del>                   | mW                 |
| T <sub>A</sub> > 75°C                                                                                                                                | Derate                                 | at 8                                               | · _                                              | . —                             | mW/ <sup>0</sup> C |
| Collector-to-Emitter Voltage, VCEO                                                                                                                   | 15                                     | ·<br>                                              | 15                                               | -                               | v                  |
| Collector-to-Base Voltage, VCBO                                                                                                                      | 20                                     | -                                                  | 20                                               | -                               | v                  |
| Collector-to-Substrate Voltage, VCIO                                                                                                                 | 20                                     | -                                                  | 20,                                              | -                               | v                  |
| Emitter-to-Base Voltage, VEBO                                                                                                                        | 5                                      | -                                                  | 5                                                | -                               | V                  |
| Temperature Range:<br>Operating                                                                                                                      | -55 to<br>65 to                        | +125<br>+150                                       | -55 to<br>-65 to                                 | 9 +125<br>9 +150                | °C<br>°C           |
| At distance 1/16 ±1/32" (1.59 ±0.79 mm)                                                                                                              | 13                                     | ee .                                               | 10                                               | 86                              | °C                 |
| *The collector of each transition of the CA3045<br>CA3046 is isolated from the substrate by an int<br>dide. The substrate (terminal 13) must be come | and to t<br>egral main<br>rected for a | he most nega<br>ntain isolation<br>normal transist | tive point in th<br>between transi<br>or action. | e external cli<br>istors and to | cuit to<br>provide |

#### ELECTRICAL CHARACTERISTICS, at TA = 25°C

Characteristics apply for each transistor in the CA3045 and CA3046 as specified.

| CHARACTERISTICS                                                                                                                                      | SYMBOLS         | SPECIAL TEST CONDITIONS                                                                                    |      | UNITS            |      |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|------|------------------|------|---------------|
|                                                                                                                                                      |                 |                                                                                                            | MIN. | TYP.             | MAX. |               |
| STATIC CHARACTERISTICS                                                                                                                               |                 |                                                                                                            |      |                  |      |               |
| Collector-to-Base Breakdown Voltage                                                                                                                  | V(BR)CBO        | I <sub>C</sub> =10 μΑ, I <sub>E</sub> = 0                                                                  | 20   | 60               | •.   | V .           |
| Collector-to-Emitter Breakdown Voltage                                                                                                               | V(BR)CEO        | I <sub>C</sub> = 1 mA, I <sub>B</sub> = 0                                                                  | 15   | 24               | •    | V .           |
| Collector-to-Substrate Breakdown Voltage                                                                                                             | V(BR)CIO        | $I_{\rm C} = 10 \mu {\rm A}, I_{\rm CI} = 0$                                                               | 20   | 60               | •    | V             |
| Emitter-to-Base Breakdown Voltage                                                                                                                    | V(BR)EBO        | $I_{\rm E} = 10\mu{\rm A}, I_{\rm C} = 0$                                                                  | 5    | 1                | •    | ۷.            |
| Collector-Cutoff Current                                                                                                                             | ICB0            | $V_{CB} = 10 V, I_E = 0$                                                                                   | •    | 0.002            | 40   | nA            |
| Collector-Cutoff Current                                                                                                                             | ICE0            | V <sub>CE</sub> = 10 V, 1 <sub>B</sub> = 0                                                                 | •    | See curve        | 0.5  | μA            |
| Static Forward Current-Transfer Ratio<br>(Static Beta)                                                                                               | ħFE             | $V_{CE} = 3V \begin{cases} i_C = 10 \text{ mA} \\ i_C = 1 \text{ mA} \\ i_C = 10 \mu \text{A} \end{cases}$ | 40   | 100<br>100<br>54 | •    | •             |
| Input Offset Current for Matched Pair $Q_1$ and $Q_2$ . $1_{10_1} - 1_{10_2}$                                                                        |                 | V <sub>CE</sub> = 3 V, I <sub>C</sub> = 1 mA                                                               | •    | 0.3              | 2    | μA            |
| Base-to-Emitter Voltage                                                                                                                              | V <sub>BE</sub> | $V_{CE} = 3 V \begin{cases} t_E = 1 \text{ mA} \\ t_E = 10 \text{ mA} \end{cases}$                         | •••  | 0.715<br>0.800   | •    | v             |
| Magnitude of input Offset Voltage for Differential Pair $V_{BE_1} - V_{BE_2}$                                                                        |                 | V <sub>CE</sub> = 3 V, I <sub>C</sub> = 1 mA                                                               | •    | 0.45             | 5    | mV .          |
| Magnitude of Input Offset Voltage for Iso-<br>lated Transistors $ V_{BE_3} \cdot V_{BE_4} $<br>$ V_{BE_4} \cdot V_{BE_5} $ , $ V_{BE_5} - V_{BE_3} $ |                 | V <sub>CE</sub> = 3 V, I <sub>C</sub> = 1 mA                                                               |      | 0.45             | 5    | mV            |
| Temperature Coefficient of<br>Base-to-Emitter Voltage                                                                                                |                 | $V_{CE} = 3 V_{\rm r} I_{\rm C} = 1  \rm mA$                                                               |      | -1.9             |      | mV ⁰C         |
| Collector-to-Emitter Saturation Voltage                                                                                                              | VCES            | $I_{B} = 1 \text{ mA}, I_{C} = 10 \text{ mA}$                                                              | •    | 0.23             | ·    | ۷             |
| Temperature Coefficient:<br>Magnitude of Input-Offset Voltage                                                                                        |                 | V <sub>CE</sub> 3 V, 1 <sub>C</sub> 1 mA                                                                   | •    | 1.1              | •    | <i>µ</i> ,v°C |

# 

Fig. 1 - Schematic diagram. Note that the substrate (pin 13) must be connected to the lowest supply voltage.

#### FEATURES

- Two matched pairs of transistors YBE matched ±5 mV
  - Input offset current 2 µA max. at IC = 1 mA
- 5 general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure - 3.2 dB typ. at 1 kHz
- Full military temperature range for CA3045 -55 to +125°C
- The CA3045 is available in a sealed-junction Beam-Lead version (CA3045L). For further information see File No. 515, "Beam-Lead Devices for Hybrid Circuit Applications".

#### APPLICATIONS

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers
- See RCA Application Note, ICAN-5296 "Application of the RCA-CA3018 Integrated Circuit Transistor Array" for suggested applications.

#### STATIC CHARACTERISTICS



\_145

#### LINEAR INTEGRATED CIRCUITS

## CA3045, CA3046 Types

ELECTRICAL CHARACTERISTICS, of  $T_A = 25^{\circ}C$ 

|                                                                    |                 |                                                                                                   |      | LIMITS                     |      |       |  |  |
|--------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|------|----------------------------|------|-------|--|--|
| CHARACTERISTICS                                                    | SYMBOLS         | SPECIAL TEST CONDITIONS                                                                           |      | Type CA3045<br>Type CA3046 |      | UNITS |  |  |
|                                                                    |                 |                                                                                                   | MIN, | TYP.                       | MAX. |       |  |  |
| DYNAMIC CHARACTERISTICS                                            |                 |                                                                                                   |      |                            |      |       |  |  |
| Low-Frequency Noise Figure                                         | NF              | f = 1 kHz, V <sub>CE</sub> = 3V, I <sub>C</sub> = 100 $\mu$ A<br>Source Resistance = 1 k $\Omega$ |      | 3.25                       | ·    | dB    |  |  |
| Low-Frequency, Small-Signal<br>Equivalent-Circuit Characteristics: |                 |                                                                                                   |      |                            |      |       |  |  |
| Forward Current-Transfer Ratio                                     | hfe             |                                                                                                   | •    | 110                        | •    | -     |  |  |
| Short-Circuit Input Impedance                                      | h <sub>ie</sub> | 1 [                                                                                               |      | 3.5                        | ·    | kúΣ   |  |  |
| Open-Circuit Output Impedance                                      | hoe             | $f = 1 \text{ kHz}, V_{CE} = 3 \text{ V}, I_{C} = 1 \text{ mA}$                                   | •    | 15.6                       | -    | μmho  |  |  |
| Open-Circuit Reverse<br>Voltage-Transfer Ratio                     | h <sub>re</sub> |                                                                                                   | •    | 1.8×10 <sup>-4</sup>       |      | •     |  |  |
| Admittance Characteristics:                                        |                 |                                                                                                   |      |                            |      | ,     |  |  |
| Forward Transfer Admittance                                        | Y <sub>fe</sub> | ł                                                                                                 | -    | 31-j1.5                    | •    | · .   |  |  |
| Input Admittance                                                   | Y <sub>ie</sub> |                                                                                                   | •    | 0.3+j0.04                  | -    | •     |  |  |
| Output Admittance                                                  | Y <sub>oe</sub> | $\int I = I M \Pi Z, V C E = 3 V, I C = I I M A$                                                  |      | 0.001+j0.03                |      |       |  |  |
| Reverse Transfer Admittance                                        | Y <sub>re</sub> |                                                                                                   | •    | See curve                  | •    | •     |  |  |
| Gain-Bandwidth Product                                             | f <sub>T</sub>  | $V_{CE} = 3 V. I_{C} = 3 mA$                                                                      | 300  | 550                        | •    | •     |  |  |
| Emitter-to-Base Capacitance                                        | CEB             | V <sub>EB</sub> = 3 V, I <sub>E</sub> = 0                                                         | •    | 0.6                        | · .  | pF    |  |  |
| Collector-to-Base Capacitance                                      | ССВ             | $V_{CB} = 3 V, I_{C} = 0$                                                                         | •    | 0.58                       | •    | pF    |  |  |
| Collector-to-Substrate Capacitance                                 | CCI             | $V_{CS} = 3 V_1 I_C = 0$                                                                          |      | 2.8                        | •    | pF    |  |  |

#### STATIC CHARACTERISTICS



Fig.3 - Typical collector-to-emitter cutoff current vs ambient temperature for each transistor.



Fig.4 - Typical static forward current-transfer ratio and beta ratio for transistors  $Q_1$  and  $Q_2$  vs emitter current.



Fig.5 - Typical input offset current for matched transistor pair  $Q_1Q_2$  vs collector current.



Fig.6 - Typical static base-to-emitter voltage characteristic and input offset voltage for differential pair and paired isolated transistors vs emitter current.









146.

## CA3045, CA3046 Types



Fig.9(a) - Typical noise figure vs collector current.

DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR



Fig.9(b) - Typical noise figure vs collector current.





Fig.10 - Typical normalized forward current-transfer ratio, short-circuit input impedance, open-circuit output impedance, and open-circuit reverse voltage-transfer ratio vs collector current.



Fig.11 - Typical forward transfer admittance vs frequency.







Fig.13 - Typical output admittance vs frequency.







Fig.15 - Typical gain-bandwidth product vs collector current.

