
1

Abstract

ESIM is a simulation tool that integrates logic fault and
design error simulation for logic circuits. It targets several
design error and fault models, and uses a novel mix of sim-
ulation algorithms based on parallel-pattern evaluation,
multiple error activation, single fault propagation, and
critical path tracing. Several experiments are discussed to
demonstrate the power of ESIM.

1. Introduction

Fault simulation [3] consists of simulating a circuit’s
behavior in the presence of faults. Comparing the faulty
response of the circuit to that of the fault-free response
using the same test set T, we can determine the faults
detected by T. Fault simulation has many applications, such
as test set evaluation, fault-oriented test generation, fault
dictionaries construction, and analysis of circuit operation
in the presence of faults. There are many algorithms for
fault simulation [3]: serial, parallel, deductive, concurrent,
parallel-pattern single-fault propagation [14], and critical
path tracing. Most of these algorithms target the single
stuck-line (SSL) model for physical faults.

Recently, simulation-based design verification have
received much attention [2][11][13]. An important part of
the design verification process is design error simulation.
Kang and Szygenda [13] present a simple parallel-pattern
serial algorithm adopted from fault simulation. Developing
efficient design error simulators is of great interest since
the existence of such simulators may benefit many areas
such as test generation for design errors [3] and design
error diagnosis and correction [12][17].

Unlike SSL fault simulation where the number of faults
is proportional to the number of nets in the circuit, design
error simulation deals with a complex set of error models
with the total number of errors proportional to

, where g is the number of gates and p is
the maximum fanin of the gates in the circuit.
max 2

p p g× 2,{ }

In this paper, we develop an efficient error/fault simula-
tor ESIM that covers various new design error models as
well as the older manufacturing fault models. ESIM is
based on novel simulation algorithms that use a combina-
tion of parallel-pattern evaluation, multiple error activation,
single fault propagation, and critical path tracing.

We discuss the design errors and logical faults that can
be handled by ESIM in Section 2. We then review fault
simulation methods for combinational circuits with empha-
sis on the parallel-pattern single fault propagation and criti-
cal path tracing in Section 3. We further discuss the
application of critical path tracing to error simulation in this
section. Section 4 discusses the implementation details of
ESIM, presents the results of experiments performed using
it, and presents preliminary results using a sequential ver-
sion of ESIM. Finally, we draw some conclusions and sug-
gest directions for further research.

2. Fault and design error models

Many types of faults and design errors have been classi-
fied in the literature [2][3][6][11][13]. These error types are
not necessarily complete, but they are believed to be com-
mon in the lifetime of a digital system. In this paper, we
consider several fault and error models which are described
below.
Single Stuck-Line (SSL) Faults: The most widely-used
logical fault model is the SSL model [3]. Under this model,
every single signal line can become permanently fixed
(stuck) at a logical 1 or 0 value. The model is simple and
technology-independent. It represents some physical faults
directly; more importantly, however, tests derived for SSL
faults detect many actual design errors/faults. Since the
number of SSL faults is proportional to the number of lines
in the circuit, it is feasible to consider all possible SSL
faults in medium scale designs.
Input Pattern (IP) Faults: Blanton and Hayes [8] pre-
sented a more general logical fault model called the input
pattern (IP) fault model. Under this model, an IP fault in a

ESIM: A Multimodel Design Error and Fault Simulator for Logic Circuits

Hussain Al-Asaad
Computer Engineering Research Laboratory
Dept. of Electrical & Computer Engineering

University of California
One Shields Avenue, Davis, CA 95616-5294

E-mail: halasaad@ece.ucdavis.edu

John P. Hayes
Advanced Computer Architecture Laboratory

Dept. of Electrical Engineering & Computer Science
University of Michigan

1301 Beal Avenue, Ann Arbor, MI 48109-2122
E-mail: jhayes@eecs.umich.edu

2

module M changes the response of M to the input pattern V
from to . This IP fault is represented by