# CA3086 General-Purpose N-P-N Transistor Array

ree Isolated Transistors and One Differentially— Connected Transistor Pair

For Low-Power Applications from DC to 120MHz

RCA-CA3086 consists of five general-purpose silicon n-p-n partitions on a common monolithic substrate. Two of the ganistors are internally connected to form a strategistic connected to form a differentially-connected pair.

transistors in conventional circuits. However, they also provide the very significant inherent advantages unique to integrated circuits, such as compactness, ease of physical handling and thermal matching.

package. The CA3086F is supplied in a 14-lead dual-in-line hermetic (frit-seal) ceramic package.

The transistors of the CA3086 are well suited to a wide where the second The CA3086 is supplied in a 14-lead dual-in line plastic

| MAXIMUM RATINGS, Absolute-Meximus | m Values at T <sub>A</sub> = 25 <sup>o</sup> C |
|-----------------------------------|------------------------------------------------|
| DISSIPATION:                      |                                                |

| Any one transistor                                                           | 300                  | mw    |
|------------------------------------------------------------------------------|----------------------|-------|
| Total package up to T <sub>A</sub> = 55 <sup>o</sup> C                       | 750                  | mW    |
| Above TA = 55°C                                                              | derate linearly 6.67 | m₩/ºC |
| AMBIENT TEMPERATURE RANGE:                                                   |                      | _     |
| Operating                                                                    | -55 to + 125         | °c    |
| Storage                                                                      | -65 to + 150         | °c    |
| LEAD TEMPERATURE (During soldering):                                         | •                    |       |
| At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm)<br>From case for 10 seconds max | + 265                | °c.   |
| The following ratings apply for each transistor in the device:               |                      |       |
| COLLECTOR-TO-EMITTER VOLTAGE, VCEO                                           | 15                   | v     |
| COLLECTOR TO BASE VOLTAGE, VCBO                                              | 20                   | v     |
| COLLECTOR TO-SUBSTRATE VOLTAGE, VCIO*                                        | 20                   | v     |
| EMITTER-TO-BASE VOLTAGE, VEBO                                                | 5                    | V.    |
| COLLECTOR CURRENT, IC                                                        | 50                   | mA -  |

<sup>1</sup> The collector of each transistor in the CA3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. To avoid undesirable coupling between transistors, the substrate (terminal 13) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

## ELECTRICAL CHARACTERISTICS at TA = 25°C

| ي المعرف ا |                      | TEST CONDITION                      |                                |      |              |       |    |
|-------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|--------------------------------|------|--------------|-------|----|
| CHARACTERISTICS                                                                                       | SYMBOLS              |                                     | Typ.<br>Charac-                |      |              | UNITS |    |
|                                                                                                       |                      |                                     | teristic<br>Curves<br>Fig. No. | Min. | Тур.         | Max.  |    |
| Collector-to-Base Breakdown Voltage                                                                   | V <sub>(BR)CBO</sub> | $I_{C} = 10 \mu\text{A}, I_{E} = 0$ | -                              | 20   | 60           |       | v  |
| Collector-to-Emitter Breakdown Voltage                                                                | V(BR)CEO             | $lc = 1mA, l_B = 0$                 | -                              | 15   | 24           | 1     | V  |
| Collector-to-Substrate Breakdown Voltage                                                              | V <sub>(BR)CIO</sub> | $I_{C} = 10  \mu A, I_{CI} = 0$     | -                              | 20   | 60           |       | ν. |
| Emitter-to-Base Breakdown Voltage                                                                     | V(BR)EBO             | $I_{E} = 10 \mu A, I_{C} = 0$       | -                              | 5    | 7            | -     | V  |
| Collector-Cutoff Current                                                                              | ГСВО                 | $V_{CB} = 10V, I_E = 0$             | • 2                            | -    | 0.002        | 100   | nA |
| Collector-Cutoff Current                                                                              | ICEO                 | $V_{CE} = 10V, I_B = 0$             | 3                              | -    | See<br>Curve | 5     | μA |
| DC Forward-Current Transfer Ratio                                                                     | hFE                  | $V_{CE} = 3V_{1}I_{C} = 1mA$        | 4                              | 40   | 100          | -     |    |





#### Applications

- General-purpose use in signal processing systems operating in the DC to 120-MHz range
- Temperature compensated amplifiers
- See RCA Application Note, ICAN-5296 "Application of the RCA-CA3018 Integrated-Circuit Transistor Array" for suggested applications.



Fig. 1 - Schematic diagram. Note that the substrate (pin 13) must be connected to the lowest supply voltage.

#### TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR





## CA3086

ELECTRICAL CHARACTERISTICS at T<sub>A</sub> = 25°C Typical Values Intended Only for Design Guidance

| [                                                                  | ŀ                    | 1                                     | EST CONDITIONS                             |                                                   |                                            |                |       |       |
|--------------------------------------------------------------------|----------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------|-------|-------|
| CHARACTERISTICS                                                    | SYMBOL               |                                       |                                            | Typ.<br>Chara-<br>teristics<br>Curves<br>Fig. No. | TYPICAL<br>VALUES                          | UNITS          |       |       |
| DC Forward-Current                                                 | h <sub>FE</sub>      | V <sub>CE</sub> = 3V                  | $I_C = 10 \text{ mA}$                      | 4                                                 | 100                                        |                |       |       |
|                                                                    |                      |                                       |                                            |                                                   | 0.715                                      |                |       |       |
| Base-to-Emitter Voltage                                            | ∨ <sub>8E</sub>      | V <sub>CE</sub> = 3V                  | $V_{CE} = 3V$ $E = 1 mA$                   |                                                   | VCE = 3V   IE = 10mA                       |                | 0.715 |       |
| VBE Temperature Coefficient                                        | Δν <sub>βΕ</sub> /Δτ | V <sub>CE</sub> = 3V,                 | V <sub>CE</sub> = 3V, I <sub>C</sub> = 1mA |                                                   | V <sub>CE</sub> = 3V, I <sub>C</sub> = 1mA |                | -1.9  | mV/ºC |
| Collector-to-Emitter<br>Saturation Voltage                         | V <sub>CEsat</sub>   | I <sub>B</sub> = 1mA,                 | <sup>1</sup> C = 10mA                      | -                                                 | 0.23                                       | <sup>*</sup> V |       |       |
| Noise Figure (low frequency)                                       | NF                   | f = 1kHz, V<br>1 <sub>C</sub> = 100μA | CE = 3V,<br>, R <sub>S</sub> = 1k Ω        | -                                                 | 3.25                                       | dB             |       |       |
| Low-Frequency, Small-Signal<br>Equivalent-Circuit Characteristics: |                      |                                       |                                            |                                                   |                                            |                |       |       |
| Forward Current-Transfer Ratio                                     | h <sub>fe</sub>      | ÷                                     | •                                          | 7                                                 | 100                                        | -              |       |       |
| Short-Circuit Input Impedance                                      | h <sub>ie</sub>      | f = 1kHz, V                           | CE <sup>= 3V, I</sup> C <sup>= 1mA</sup>   | 7                                                 | 3.5                                        | kΩ             |       |       |
| Open-Circuit Output Impedance                                      | hoe                  | 1                                     |                                            | 7                                                 | 15.6                                       | μmho           |       |       |
| Open-Circuit Reverse-Voltage<br>Transfer Ratio                     | h <sub>re</sub>      |                                       |                                            | 7                                                 | 1.8 X 10 <sup>-4</sup>                     | -              |       |       |
| Admittance Characteristics:                                        |                      |                                       |                                            |                                                   |                                            |                |       |       |
| Forward Transfer Admittance                                        | γ <sub>fe</sub>      | -                                     |                                            | 8                                                 | 31 — j1.5                                  | mmho           |       |       |
| Input Admittance                                                   | y <sub>ie</sub>      | f = 1MHz, V                           | / <sub>CE</sub> = 3V, I <sub>C</sub> = 1mA | 9                                                 | 0.3 + j0.04                                | mmho           |       |       |
| Output Admittance                                                  | Yoe                  | 1 .                                   |                                            | 10                                                | 0.001 + j0.03                              | mmho           |       |       |
| Reverse Transfer Admittance                                        | ·Yre                 | 1                                     |                                            | 11,                                               | See Curve                                  | -              |       |       |
| Gain-Bandwidth Product                                             | f <sub>T</sub>       | V <sub>CE</sub> = 3V,                 | I <sub>C</sub> = 3mA                       | 12                                                | 550                                        | MHz            |       |       |
| Emitter-to-Base Capacitance                                        | C <sub>EBO</sub>     | V <sub>EB</sub> = 3V,                 | le = 0                                     | -                                                 | 0.6                                        | pF             |       |       |
| Collector-to-Base Capacitance                                      | Ссво                 | V <sub>CB</sub> = 3V,                 | I <sub>C</sub> ≖ 0                         |                                                   | 0.58                                       | pF             |       |       |
| Collector-to-Substrate Capacitance                                 | c <sub>CIO</sub>     | V <sub>CI</sub> = 3V, I               | c <sup>= 0</sup>                           | -                                                 | 2.8                                        | pF             |       |       |





Fig.7 -- Normalized h<sub>fe</sub>, h<sub>ie</sub>, h<sub>oe</sub>, h<sub>re</sub> vs I<sub>C</sub>.



Fig.8 -- y<sub>fe</sub> vs f.

CONDUCTANCE (94)

EVERSE TRANSFER AND SUSCEPTANCE

92CS-14257









Fig. 12-f<sub>T</sub> vs I<sub>C</sub>.



# CA3096E, CA3096AE

## N-P-N/P-N-P Transistor-Array IC

RCA-CA3096E and CA3096AE are general-purpose highvoltage silicon transistor arrays. Each array consists of five independent transistors (two p-n-p and three n-p-n types) on a common substrate, which has a separate connection. Independent connections for each transistor permit maximum flexibility in circuit design. Types CA3096AE and CA3096E are identical, except that the CA3096AE specifications include parameter matching and greater stringency in ICBO, ICEO, and VCE(SAT) (see Table I). CA3096E and CA3096AE are supplied in 16-lead dual-in-line plastic packages.

#### TABLE I- CA3096AE AND CA3096E ESSENTIAL DIFFERENCES\*

| RCA      | RCA ICBO IC<br>TYPE (nA) (n<br>TYPE |      | l <sub>C</sub> | EO<br>A) | V <sub>CE</sub><br>(V | (SAT)<br>/) | V <br>(m | 10 <sup> </sup><br> V) | ا10 <sup>1</sup><br>(مم) |      |
|----------|-------------------------------------|------|----------------|----------|-----------------------|-------------|----------|------------------------|--------------------------|------|
| TYPE     |                                     |      | p-n-p          | n-p-n    | p-n-p                 | n-p-n       | p-n-p    | n-p-n                  | p-n-p                    |      |
| CA3096AE | 40                                  | - 40 | 100            | -100     | 0.7                   | 0.4         | 5        | 5                      | 0.6                      | 0.25 |
| CA3096E  | 100                                 | -100 | 1000           | -1000    | 1.0                   | 0.7         | -        | -                      | -                        | -    |

\* Maximum values.