. A functional fault in a module M changes
the function implemented by M. It can be represented by a
set of IP faults. The number of IP faults in a circuit C is
proportional to , where g is the number of gates in C
and p is the maximum fanin of the gates in C.
Gate Substitution Errors (GSEs): According to experi-
ments reported in [1], the most frequent error made in
manual design is gate substitution, accounting for around
67% of all errors. Gate substitution refers to mistakenly
replacing a gate G with another gate G’ that has the same
number of inputs. We represent this error by G/G’. For
gates with multiple inputs, a multiple-input GSE (MIGSE)
can have one of six possible forms: G/AND, G/NAND, G/
OR, G/NOR, G/XOR, and G/XNOR. Each multiple-input
gate can have five MIGSEs. For example, all MIGSEs can
occur on an AND gate except G/AND which is not consid-
ered an error. For gates with a single input, i.e., buffers and
inverters, a single-input GSE (SIGSE) can have one of two
possible forms: G/NOT and G/BUF. Each single-input gate
can have only one SIGSE. To cover extra/missing inverters
in the gate substitution errors, a buffer can be inserted in
each of a gate’s fanout branches.

It has been suggested that most GSEs can be detected
by a complete test set for SSL faults [2]. Our experimental
results (Section 4) show that such a test set can cover 80%
to 98% of MIGSEs and 100% of SIGSEs. The coverage of
MIGSEs is a function of the circuit structure, as well as the
types of gates used in the circuit.
Gate Count Errors (GCEs): We distinguish two types of
gate count errors: extra-gate errors and missing-gate errors.
An extra-gate design error (EGE) is defined as inserting a
gate G’ that has its m inputs taken from the n inputs of a
gate G and feeding the output of G’ to G. As a conse-
quence, the number of inputs of gate G becomes

. We represent an EGE by EG(G’,G). It is easy to
see that EG(AND, AND), EG(AND, NAND), EG(OR,
OR), EG(OR, NOR), EG(XOR, XOR), and EG(XOR,
XNOR) are undetectable or redundant.
A missing-gate design error (MGE) is defined as removing
a gate G’ that has m inputs and feeds an n-input gate G, and
then changing the inputs of G’ into inputs of G; see Figure
1. As a consequence, the number of inputs of G becomes

. We represent the MGE by MG(G’,G). As

in the extra-gate case, the errors MG(AND, AND),
MG(AND, NAND), MG(OR, OR), MG(OR, NOR),
MG(XOR, XOR), and MG(XOR, XNOR) are undetect-
able.
For , there are possible different configurations
of the correct circuit shown in Figure 1. Since G’ can
change to five other gate types, we have a total of
MGEs. For the general case of , the total number of
MGEs in an N-input gate is given by

Input Count Errors (ICEs) and Wrong Input Errors
(WIEs): Input count errors are further classified into extra
input and missing input errors. An extra input design error
(EIE) is defined as the replacement of an n-input gate
() by an ()-input gate with the additional input
connected to an arbitrary signal in the circuit. A missing
input design error (MIE) is defined as the replacement of
an n-input gate () by an ()-input gate with its

 inputs connected to an arbitrary subset of the origi-
nal n inputs. We represent an EIE of a gate G by EI(e,G),
where e is the extra input. We represent an MIE of a gate G
by MI(m,G) where m is the source of the missing input.
The number of ICEs in a circuit is very large—approxi-
mately O(k2), where k is the number of distinct signals in
the circuit.

A wrong input error (WIE) is defined as a connection of
a gate input to a wrong signal source. We represent a WIE
on a gate G by WI(u,w,G), where u is the wrong input of
the gate and w is the correct input. If a vector v detects
WI(u,w,G), then it must set u and w to opposite values and
propagate the signal at u to a primary output. The number
of WIEs is larger than that of the ICEs, and it is approxi-
mately O(k2), where k is the number of distinct signals in
the circuit. WIEs appears to be the second most common
design error—around 17% of the errors reported in [1].

An important question concerning MIEs is the source of
the missing input. It must not depend on the erroneous
gate’s output, otherwise, the circuit can become sequential.
Errors that make a combinational circuit sequential can be
detected by a levelization procedure [3]. Similarly, the
source of wrong input of a WIE must not depend on the
gate output.
Design Error Examples: Examples of the design errors
discussed in this section are shown in Figure 2. The design
errors of types SIGSE, MIGSE, EGE, MGE, and EIE are
grouped in GP1. The remaining design errors, of type WIE
and MIE, are combined in GP2. The number of errors/
faults in GP1 for a typical circuit is proportional to the
number of nets in the circuit. On the other hand, the num-
ber of errors in GP2 is proportional to the square of the
number of lines in the circuit.