#### STATIC ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$ (For Equipment Design)

| CHARACTERISTICS                                | SYMBOL               | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CA30 | CA3096AE, CA3096E<br>LIMITS |          |       |  |  |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|----------|-------|--|--|
|                                                |                      | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min. | Тур.                        | Max.     |       |  |  |
| For Fech n.o.o Transistor:                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          |       |  |  |
| Collector-Cutoff Current (CA3096AE)            | ICBO                 | V <sub>CB</sub> = 10 V, i <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    | 0.0013                      | 40       | nA    |  |  |
| Collector-Cutoff Current (CA3096AE)            | ICEO                 | VCE = 10 V, IB = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    | 0.0055                      | 100      | nA    |  |  |
| Collector-Cutoff Current (CA3096E)             | ICBO                 | V <sub>CB</sub> = 10 V, I <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    | 0.0013                      | 100      | nA    |  |  |
| Collector-Cutoff Current (CA3096E)             | ICEO                 | VCE = 10 V, IB = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    | 0.0055                      | 1        | μΑ    |  |  |
| Collector-to-Emitter Breakdown Voltage         | V(BR)CEO             | I <sub>C</sub> = 1 mA, I <sub>B</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35   | 50                          | -        | v     |  |  |
| Collector-to-Base Breakdown Voltage            | V(BB)CBO             | Ic = 10 μA, IE = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45   | 100                         | -        | v     |  |  |
| Collector-to-Substrate Breakdown Voltage       | V(BB)CIO             | I <sub>CI</sub> = 10 μA, I <sub>B</sub> = I <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45   | 100                         | -        | v     |  |  |
| Emitter-to-Base Breakdown Voltage              |                      | IF = 10 μA, IC = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6    | 8                           | -        | v     |  |  |
| Emitter-to-Base Zener Voltage                  | V7                   | l <sub>Z</sub> = 10 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6    | 7.9                         | 9.8      | v     |  |  |
| Collector-to-Emitter Saturation Voltage        |                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                             |          |       |  |  |
| (CA3096AE)                                     | VCE(SAT)             | I <sub>C</sub> = 10 mA, I <sub>B</sub> = 1 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ ·  | 0.24                        | 0.5      | v     |  |  |
| Collector-to-Emitter Saturation Voltage        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          |       |  |  |
| (CA3096E)                                      | VCE(SAT)             | i <sub>C</sub> = 10 mA, i <sub>B</sub> = 1 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _    | 0.24                        | 0.7      | V     |  |  |
| Base-to-Emitter Voltage                        | VBE                  | ic = 1 mA. Vc∈ = 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6  | 0.69                        | 0.78     | V     |  |  |
| DC Forward-Current Transfer Ratio              | hFE                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150  | 390                         | 500      |       |  |  |
| Magnitude of Temperature Coefficient:          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          | 0     |  |  |
| VBE (for each transistor)                      | Δν <sub>βε</sub> /Δτ | IC = 1 mA, VCE = 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | 1.9                         | -        | mV/Č  |  |  |
| For Each p-n-p Transistor:                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          |       |  |  |
| Collector-Cutoff Current (CA3096AE)            | Ісво                 | V <sub>CB</sub> = -10 V, 1 <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -    | - 0.055                     | 40       | nA    |  |  |
| Collector-Cutoff Current (CA3096AE)            | ICEO                 | VCE = -10 V, IB = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | -0.12                       | 100      | nA    |  |  |
| Collector-Cutoff-Current (CA3096E)             | ICEO                 | VCE = -10 V, IB = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | -0.12                       | 1        | μΑ    |  |  |
| Collector-Cutoff-Current (CA3096E)             | СВО                  | $V_{CB} = -10 V, I_E = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _    | -0.055                      | 100      | nA    |  |  |
| Collector-to-Emitter Breakdown Voltage         | V(BR)CEO             | I <sub>C</sub> =100 μA, I <sub>B</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40  | 75                          | -        | v     |  |  |
| Collector-to-Base Breakdown Voltage            | V(BR)CBO             | I <sub>C</sub> = -10 μA, I <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -40  | 80                          |          | v     |  |  |
| Emitter-to-Base Breakdown Voltage              | V(BR)EBO             | I <sub>E</sub> = -10 μA, I <sub>C</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -40  | -100                        | -        | v     |  |  |
| Emitter-to-Base Zener Voltage                  | VZ .                 | i <sub>Z</sub> = 10 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10   | 16                          | -        | V.    |  |  |
| Emitter-to-Substrate Breakdown Voltage         | V(BR)EIO             | $I_{E1} = 10 \ \mu A, I_B = I_C = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40   | 100                         | -        | v     |  |  |
| Collector-to-Emitter Saturation Voltage        | VCE(SAT)             | $I_{C} = -1 \text{ mA}, I_{B} = -100 \mu\text{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | -0.16                       | -0.4     | v     |  |  |
| Base-to-Emitter Voltage                        | VRF                  | Ic = -100 #A, VcF = -5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.5 | -0.6                        | -0.7     | v     |  |  |
|                                                |                      | I <sub>C</sub> = -100 μA, V <sub>CE</sub> = -5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40   | 85                          | 200      |       |  |  |
| DC Forward-Current Transfer Ratio              | hFE                  | Ic = -1 mA, VcE = -5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20   | 47                          | 150      |       |  |  |
| Magnitude of Temperature Coefficient:          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          |       |  |  |
| VBE (for each transistor)                      | Δν <sub>ΒΕ</sub> /Δτ | $I_{C} = -100 \mu$ A, $V_{CE} = -5 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -2.2                        | -        | mV/°C |  |  |
| For Transistors Q1 and Q2 (As a Differential A | mplifier): CA3       | 1096AE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                             |          |       |  |  |
| Absolute Input Offset Voltage                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 0.3                         | 5        | mV    |  |  |
| Abashuta Lagud Officet Current                 | lind                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 0.07                        | 0.6      | ШA    |  |  |
| Absolute Input Offset Voltage Temperature      |                      | VCE * 5 V, IC * I mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                             | †        |       |  |  |
| Coefficient                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1.1                         |          | µv/°c |  |  |
| For Transistors Q4 and Q5 (As a Differential A | 096AE ONLY           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |          |       |  |  |
| Absolute Input Offset Voltage                  | IV tol               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 0.15                        | 5        | m۷    |  |  |
| Absolute Input Offset Current                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2                           | 250      | nA    |  |  |
| Absolute Input Offset Voltage Temperature      |                      | $= \frac{1}{100} = $ |      | T                           |          |       |  |  |
| Coefficient                                    | Δτ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 0.54                        | <u> </u> | µv/°c |  |  |

SUBSTRATE 9205-20308

Schematic Diagram

Features:

- Matched General-Purpose Transistors (CA3096AE Only)
- Input Offset Voltage ± 5 mV
- Input Offset Current:
- p-n-p Pair ± 250 nA max. @ I<sub>C</sub> = -100 μA
- n-p-n Pair ±0.6 μA max. @ I<sub>C</sub> = 1 mA
- High hFE
- n-p-n transistor: 150 min. @ IC = 1 mA
- p-n-p transistor: 40 min. @ IC = 100 µA
- High Breakdown Voltages:
- n-p-n transistor: V<sub>(BR)CEO</sub> ≠ 35 V min; V<sub>(BR)CBO</sub> = 45 V min.

p-n-p transistor: V(BR)CEO = 40 V min; V(BR)CBO =

40 V min.

- Separate Substrate Connection
- Low Noise Figure:
  - n-p-n transistor: 2.2 dB typ. at 1 kHz p-n-p transistor: 3 dB typ. at 1 kHz

Applications:

- Differential Amplifiers
- DC Amplifiers
- Sense Amplifiers
- Level Shifters
- Timers
- Lamp and Relay Drivers
   Thyristor Firing Circuits
- Temperature-Compensated Amplifiers
- Operational Amplifiers
- Operational Amplituers

| AXIMUM RATINGS, Absolute Maxin      | mum Values               | at T_A = 2                                                       | s°с                |
|-------------------------------------|--------------------------|------------------------------------------------------------------|--------------------|
|                                     | Each n-p-n<br>Transistor | Each p-n-j<br>Transisto                                          | <b>D</b>           |
| ollector-to-Emitter Voltage VCEO    | 35                       | - 40                                                             | v                  |
| collector-to-Base Voltage VCBO      | 45                       | - 40                                                             | v                  |
| collector-to-Substrate              |                          |                                                                  |                    |
| Voltage                             | 45                       | 45                                                               | v                  |
| mitter-to-Base Voltage VEBO         | 6                        | - 40                                                             | v                  |
| Collector Current IC                | 50                       | - 10                                                             | mA                 |
| Dissipation PD:                     |                          |                                                                  |                    |
| Up to TA = 55 °C:                   |                          |                                                                  |                    |
| Device (Total)                      | 7                        | 50                                                               | mW                 |
| Each Transistor                     | 2                        | 00                                                               | m₩                 |
| Above T <sub>A</sub> = 55 °C        | Derate Lin               | early 6.67                                                       | m₩/ <sup>−</sup> C |
| Temperature Range:                  |                          |                                                                  | •                  |
| Operating                           | 55 1                     | io +125                                                          | ٦° د               |
| Storage                             | -65 1                    | o +150                                                           | °C                 |
| Lead Temperature (During Soldering) |                          |                                                                  |                    |
| At distance 1/16 ± 1/32" .          |                          |                                                                  |                    |
| (1.59 ± 0.79 mm) from case for      |                          |                                                                  | ۰.                 |
| 10 seconds max                      | 2                        | 65                                                               | С                  |
|                                     | <b>.</b>                 |                                                                  |                    |
|                                     |                          |                                                                  |                    |
|                                     |                          | $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ |                    |
|                                     |                          |                                                                  |                    |
|                                     |                          | ╞┠┉┾╍╋                                                           | ++++               |
| $ \overline{1} $                    |                          |                                                                  |                    |
|                                     | 1                        | $\square$                                                        |                    |
|                                     |                          | ┼┥┝━╵                                                            | /z+                |



Fig.1-Base-to-emitter zener characteristic (n-p-n).

# CA3096E, CA3096AE

DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C

| CHARACTERISTICS                    | SYMBOL  | TEST CONDITIONS                                                                    | TYPICAL VALUES | UNITS    |  |
|------------------------------------|---------|------------------------------------------------------------------------------------|----------------|----------|--|
| er Fach n-p-n Transistor           |         |                                                                                    |                |          |  |
| to se Figure (low frequency)       | NF      | $f = 1 \text{ kHz}, \text{ V}_{CE} = 5 \text{ V},$<br>IC = 1 mA, RS = 1 k $\Omega$ | 2.2            | dB       |  |
| Enquency Input Resistance          | Ri      | 6 = 1.0 kHz V == 5 V                                                               | 10             | kΩ       |  |
| OW-Frequency, Input Resistance     | Bo      |                                                                                    | 80             | kΩ       |  |
| Admittance Characteristics:        | 9fe     |                                                                                    | 7.5            |          |  |
| Forward Transfer Admittance        | Yte bre |                                                                                    | -j13           | mmno     |  |
|                                    | 9ie     | f = 1 MHz, V <sub>CE</sub> = 5 V,                                                  | 2.2            | mmh      |  |
| Input Admittance                   | Vie bie | I <sub>C</sub> = 1 mA                                                              | j3.1           |          |  |
|                                    | 908     | 1                                                                                  | 0.76           | mmhc     |  |
| Output Admittance                  | Voe boe |                                                                                    | j2.4           | <b>_</b> |  |
|                                    |         | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 1.0 mA                                     | 280            | Мнг      |  |
| Gain-Bandwidth Product             |         | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 5 mA                                       | 335            |          |  |
| Emitter-to-Base Capacitance        | CEB     | VEB = 3 V                                                                          | 0.75           | pr       |  |
| Collector-to-Base Capacitance      | CCB     | V <sub>CB</sub> = 3 V                                                              | 0.46           | pt       |  |
| Collector-to-Substrate Capacitance | CCI     | V <sub>C1</sub> = 3 V                                                              | 3.2            | pi       |  |
| For Each a p.p. Transistor         |         |                                                                                    |                |          |  |
| Noise Figure (low frequency)       | NF      | f = 1  kHz,<br>$I_{C} = 100 \mu\text{A}, \text{Bs} = 1 \text{ k}\Omega$            | 3              | d        |  |
| Desistance                         |         | f = 1 kHz, VCE = 5 V,                                                              | 27             | kS       |  |
| Low-Frequency input Resistance     |         | ic = 100 μA                                                                        | 680            | k        |  |
| Low-Frequency Output Resistance    |         | VCE = 5 V, IC = 100 #A                                                             | 6.8            | мн       |  |
| Usin-Bandwidth Product             | CER     | VEB = -3 V                                                                         | 0.85           | p        |  |
| Emitter-to-Base Capacitance        | Ссв     | V <sub>CB</sub> = -3 V                                                             | 2.25           | P        |  |
|                                    | Cei     | V <sub>B1</sub> = 3 V                                                              | 3.05           | P        |  |



Fig.4-Transistor (n-p-n) h<sub>FE</sub> as a function of

















,





ないためもの



# CA741, CA747, CA748, CA1458, CA1558 Types Operational Amplifiers

High-Gain Single and Dual Operational Amplifiers For Military, Industrial and Commercial Applications

The RCA-CA1458, CA1558 (dual types); CA741C, CA741 (single-types); CA747C, CA747 (dual types); and CA748C, CA748 (single types) are general-purpose, high-gain operational amplifiers for use in military, industrial, and commercial applications.

These monolithic silicon integrated circuit devices provide output short-circuit protection and latch-free operation. These types also feature wide common-mode and differential-mode signal ranges and have low-offset voltage nulling capability when used with an appropriately valued potentiometer. A 5megohm potentiometer is used for offset nulling types CA748C, CA748 (See Fig. 10); a 10-kilohm potentiometer is used for offset nulling types CA741C, CA741, CA747CE, CA747CG, CA747E, CA747G (See Fig. 9); and types CA1458, CA1558, CA747CT, have no specific terminals for offset nulling, Each type consists of a differential-input amplifier that effectively drives a gain and level-shifting stage having a complementary emitter-follower output.

This operational amplifier line also offers the circuit designer the option of operation with internal or external phase compensation.

Types CA748C and CA748, which are externally phase compensated (terminals 1 and 8) permit a choice of operation for improved bandwidth and slew-rate capabilities. Unity gain with external phase compensation can be obtained with a single 30-pF capacitor. All the other types are internally phase-compensated.

RCA's manufacturing process makes it possible to produce IC operational amplifiers with low-burst ("popcorn") noise characteristics. Type CA6741, a low-noise version of the CA741, gives limit specifications for burst noise in the data bulletin, File No. 530. Contact your RCA Sales Representative for information pertinent to other operational amplifier types that meet low-burst noise specifications.

- "G" Suffix Types-Hermetic Gold-CHIP in Dual-In-Line Plastic Package
- "E" Suffix Types-Standard Dual-In-Line Plastic Package
- "T" and "S" Suffix Types-TO-5 Style Package

# Features:

- Input bias current (all types): 500 nA max.
- Input offset current (all types): 200 nA max.

#### Applications:

- Comparator
- DC amplifier
- Integrator or differentiator
- Multivibrator
- Narrow-band or band-pass filter
- Summing amplifier

ECTED TO

1a.-CA741CS,CA741CT,CA741S, & CA741T with internal phase compensation.



| DC Supply Voltage (between V <sup>+</sup> and V <sup>-</sup> t | erm      | inals | ):    |        |       |      |      |      |            |      |     |              |       |                     |
|----------------------------------------------------------------|----------|-------|-------|--------|-------|------|------|------|------------|------|-----|--------------|-------|---------------------|
| CA741C, CA747CA, CA748C, CA1458                                | <b>≜</b> |       |       |        |       |      |      |      |            |      |     |              |       | . 36 V              |
| CA741, CA747*, CA748, CA1558* .                                |          |       |       |        |       |      |      | •    |            |      |     |              |       | 44 V                |
| Differential Input Voltage                                     |          |       |       |        |       |      |      |      |            | ÷    | ÷   | ÷            |       | ±30 V               |
| DC Input Voltage*                                              |          |       |       |        |       |      |      |      |            |      | ·   |              |       | ±15 V               |
| Output Short-Circuit Duration.                                 | ÷        |       |       | · .    |       |      |      |      |            | ÷    |     | ·            |       | Indefinite          |
| Device Dissipation:                                            | -        | -     |       | •      | •     |      |      | •    | •          | •    | •   | ÷            | • •   |                     |
| Up to 70°C (CA741C CA748C)                                     |          |       |       |        |       |      |      |      |            |      |     |              |       | 500 mW              |
| Up to 75°C (CA741, CA748)                                      | •        |       | •     | •      | •     | •    | •••  | •    | •          | •    | •   | •            | •••   | 500 mW              |
| Up to 30°C (CA747)                                             | ·        | •     | • •   | •      | ·     | •    | • •  | •    | •          | •    | •   | •            | • •   | 800 mW              |
| Un to 25°C (CA747C)                                            | •        | ·     | • •   | •      | ·     | ·    | • •  | ·    | •          | •    | •   | •            | • •   | 800 mW              |
| Lin to 30°C (CA1558)                                           | ·        | •     | • •   | ·      | •     | •    | • •  | •    | •          | •    | •   | •            | • •   | 690 mW              |
| $U_0 t_0 25^{\circ} C (CA1458)$                                | •        | ·     | • •   | ·      | •     | •    | •••  | •    | •          | •    | ·   | • '          | • •   | 690 mW              |
| For Temperatures Indicated Above                               | •        | •     | • •   | •      | •     | •    | • •  | ·    | •          |      | •   | •<br>• • • • | • •   | 6 67 mW/°C          |
| Voltage between Offset Null and V= (CA)                        |          |       | 741   |        |       |      | · ·  |      |            | 06   | au  |              | earry | 0.07 mm/ C          |
| Ambient Temperature Banger                                     | 410      | , 04  | /41,  | CA     | 470   |      |      | +/00 | <b>)</b> , | ·    | •   | •            | • •   | . 10.5 V            |
| Operating CA341 CA347E CA349                                   | ~ • •    |       |       |        |       |      |      |      |            |      |     |              |       | - · · · · · · · · · |
| Operating - CA741, CA747E, CA748,                              |          | 000   |       | •      | ·     | •    | • •  | ·    | ·          | ·    | ·   | •            | -5    | 5 to +125 C         |
| CA/41C, CA/4/C, CA/4                                           | 5C, C    | A14   | 58.   | ·      | ·     | ·    | • •  | ·    | ٠          | ·    | ·   | ٠            | _     | 0 to +/0 C'         |
| Storage                                                        | ·        | ·     | • •   | ·      | ٠     | ·    | • •  | ·    | ·          | ·    | ·   | •            | -6    | 5 to +150 C         |
| Lead Temperature (During Soldering):                           | 70.      |       | ••••  |        |       | 10   |      |      |            |      |     |              |       | 200 °C              |
| At distance 1/10 ± 1/32 mcn (1.59 ± 0                          | ./91     | nm    | mon   | 1 Case | e tor | 10   | seco | nasi | nax        | •    | •   | •            | • •   | . 205 C             |
| * If Supply Voltage is less than ± 15 volts,                   | the      | Abso  | olute | Max    | imu   | m lr | nput | Volt | age        | is e | qua | l to         | the S | Supply Volt-        |

Voltage values apply for each of the dual operational amplifiers.

<sup>†</sup> All types in any package style can be operated over the temperature range of -55 to +125°C, although the published limits for certain electrical specifications apply only over the temperature range of 0 to +70°C.



92C5 - 19427RI

1b.—CA747CT and CA747T with internal phase compensation.



1c.-CA748CS, CA748CT, CA748S, and CA748T with external phase compensation.

Fig: 1 - Functional diagrams.

ì

# CA741, CA747, CA748, CA1458, CA1558 Types

| RCA<br>Type No. | No. of<br>Ampl. | Phase<br>Comp. | Offset Voltage<br>Null | Min.<br>A <sub>OL</sub> | Max. V <sub>IO</sub><br>(mV) | Operating-Temperature<br>Range ( <sup>°</sup> C) |
|-----------------|-----------------|----------------|------------------------|-------------------------|------------------------------|--------------------------------------------------|
| CA1458          | dual            | int:           | no                     | 20k                     | 6                            | 0 to +70▲                                        |
| CA1558          | duat            | int.           | no                     | 50k                     | 5                            | -55 to +125                                      |
| CA741C          | single          | int.           | ves                    | 20k                     | 6                            | 0 to +70≜                                        |
| CA7410          | single          | int.           | ves                    | 50k                     | 5                            | 55 to +125                                       |
| CA747C          | dual            | int.           | ves*                   | 20k                     | / 6                          | 0 to +70≜                                        |
| CA747           | dual            | int.           | ves*                   | 50k                     | 5                            | -55 to +125                                      |
| CA748C          | single          | ext.           | ves                    | 20k                     | 6                            | 0 to +70≜                                        |
| CA748           | single          | ext.           | yes                    | 50k                     | 5                            | -55 to +125                                      |

\*In the 14-lead dual-in-line plastic package only.

<sup>▲</sup>All types in any package style can be operated over the temperature range of -55 to +125°C, although the published limits for certain electrical specifications apply only over the temperature range of 0 to +70°C.

### ORDERING INFORMATION

When ordering any of these types, it is important that the appropriate suffix letter for the package required be affixed to the type number. For example: If a CA1458 in a straight-lead TO-5 style package is desired, order CA1458T.

|          |               |          | PACKAG  | E TY    | PE A | ND SL                | FFIX | LETT | ÉR            |               |          |
|----------|---------------|----------|---------|---------|------|----------------------|------|------|---------------|---------------|----------|
| Type No. | TO-5<br>STYLE |          |         | PLASTIC |      | Gold-CHIP<br>PLASTIC |      | CHIP | Gold-<br>CHIP | BEAM-<br>LEAD | FIG. No. |
|          | 8L            | 10L      | DIL-CAN | 8L      | 14L  | 8L                   | 14L  |      |               |               |          |
| CA1458   | т             |          | S       | Ė       |      | G                    |      | н    | GH            |               | 1d, 1h   |
| CA1558   | Т             | <u> </u> | S       | E       |      | G                    |      |      |               |               | 1d, 1h   |
| CA741C   | т             | †        | S       | Е       | [    | G                    |      | н    | GH            |               | 1a, 1e   |
| CA741    | Т             |          | S       | E       |      | G                    |      |      |               | L             | 1a, 1e   |
| CA747C   |               | Т        |         | 1       | E    | 1                    | G    | н    | GH            |               | 1b, 1f   |
| CA747    |               | Т        |         |         | E    |                      | G    |      |               |               | 1b, 1f   |
| CA748C   | T             |          | s       | E       | 1    | G                    |      | н    | GH            |               | 1c, 1g   |
| CA748    | T             |          | S       | E       |      | G                    |      |      |               |               | 1c, 1g   |



Fig.2—Schematic diagram of operational amplifier with external phase compensation for CA748C and CA748.



1d. – CA1458S, CA1458T, CA1558S, and CA1558T and internal phase compensation.



1e.-CA741CE,CA741CG,CA741E, and CA741G with internal phase compensation.



1f.—CA747CE,CA747CG,CA747E, and CA747G with internal phase compensation.



1g.-CA748CE,CA748CG,CA748E, and CA748G with external phase compensation.



phase compensation.

Fig. 1 - Functional Diagrams (Cont'd)

# CA741, CA747, CA748, CA1458, CA1558 Types



Fig.3–Schematic diagram of operational amplifiers with internal phase compensation for CA7410 CA741, and for each amplifier of the CA747C, CA747, CA1458, and CA1558. ELECTRICAL CHARACTERISTICS

## For Equipment Design

|                                                      | TEST CONDI                    | TIONS                       |            | LIMITS   |      |               |
|------------------------------------------------------|-------------------------------|-----------------------------|------------|----------|------|---------------|
|                                                      | Supply Voltage $V^+ = 15 V$ . | <b>je</b> ,                 |            | CA741    |      |               |
| CHARACTERISTIC                                       | V- = -15 V                    | -:                          |            | CA747*   |      | UNITS         |
|                                                      | Ţ.                            | Ambient                     |            | CA1558*  |      |               |
|                                                      |                               | Temperature, T <sub>A</sub> | Min.       | Тур.     | Max. |               |
| Input Offset Voltage Vio                             | Rc = ≤ 10 kΩ                  | 25 °C                       | -          | 1        | 5    | mV            |
|                                                      | 3                             | –55 to +125 °C              | _          | 1        | 6    |               |
|                                                      |                               | 25 °C                       | -          | 20       | 200  |               |
| Input Offset Current, IIO                            |                               | –55 °C                      | 1          | 85       | 500  | nA            |
|                                                      |                               | +125 °C                     | <b>—</b> , | 7        | 200  | 1.<br>1.      |
|                                                      |                               | 25 °C                       | . –        | 80       | 500  |               |
| Input Bias Current, I <sub>IB</sub>                  |                               | –55 °C                      | _          | 300      | 1500 | nA            |
|                                                      |                               | +125 °C                     | -          | 30       | 500  |               |
| Input Resistance, R                                  |                               |                             | 0.3        | 2        | -    | MΩ            |
| Open-Loop Differential                               | R <sub>L</sub> ≥2kΩ           | 25 °C                       | 50,000     | 200,000  | -    |               |
| Voltage Gain, A <sub>OL</sub>                        | V <sub>O</sub> =±10V          | -55 to +125 °C              | 25,000     | <u>-</u> | -    |               |
| Common-Mode Input<br>Voltage Range, V <sub>ICR</sub> | ·                             | –55 to +125 °C              | ±12        | ±13      | -    | V             |
| Common-Mode<br>Rejection Ratio , CMRR                | R <sub>S</sub> ≤10kΩ          | –55 to +125 °C              | 70         | 90       | -    | dB            |
| Supply Voltage<br>Rejection Ratio, PSRR              | R <sub>S</sub> ≤10kΩ          | –55 to +125°C               | -          | 30       | 150  | μ <b>V/</b> V |
| Output Voltage                                       | R <sub>L</sub> ≥10kΩ          | –55 to +125 °C              | ±12        | ±14      | -    | v             |
| Swing, VOPP                                          | R <sub>L</sub> ≥2kΩ           | –55 to +125 °C              | ±10        | ±13      | -    |               |
|                                                      |                               | 25 °C                       | -          | 1,7      | 2.8  |               |
| Supply Current, I <sup>±</sup>                       |                               | −55 °C                      | -          | 2        | 3.3  | mA            |
|                                                      |                               | +125 °C                     | -          | 1.5      | 2.5  |               |
| ×                                                    |                               | 25 °C                       | _          | 50       | 85   |               |
| Device Dissipation, PD                               |                               | –55 °C                      | +          | 60       | 100  | mW            |
|                                                      |                               | +125 °C                     | - ·        | 45       | 75   |               |



Fig.7—Peak-to-peak output voltage vs. supply voltage for all types except CA748 and CA748C.

\* Values apply for each section of the dual amplifiers.

52.

# CA741, CA747, CA748, CA1458, CA1558 Types

## LECTRICAL CHARACTERISTICS

or Equipment Design

| or Edulphingur Porigi                                |                                                 |                            |          |                 |      |       |
|------------------------------------------------------|-------------------------------------------------|----------------------------|----------|-----------------|------|-------|
|                                                      | TEST CONDITI                                    | ONS                        |          | MITS            |      |       |
|                                                      | Supply Voltage,                                 |                            |          | 4/41C<br>4747C* |      | · 1   |
| CHARACTERISTIC                                       | V <sup>+</sup> = 15 V,<br>V <sup></sup> = -15 V | Ambient<br>Temperature, To | C/<br>C/ | A748C<br>A1458* |      | UNITS |
|                                                      |                                                 |                            | Min.     | Тур.            | Max. |       |
|                                                      | 0 <1010                                         | 25 °C                      | -        | 2               | 6    | mV    |
| VIO                                                  | HS=#10K32                                       | 0 to 70 °C                 | -        | -               | 7.5  |       |
| Land Officer Coursest                                |                                                 | 25 °C                      | _        | 20              | 200  | nA    |
| Input Offset Current,                                |                                                 | 0 to 70 °C                 | -        | · _             | 300  |       |
| Input Bias Current                                   |                                                 | 25 °C                      |          | 80              | 500  | nA    |
| <sup>1</sup> 1B                                      |                                                 | 0 to 70 °C                 | · -      | -               | 800  |       |
| Input Resistance, R <sub>1</sub>                     |                                                 |                            | 0.3      | 2               |      | MΩ    |
| Open-Loop Differential                               | R <sub>L</sub> ≥2kΩ                             | 25 °C                      | 20,000   | 200,000         | _    |       |
| Voltage Gain, AOL                                    | V <sub>O</sub> = ±10 V                          | 0 to 70 °C ·               | 15,000   | . 1             | -    |       |
| Common-Mode Input<br>Voltage Range, V <sub>ICR</sub> |                                                 | 25 °C                      | ±12      | ±13             | -    | v     |
| Common-Mode<br>Rejection Ratio, CMRR                 | R <sub>S</sub> ≤10kΩ                            | 25 °C                      | 70       | 90              | _    | dB    |
| Supply-Voltage<br>Rejection Ratio, PSRR              | R <sub>S</sub> ≤10kΩ                            | 25 °C                      | _        | 30              | 150  | μV/V  |
|                                                      | R <sub>L</sub> ≥10 kΩ                           | 25 °C                      | ±12      | ±14             |      |       |
| Output Voltage Swing,                                |                                                 | 25 °C                      | ±10      | ±13             | -    | V     |
| * OFF                                                | μΓ <b>⇒</b> ΣκΩ                                 | 0 to 70 °C                 | ±10      | ±13             | -    |       |
| Supply Current, I <sup>±</sup>                       |                                                 | 25 °C                      | -        | 1.7             | 2.8  | mA    |
| Device Dissipation, PD                               |                                                 | 25 °C                      | -        | 50              | 85   | mW    |



Fig.8—Output voltage vs. transient response time for CA741C and CA741.



Fig.9–Voltage-offset null circuit for CA741C, CA741, CA747CE, CA747CG, CA747E, and CA747G.



Fig.10—Voltage-offset null circuit for CA748C and CA748.



Fig. 11-Transient response test circuit for all types.

\* Values apply for each section of the dual amplifiers.

#### ELECTRICAL CHARACTERISTICS Typical Values Intended Only for Design Guidance

| CHARACTERISTIC                                   | TEST<br>CONDITIONS<br>V± = ±15 V     | TYP.<br>VALUES<br>ALL TYPES | UNITS |
|--------------------------------------------------|--------------------------------------|-----------------------------|-------|
| Input Capacitance, Cl                            |                                      | 1.4                         | pF    |
| Offset Voltage<br>Adjustment Range               |                                      | ±15                         | mV    |
| Output Resistance, RO                            |                                      | 75                          | Ω     |
| Output Short-Circuit Current                     |                                      | 25                          | mA    |
| Transient Response:<br>Rise Time, t <sub>r</sub> | Unity gain<br>V <sub>I</sub> = 20 mV | 0.3                         | μs    |
| Overshoot                                        | RL = 2 kΩ<br>CL ≤ 100 pF             | 5                           | %     |
| Slew Rate, SR:<br>Closed-loop                    | P. > 2 KO                            | 0.5                         | V/us  |
| Open-loop <sup>▲</sup>                           |                                      | 40                          |       |

▲ Open-loop slew rate applies only for types CA748C and CA748.

# TYPES 2N3905, 2N3906, A5T3905, A5T3906 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-S 7311577, NOVEMBER 1971-REVISED MARCH 1973

SILECT<sup>†</sup> TRANSISTORS<sup>‡</sup>

#### FOR GENERAL PURPOSE SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS

- For Complementary Use with N-P-N Types 2N3903, 2N3904, A5T3903, and A5T3904
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

#### mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.



#### absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

| Collector-Base Voltage                                         |                      |                   | · · · · · -40 V*<br>· · · · · -40 V*                                                                           |
|----------------------------------------------------------------|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------|
| Emitter-Base Voltage                                           |                      |                   |                                                                                                                |
| Continuous Collector Current                                   | · · · · · · · ·      | • • • • • • • • • | –200 mA*                                                                                                       |
| Continuous Device Dissipation at (or below) $25^{\circ}$ C Fre | e-Air Temperature (S | (See Note 2)      | · · · { 310 mW*                                                                                                |
| Storage Temperature Range                                      |                      |                   | $\begin{cases} -65^{\circ}C \text{ to } 150^{\circ}C \\ -55^{\circ}C \text{ to } 135^{\circ}C^{*} \end{cases}$ |
| Lead Temperature 1/16 Inch from Case for 60 Second             | ls                   |                   | · · · {260°C§<br>230°C*                                                                                        |

NOTES: 1. This value applies between 10 µA and 200 mA collector current when the base-emitter diode is open-circuited.

Derate the 625-mW rating linearly to 150°C free-air temperature at the rate of 5 mW/°C. Derate the 310-mW (JEDEC registered) rating linearly to 135°C free-air temperature at the rate of 2.81 mW/°C.

2

\*The asterisk identifies JEDEC registered data for the 2N3905 and 2N3906 only. This data sheet contains all applicable registered data in effect at the time of publication.

IEXAS INSTRUMENTS

INCORPORATED POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

<sup>‡</sup>U.S. Patent No. 3,439,238

 ${}^{\$}$  Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

**USES CHIP P15** 

# TYPES 2N3905, 2N3906, A5T3905, A5T3906 P-N-P SILICON TRANSISTORS

| electrical      | characteristics at 25 C free-a        | ir temperatu                    | 16                        |             |       |       |        |          |         |
|-----------------|---------------------------------------|---------------------------------|---------------------------|-------------|-------|-------|--------|----------|---------|
|                 |                                       | ·                               |                           |             | 2N3   | 3905  | 2N3906 |          |         |
|                 | PARAMETER                             | TE                              | ST CONDITION              | IS          | A5T   | 3905  | A5T    | 3906     | UNIT    |
|                 |                                       |                                 |                           | 1           | MIN   | MAX   | MIN    | MAX      |         |
| V(BR)CBO        | Collector-Base Breakdown Voltage      | $I_{\rm C} = -10  \mu {\rm A},$ | IE = 0                    |             | -40   |       | -40    |          | V       |
| V(BR)CEO        | Collector-Emitter Breakdown Voftage   | $I_{C} = -1 \text{ mA},$        | $I_{B} = 0,$              | See Note 3  | -40   |       | -40    |          | V       |
| V(BR)EBO        | Emitter-Base Breakdown Voltage        | 1 <sub>E</sub> = -10 μA,        | I <sub>C</sub> = 0        |             | -5    |       | -5     |          | V       |
| ICEV            | Collector Cutoff Current              | $V_{CE} = -30 V$ ,              | V <sub>BE</sub> = 3 V     |             |       | -50   |        | -50      | nA      |
| IBEV            | Base Cutoff Current                   | $V_{CE} = -30 V$ ,              | V <sub>BE</sub> = 3 V     |             |       | 50    |        | 50       | nA      |
|                 |                                       | $V_{CE} = -1 V$ ,               | $I_C = -100 \ \mu A$      |             | 30    |       | 60     |          |         |
|                 |                                       | $V_{CE} = -1 V$ ,               | $I_C = -1 \text{ mA}$     |             | 40    |       | 80     |          |         |
| hFE             | Static Forward Current Transfer Ratio | $V_{CE} = -1 V$ ,               | $I_{C} = -10 \text{ mA}$  |             | 50    | 150   | 100    | 300      |         |
|                 |                                       | $V_{CE} = -1 V$ ,               | $I_{C} = -50 \text{ mA}$  | See Note 3  | 30    |       | 60     |          |         |
|                 |                                       | $V_{CE} = -1 V$ ,               | $I_{C} = -100 \text{ mA}$ | ]           | 15    |       | 30     |          |         |
|                 | Pasa Emittar Voltage                  | $I_{B} = -1 \text{ mA},$        | $I_{C} = -10 \text{ mA}$  | See Note 2  | -0.65 | -0.85 | -0.65  | -0.85    | V       |
| ▲BE             | Dase-Childer Voltage                  | I <sub>B</sub> = -5 mA,         | $I_{C} = -50 \text{ mA}$  | See Note S  |       | -0.95 |        | -0.95    |         |
| VCE(ant)        | Collector Emitter Seturation Voltage  | I <sub>B</sub> = -1 mA,         | $I_{C} = -10 \text{ mA}$  | See Nets 2  |       | -0.25 |        | -0.25    | V       |
| VCE(sat)        | Conector-Emitter Saturation Voltage   | $I_{B} = -5 \text{ mA},$        | $I_{C} = -50 \text{ mA}$  | See Note S  |       | -0.4  |        | -0.4     |         |
| b.              | Small-Signal Common-Emitter           |                                 |                           |             | 0.5   | 0     | 2      | 10       | 10      |
| nie             | Input Impedance                       | $V_{05} = -10 V$                |                           |             | 0.5   | 0     | 2      | 12       | K22     |
| h.,             | Small-Signal Common-Emitter           | - VCE 10 V,                     |                           |             | 50    | 200   | 100    | 400      |         |
| nfe             | Forward Current Transfer Ratio        |                                 | $lo = 1 m \Lambda$        |             | 50    | 200   | 100    | 400      |         |
|                 | Small-Signal Common-Emitter           | ]                               | C = -1  mA,               |             | 0.1 X | 5 X   | 0.1 X  | 10 ×     |         |
| nre             | Reverse Voltage Transfer Ratio        |                                 |                           |             | 10-4  | 10-4  | 10-4   | 10-4     |         |
| L.              | Small-Signal Common-Emitter           | 1                               |                           | f = 1 kHz   | 1     | 40    | 2      | <u> </u> |         |
| n <sub>oe</sub> | Output Admittance                     |                                 |                           |             | · ·   | 40    | 3      | 60       | μmno    |
| In 1            | Small-Signal Common-Emitter           | V                               | 1 10 - 0                  | ( - 100 MIL |       |       | 0.5    |          |         |
| n <sub>fe</sub> | Forward Current Transfer Ratio        | VCE = -20 V,                    | $I_{C} = -10 \text{ mA},$ | t = 100 WH2 | 2     |       | 2.5    |          | - 9 - I |
| fт              | Transition Frequency                  | V <sub>CE</sub> = -20 V,        | $I_{C} = -10 \text{ mA},$ | See Note 4  | 200   |       | 250    |          | MHz     |
| 0               | Common-Base Open-Circuit              | $V_{CB} = -5 V_{,}$             | IE = 0,                   |             |       | 4.5   |        |          | -       |
| Cobo            | Output Capacitance                    | f = 100 kHz to                  | 1 MHz                     |             |       | 4.5   |        | 4.5      | p⊦      |
| 0               | Common-Base Open-Circuit              | $V_{EB} = -0.5 V$ ,             | I <sub>C</sub> = 0,       |             |       | 10    |        |          | -       |
| Cibo            | Input Capacitance                     | f = 100 kHz to 1 MHz            |                           |             |       | 10    |        | 10       | pF      |

## \*electrical characteristics at 25°C free-air temperature

NOTES: 3. These parameters must be measured using pulse techniques. t<sub>w</sub> = 300  $\mu$ s, duty cycle  $\leq$  2%.

4. To obtain  $f_T$ , the  $|h_{fe}|$  response is extrapolated at the rate of -6 dB per octave from f = 100 MHz to the frequency at which  $|h_{fe}| = 1$ .

#### \*operating characteristics at 25°C free-air temperature

| PARAMETER |                      | TEST CONDITIONS |                                                      |                                                         | 2N3905<br>A5T3905 |     | 2N3906<br>A5T3906 |     |    |
|-----------|----------------------|-----------------|------------------------------------------------------|---------------------------------------------------------|-------------------|-----|-------------------|-----|----|
|           |                      | `,              |                                                      |                                                         |                   | MAX | MIN               | MAX | AX |
| NF        | Average Noise Figure |                 | $V_{CE} = -5 V,$<br>$R_G = 1 k\Omega,$<br>See Note 5 | $I_{C} = -100 \ \mu A$ ,<br>Noise Bandwidth = 15.7 kHz, |                   | 5   |                   | 4   | dB |

NOTE 5: Average Noise Figure is measured in an amplifier with response down-3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.

\*The asterisk identifies JEDEC registered data for the 2N3905 and 2N3906 only.

BULLETIN NO. DL-S 7311916, MARCH 1973

## DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- hFE... Guaranteed from 100 µA to 500 mA
- High f<sub>T</sub> at 20 V, 20 mA . . . 300 MHz (2N2219A, 2N2222A) 250 MHz (all others)
- 2N2218, 2N2221 for Complementary Use with 2N2904, 2N2906
- 2N2219, 2N2222 for Complementary Use with 2N2905, 2N2906

#### \*mechanical data

Device types 2N2217, 2N2218, 2N2218A, 2N2219, and 2N2219A are in JEDEC TO-5 packages. Device types 2N2220, 2N2221, 2N2221A, 2N2222, and 2N2222A are in JEDEC TO-18 packages.



## \*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

|                                                                                              | 2N2217<br>2N2218<br>2N2219 | 2N2218A<br>2N2219A | 2N2220<br>2N2221<br>2N2222 | 2N2221A<br>2N2222A | UNIT |
|----------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------|--------------------|------|
| Collector-Base Voltage                                                                       | 60                         | 75                 | 60                         | 75                 | V    |
| Collector-Emitter Voltage (See Note 1)                                                       | 30                         | 40                 | 30                         | 40                 | V    |
| Emitter-Base Voltage                                                                         | 5                          | 6                  | 5                          | 6                  | V    |
| Continuous Collector Current                                                                 | 0.8                        | 0.8                | 0.8                        | 0.8                | A    |
| Continuous Device Dissipation at (or below)<br>25°C Free-Air Temperature (See Notes 2 and 3) | 0.8                        | 0.8                | 0.5                        | 0.5                | w    |
| Continuous Device Dissipation at (or below)<br>25°C Case Temperature (See Notes 4 and 5)     | 3                          | 3                  | 1.8                        | 1.8                | w    |
| Operating Collector Junction Temperature Range                                               | -65 to 175                 |                    |                            |                    | °C   |
| Storage Temperature Range                                                                    | -65 to 200                 |                    |                            |                    | °C   |
| Lead Temperature 1/16 Inch from Case for 10 Seconds                                          |                            | 2                  | 30                         |                    | °C   |

NOTES: 1. These values apply between 0 and 500 mA collector current when the base-emitter diode is open-circuited.

2. Derate 2N2217, 2N2218, 2N2218A, 2N2219, and 2N2219A linearly to 175°C free-air temperature at the rate of 5.33 mW/°C.

3. Derate 2N2220, 2N2221, 2N2221A, 2N2222, and 2N2222A linearly to 175°C free-air temperature at the rate of 3.33 mW/°C.

4. Derate 2N2217, 2N2218, 2N2218A, 2N2219, and 2N2219A linearly to 175°C case temperature at the rate of 20.0 mW/°C.

5. Derate 2N2220, 2N2221, 2N2221A, 2N2222, and 2N2222A linearly to 175°C case temperature at the rate of 12.0 mW/°C.

\*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

## 2N2217 THRU 2N2222

# \*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

and a star of the second s Second second

|                      |                                        |                                                 | T0-5 →                                | 2N  | 2217 | 2N     | 2218  | 2N2219 |      |                |
|----------------------|----------------------------------------|-------------------------------------------------|---------------------------------------|-----|------|--------|-------|--------|------|----------------|
|                      | FARAMETER                              | TEST CONDITIONS                                 | TO-18 →                               | 2N: | 2220 | 2N     | 2221  | 2N     | 2222 | UNIT           |
|                      | Collector Bass                         |                                                 | ······                                | MIN | MAX  | MIN    | MAX   | MIN    | MAX  |                |
| V(BR)CBC             | Breakdown Voltage                      | $I_{C} = 10 \ \mu A,  I_{E} = 0$                |                                       | 60  |      | 60     |       | 60     |      | v              |
| V(BR)CEC             | Collector-Emitter<br>Breakdown Voltage | I <sub>C</sub> = 10 mA, I <sub>B</sub> = 0,     | See Note 6                            | 30  |      | 30     | ····· | 30     |      | v              |
| V(BR)EBO             | Emitter-Base<br>Breakdown Voltage      | $I_{E} = 10 \ \mu A,  I_{C} = 0$                | <u> </u>                              | 5   |      | 5      |       | 5      |      | v              |
| ICBO                 | Collector Cutoff                       | $V_{CB} = 50 V, I_E = 0$                        |                                       | †   | 10   |        | 10    |        | 10   |                |
|                      | Current                                | $V_{CB} = 50 V, I_E = 0,$                       | $T_{A} = 150^{\circ}C$                | †   | 10   |        | 10    |        | 10   | nA             |
| <sup>I</sup> EBO     | Emitter Cutoff Current                 | $V_{EB} = 3 V, I_{C} = 0$                       |                                       |     | 10   |        | 10    |        | - 10 | μΑ             |
|                      |                                        | $V_{CE} = 10 V$ , $I_{C} = 100 \mu A$           |                                       |     |      | 20     |       | 35     |      |                |
|                      | Statia Essent O                        | $V_{CE} = 10 V$ , $I_{C} = 1 mA$                |                                       | 12  |      | 25     |       | 50     |      | Ę              |
| hFE                  | Static Forward Current                 | $V_{CE} = 10 V, I_{C} = 10 mA$                  | · · · · · · · · · · · · · · · · · · · | 17  |      | 35     |       | 75     |      | 51 - 4 June 1  |
|                      | Transfer Ratio                         | $V_{CE} = 10 V, I_{C} = 150 mA$                 | Co. N. C.                             | 20  | 60   | 40     | 120   | 100    | 300  |                |
|                      |                                        | $V_{CE} = 10 V, I_{C} = 500 mA$                 | See Note 6                            |     |      | 20     |       | 30     |      | 12 APRIL 10    |
|                      |                                        | $V_{CE} = 1 V$ , $I_{C} = 150 mA$               |                                       | 10  |      | 20     |       | 50     |      |                |
| V <sub>BE</sub> Ba   | Base-Emitter Voltage                   | $I_{B} = 15 \text{ mA}, I_{C} = 150 \text{ mA}$ | See Note 6                            |     | 1.3  |        | 1.3   |        | 13   |                |
|                      |                                        | $I_{B} = 50 \text{ mA}, I_{C} = 500 \text{ mA}$ | See Note 6                            |     |      |        | 26    |        | 26   | V              |
| V <sub>CE(sat)</sub> | Collector-Emitter                      | $I_{B} = 15 \text{ mA}, I_{C} = 150 \text{ mA}$ |                                       |     | 0.4  |        | 0.4   |        | 2.0  |                |
|                      | Saturation Voltage                     | $I_{B} = 50 \text{ mA}, I_{C} = 500 \text{ mA}$ | See Note 6                            |     |      |        | 1.6   |        | 1.6  | v              |
|                      | Small-Signal                           |                                                 |                                       |     |      |        | +     |        | +    |                |
| h <sub>fe</sub>      | Common-Emitter                         |                                                 |                                       |     |      |        |       |        |      | 80 °61 - 14    |
|                      | Forward Current                        | • CE = 20 •, 1C = 20 mA, •                      | T = 100 MHz                           | 2.5 |      | 2.5    |       | 2.5    |      |                |
| <u> </u>             | Transfer Ratio                         |                                                 |                                       |     |      |        |       |        |      |                |
| <sup>†</sup> T       | Transition Frequency                   | $V_{CE} = 20 V, I_C = 20 mA, S$                 | See Note 7                            | 250 |      | 250    |       | 250    |      | A ALL          |
|                      | Common-Base                            |                                                 |                                       |     |      |        | ·     | 250    |      | MH2            |
| Cobo                 | Open-Circuit                           | $V_{CB} = 10 V, I_E = 0, 1$                     | f = 1 MHz                             |     | 8    |        |       |        |      | -              |
|                      | Output Capacitance                     | _                                               |                                       |     | Ŭ    |        | 0     |        | 8    | pF             |
|                      | Real Part of                           |                                                 |                                       |     |      | ······ |       |        |      |                |
| histraal             | Small-Signal                           |                                                 | Í                                     |     |      |        | ļ     |        |      | and the second |
| ··ie(real)           | Common-Emitter                         | $V_{CE} = 20 V, I_{C} = 20 mA, f$               | = 300 MHz                             |     | 60   |        | 60    |        | 60   | Ω              |
| ·····                | Input Impedance                        |                                                 | ļ                                     |     |      |        |       |        |      |                |
|                      |                                        |                                                 | 1                                     |     | 1    |        | 1     |        | 1    | 1              |

NOTES: 6. These parameters must be measured using pulse techniques.  $t_W = 300 \ \mu$ s, duty cycle  $\leq 2\%$ .

7. To obtain  $f_T$ , the  $|h_{fe}|$  response with frequency is extrapolated at the rate of -6 dB per octave from f = 100 MHz to the frequency at which  $|h_{fe}| = 1$ .

# switching characteristics at 25°C free-air temperature

|                | PARAMETER    | TEST CONDITIONS                                                                                                                         |     | 1.   |
|----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| td             | Delay Time   |                                                                                                                                         | Түр | UNIT |
| t <sub>r</sub> | Rise Time    |                                                                                                                                         | , 5 | ns   |
| ts             | Storage Time | $\qquad \qquad $ | 15  | ns   |
| tf             | Fall Time    |                                                                                                                                         | 190 | ns   |
| L              |              | <sup>1</sup> B(2) = -15 mA, See Figure 2                                                                                                | 23  | ns   |

<sup>†</sup>Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

\*JEDEC registered data

We have the set of setting the set of the

14.1

## 2N2218A, 2N2219A, 2N2221A, 2N2222A

TRA

## \*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

1921

|                                |                                      |                                                 | TO-5 →                  | 2N  | 12218A              | 2N   | 2219A             |            |
|--------------------------------|--------------------------------------|-------------------------------------------------|-------------------------|-----|---------------------|------|-------------------|------------|
|                                | PARAMETER                            | TEST CONDITIONS                                 | TO-18 →                 | 2N  | 12221A              | 2N   | 2222A             | UNIT       |
|                                |                                      |                                                 |                         | MIN | MAX                 | MIN  | MAX               |            |
| V(BR)CBO                       | Collector-Base Breakdown Voltage     | $I_{C} = 10 \ \mu A$ , $I_{E} = 0$              |                         | 75  |                     | 75   |                   | V          |
| V(BR)CEO                       | Collector-Emitter Breakdown Voltage  | I <sub>C</sub> = 10 mA, I <sub>B</sub> = 0,     | See Note 6              | 40  |                     | 40   |                   | V          |
| V(BR)EBO                       | Emitter-Base Breakdown Voltage       | $I_E = 10 \ \mu A$ , $I_C = 0$                  |                         | 6   |                     | 6    |                   | V          |
| lono                           | Collector Cutoff Current             | V <sub>CB</sub> = 60 V, I <sub>E</sub> = 0      |                         |     | 10                  |      | 10                | nA         |
| ICBO                           |                                      | V <sub>CB</sub> = 60 V, 1 <sub>E</sub> = 0,     | T <sub>A_</sub> = 150°C |     | 10                  |      | 10                | μA         |
| ICEV                           | Collector Cutoff Current             | $V_{CE}$ = 60 V, $V_{BE}$ = -3 V                |                         |     | 10                  |      | 10                | nA         |
| IBEV                           | Base Cutoff Current                  | $V_{CE} = 60 V, V_{BE} = -3 V$                  |                         |     | -20                 |      | -20               | nA         |
| IEBO                           | Emitter Cutoff Current               | V <sub>EB</sub> = 3 V, I <sub>C</sub> = 0       |                         |     | 10                  |      | 10                | ņΑ         |
|                                |                                      | $V_{CE} = 10 V, I_{C} = 100 \mu A$              |                         | 20  |                     | 35   |                   |            |
|                                |                                      | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 1 mA   |                         | 25  |                     | 50   |                   | ]          |
|                                |                                      | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA  |                         | 35  |                     | 75   |                   | ].         |
| hFE                            | Static Forward Current               | $V_{CE} = 10 V$ , $I_{C} = 150 mA$              |                         | 40  | 120                 | 100  | 300               |            |
|                                | Transfer Ratio                       | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 500 mA | See Note 6              | 25  |                     | 40   |                   |            |
|                                |                                      | V <sub>CE</sub> = 1 V, I <sub>C</sub> = 150 mA  |                         | 20  |                     | 50   |                   | 1          |
|                                |                                      | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA, |                         | 15  | * i                 | 35   | - · .             |            |
|                                |                                      | T <sub>A</sub> = −55°C                          |                         | 15  |                     | 55   |                   |            |
| Ver Base-                      | Base-Emitter Voltage                 | I <sub>B</sub> = 15 mA, I <sub>C</sub> = 150 mA | See Note 6              | 0.6 | 1.2                 | 0.6  | 1.2               |            |
| •BE                            | VBE Base-Emitter Voltage             | 1 <sub>B</sub> = 50 mA, 1 <sub>C</sub> = 500 mA | See Note o              |     | 2                   |      | 2                 | ] <b>`</b> |
| Voru                           | Collector Emitter Saturation Voltage | I <sub>B</sub> = 15 mA, I <sub>C</sub> = 150 mA | See Note 6              |     | 0.3                 |      | 0.3               | V          |
| *CE(sat)                       |                                      | I <sub>B</sub> = 50 mA, I <sub>C</sub> = 500 mA | See NOLE O              |     | 1                   |      | 1                 | ] `        |
| h                              | Small-Signal Common-Emitter          | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 1 mA   |                         | 1   | 3.5                 | 2    | 8                 | ko         |
| ''ie                           | Input Impedance                      | $V_{CE} = 10 V$ , $I_{C} = 10 mA$               |                         | 0.2 | 1                   | 0.25 | 1.25              | K32        |
| he                             | Small-Signal Forward Current         | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 1 mA   |                         | 30  | 150                 | 50   | 300               |            |
| l "fe                          | Transfer Ratio                       | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA  | f - 1 1.11-             | 50  | 300                 | 75   | 375               | 1          |
|                                | Small-Signal Common-Emitter          | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 1 mA   | T = T KMZ               |     | 5x10 <sup>-4</sup>  | 1    | 8×10 <sup>4</sup> |            |
| n're                           | Reverse Voltage Transfer Ratio       | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA  |                         |     | 2.5x10 <sup>4</sup> |      | 4x10 <sup>4</sup> | 1          |
| L                              | Small-Signal Common-Emitter          | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 1 mA   |                         | 3   | 15                  | 5    | 35                | 1          |
| noe                            | Output Admittance                    | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA  |                         | 10  | 100                 | 25   | 200               | μmho       |
|                                | Small-Signal Common-Emitter          | V                                               | ( - 100 MU-             | 0.5 |                     |      | Mallari           | 1          |
| <sup>1</sup> fe                | Forward Current Transfer Ratio       | $v_{CE} = 20 v, I_C = 20 mA,$                   | T = TUU MHZ             | 2.5 |                     | 3    |                   |            |
| fT                             | Transition Frequency                 | $V_{CE} = 20 V, I_{C} = 20 mA,$                 | See Note 7              | 250 |                     | 300  |                   | MHz        |
| Cata                           | Common-Base Open-Circuit             | $V_{\text{op}} = 10 V_{\text{op}} = 0$          | f = 100 kHz             |     | 0                   |      | 0                 | - 5        |
| -000                           | Output Capacitance                   |                                                 |                         |     | 0                   |      | d                 | рг         |
| Cite                           | Common-Base Open-Circuit             |                                                 | f = 100 kH-             |     | 2F                  |      |                   | -r         |
|                                | Input Capacitance                    | EB = 0.0 v, IC = 0,                             |                         |     | 25                  |      | 25                | p⊷         |
| b:                             | Real Part of Small-Signal            | $V_{0} = 20 V_{0} = 20 = 4$                     | f - 200 MU-             |     |                     |      |                   |            |
| ''ie(real)                     | Common-Emitter Input Impedance       | V CE = 20 V, IC = 20 mA,                        | 1 - SUU WIEIZ           |     | 60                  |      | 60                | 52         |
| r <sub>b</sub> ′С <sub>с</sub> | Collector-Base Time Constant         | $V_{CE} = 20 V, I_{C} = 20 mA,$                 | f = 31.8 MHz            |     | 150                 |      | 150               | ps         |

NOTES: 6. These parameters must be measured using pulse techniques.  $t_w = 300 \ \mu s$ , duty cycle  $\leq 2\%$ .

7. To obtain f<sub>T</sub>, the |h<sub>fe</sub>| response with frequency is extrapolated at the rate of -6 dB per octave from f = 100 MHz to the frequency at which |h<sub>fe</sub>| = 1.

And the second second

# \*operating characteristics at 25°C free-air temperature

and an an an and the second and the second states and the second second second second second second second second

| PARAMETER |                     |                                                                 | <b>TO-5</b> → | 2N2218A | 2N2219A |      |
|-----------|---------------------|-----------------------------------------------------------------|---------------|---------|---------|------|
|           |                     | TEST CONDITIONS                                                 | TO-18 →       | 2N2221A | 2N2222A | UNIT |
| Ì         | E Spot Noise Eigure |                                                                 |               | MAX     | MAX     |      |
| 1         |                     | $V_{CE} = 10 V$ , $I_{C} = 100 \mu A$ , $R_{G} = 1 k\Omega$ , f | f = 1 kHz     |         | 4       | dB   |

anti-angle angle ang Najisaya

\*switching characteristics at 25°C free-air temperature

|     | PARAMETER                                | TEST CONDITIONS <sup>†</sup>      | TO-5 -<br>TO-18            | → 2N2218A → 2N2221A | 2N2219A |    |
|-----|------------------------------------------|-----------------------------------|----------------------------|---------------------|---------|----|
|     | Datas T                                  |                                   |                            | MAX                 | MAX     |    |
| L'd |                                          | $V_{CC} = 30 V$ $I_{C} = 150 mA$  |                            | 10                  | 10      | 05 |
| Lr  | Rise Time                                | $V_{\text{DEV}} = -0.5 \text{ V}$ | <sup>1</sup> B(1) = 15 mA  | 25                  | 25      |    |
| TΑ  | Active Region Time Constant <sup>‡</sup> | • BE (off) = -0.5 V,              | See Figure 1               | 25                  |         |    |
| ts  | Storage Time                             | $V_{CC} = 30 V$ $I_{C} = 150 - 0$ |                            | 2.5                 | 2.5     | ns |
| te  | Fall Time                                | 1 - CC = 150  mA,                 | <sup>I</sup> B(1) = 15 mA, | 225                 | 225     | ns |
| -1  |                                          | $I_{B(2)} = -15 \text{ mA},$      | See Figure 2               | 60                  | 60      | ns |

<sup>†</sup>Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

<sup>‡</sup>Under the given conditions  $\tau_A$  is equal to  $\frac{t_r}{10}$ 



- NOTES: a. The input waveforms have the following characteristics: For Figure 1,  $t_r \le 2$  ns,  $t_W \le 200$  ns, duty cycle  $\le 2\%$ ; for Figure 2,  $t_f \le 5$  ns,  $t_W \approx 100 \ \mu$ s, duty cycle  $\le 17\%$ .
  - b. All waveforms are monitored on an oscilloscope with the following characteristics:  $t_r \le 5$  ns,  $R_{in} \ge 100$  k $\Omega$ ,  $C_{in} \le 12$  pF.

## Standard Component Values

# STANDARD 1/4 WATT RESISTANCE VALUES 5%

| OHMS   | OHMS       | OHMS             | OHMS              | OHMS   | OHIMS               | OHMS   | OHMS   | OHMS          | OHMS   | OHMS   |
|--------|------------|------------------|-------------------|--------|---------------------|--------|--------|---------------|--------|--------|
| 2.2    | 9.1        | -> 39            | 160               | -→680  | 3000                | -312K  | → 51K  | -⇒220K        | 910K   | -→3.9M |
| 2.4    | →10        | 43               | 180 جہ '          | 750    |                     | 13K    | →56K   | 240K          | ->1.0M | 4.3M   |
| 2.7    | 11         | ->47             | <del>→</del> 200  |        | 3600                | → 15K  | 62K    | -→270K        | 1.1M   | ->4.7M |
| 3.0    |            | 51               | -> 220            |        | >3900               | 16K    | -→ 68K | 300K          | >1.2M  | 5.1M   |
| -> 3.3 | ->13       | -> 56            | 240               | ->1000 | 4300                | → 18K  | 75K    | <b>→</b> 330К | 1.3M   | >5.6M  |
| 3.6    | ->15       | — <u>&gt;</u> 62 | -> 270            | ->1100 | →4700               | —∋ 20K | >> 82K | 360K          | →1 5M  | >6.2M  |
| 3.9    | 16         | ->68             |                   | ->1200 | - <del>→</del> 5100 | -> 22K | -→ 91K | -→ 390K       | 1.6M   | 6.8M   |
| 4.3    | →18        | 75               |                   | ->1300 | →5600               | -> 24K | -→100К | -→ 430K       | →1.8M  |        |
| 4.7    | 20         | > 82             | 360               | >+500  | 6200                | ->27K  | 110K   | _>470K        |        |        |
| 5.1    | <u>→22</u> | 91               | <del>-</del> ⇒390 | 1600   | >6800               | 30K    | ->120К | 510K          | → 2.2M | 9.1M   |
|        | 24         |                  | 430               | ->1800 | 7500                | -→33K  | -⇒130K |               | 2.4M   | -> 10M |
| 6.2    | 27         | 110              |                   | >2000  | →8200               | -⇒36K  | -→150K | -→620K        | -⇒2.7M |        |
| 6.8    | 30         | ->120            | <u> </u>          | ->2200 | 9100                | _⇒39K  | 160K   | > 680K        | 3.0M   |        |
| 7.5    | -→33       | 130              |                   | 2400   | -→ 10K              | 43K    | -⇒180K | →750K         | → 3.3M |        |
| 8.2    | 36         | - <u>-</u> ⇒150  | 620               | >2700  | 11K                 | ->47K  | 200K   | -→820K        | 3.6M   |        |

## Standard Capacitor Values

| DF            | pF              | υF       | μF           | μF           | μF           | μF       | μF   |
|---------------|-----------------|----------|--------------|--------------|--------------|----------|------|
| 10            | →100            | →.001 -  | >.01         | ->.10        | ->1          | ->10     | >100 |
| 12            | -→120           | .0012    | .012         | .12          |              |          |      |
| 15            | 150             | .0015    | .015         | .15          | 1.5          | 15       |      |
| 18            | 180             | .0018    | .018         | .18          | a2.0         |          |      |
| 20            | <u>→200</u>     | →.002 -  | <b>∋.02</b>  | .2           |              | <b>\</b> |      |
| → 22          | →220            | .0022    | .022         | <i>→</i> .22 | 2.2          | ->22     | 220  |
| <i>→</i> 25   |                 | .0025    | .025         | .25          |              |          |      |
| 27            | →270            | .0027    | .027         | ->.27        |              |          | -    |
| -> 33         | -> 3 <b>0</b> 0 | →.0033 - | <b>→.030</b> | <i>→</i> .33 | <i>→</i> 3.3 | ->33     |      |
| ->39          | →390            | .0039    | .039         | . 39         |              |          |      |
| →47           | →470            |          | →.047        | <i>→</i> .47 | →4.7         | >47      | 4/0  |
| 50            | 500             | .005 -   | →.05         | .5           |              |          |      |
| 56            | 560             | .0056    | .056         | .56          |              |          |      |
| ->68          | 680             |          | →.068        | .68          | 6.8          |          |      |
| 75            | 750             | .0075    | .075         | .75          |              |          |      |
| <u>&gt;82</u> | 820             | .0082    | .082         | .82          |              |          |      |

# 1 % RESISTORS

| <b>U3</b> 2 D | 2.15 KA | 232KN  |
|---------------|---------|--------|
| 498 D         | 26.7 KA | 267KN  |
| n 1 50        | 29.2 KA | 332 KN |
| 93.10C        | 30.9 KN | 340 KN |

> points to parts in stock.