FV FV

V ′ FV FV=()

g 2
p×

n m– 1+

Missing gate

Correct circuit Erroneous circuit

G’

G G

N n m 1–+=

n 1–

m

Figure 1 The missing-gate design error (MGE).

N n m 1–+=

m 2= N
2 

 

5 N
2 

 ×
m i=

5 N
i 

 
i 2=

N 1–

∑× O 2
N()=

n 2≥ n 1+

n 3≥ n 1–
n 1–

3

3. The error and fault simulator ESIM

Many general approaches to fault simulation have been
proposed such as serial, parallel [19], deductive [7], and
concurrent[21]. Serial fault simulation is the slowest
method of all, but uses the least amount of memory. It is
based on simulating the fault-free circuit and the circuit in
the presence of one fault, and then comparing the
responses of the faulty and fault-free circuits. If the
responses differ, then the fault is detected. The process is
repeated for all the faults of interest, hence the execution
time is proportional to the number of faults. Parallel fault
simulation simulates a number W of faults simultaneously.
Hence, it is faster than serial simulation but it needs more
memory to deal with W faults at a time. Deductive and
concurrent fault simulation techniques are based on detect-
ing all possible faults in the circuit by a given test in one
forward pass through the circuit. These methods are fast,
but they have the disadvantage of unpredictable memory
requirements [3]. The widespread use of design for test-
ability techniques that transform a sequential circuit into a
combinational one for testing purposes has increased the
importance of specialized methods for combinational cir-
cuits.

Critical path tracing is a fault simulation method for
combinational circuits that is based on simulating the fault-
free circuit. It computes signal values for tracing paths
from primary outputs towards primary inputs to determine
the detected faults without explicitly computing the faulty

signal values by gate evaluation or fault list processing.
This method has received a lot of attention [3][4][14][16].
Its main advantage is that it directly identifies the faults
detected by a test without simulating all possible faults.
The details of this approach are described next.

For every input vector, critical path tracing first simu-
lates the fault-free circuit, then it identifies the detected
faults by determining which signal values are critical. A
line l has a critical value v in the test t iff t detects the fault
l stuck-at- . After finding the critical lines in a test t, we
can identify the SSL faults detected by t. The method starts
by marking the primary outputs as critical. Then, it
traverses the circuit backwards and determines the critical-
ity of gate inputs according to the input values and the crit-
icality of the gate output. For a gate

, the following rules are
employed:

• If only one input x has a controlling value and the out-
put is critical, then x is critical.

• If all the inputs are non-controlling and the output is
critical, then all inputs are critical.

• Otherwise, none of the inputs is critical.
For the other gates, , the
inputs are critical if the output is critical. To illustrate, con-
sider the fanout-free circuit in Figure 3. The signal values
in response to 1111 are shown in the figure. The critical
path tracing method starts by marking the output g as criti-
cal, then it examines the gate G3. Since e is the only con-
trolling input and the output is critical, then e is critical.
The method then examines gate G1 followed by G2. For
G1, the inputs are non-controlling and the output is critical,
hence the inputs a and b are critical. For G2, the output is
not critical, hence the inputs c and d are also not critical.
After performing the critical path tracing analysis, the
faults that are activated by the signal values and fall on a
critical path are detected by the test 1111. Hence, the SSL
faults a/0, b/0, e/1, and g/0 are detected by 1111.

For the case of circuits with fanout, we have to consider
fanout stems, where a stem is a line that has multiple
fanout. The criticality of the stem cannot be determined
from its fanouts due to the fact that propagation of fault
effects on multiple paths can block the propagation of the
effects to primary outputs. The problem of determining the
criticality of the stems is called stem analysis. The simplest

a
b
c

d

e

g

G1

G2

Correct circuit

a
b
c

d

e

g

G1

G2

EGE

a
b
c

d

e

g

G1

G2

SIGSE a
b
c
d

e

g

G1

G2

MIGSE

a
b
c
d

gG2

MGE

a
b
c

m

e

g

G1

G2

WIE

a
b
c

e

g

G1

G2

MIE

a

c
d

e

g

G1

G2

b
n

EIE

GP1

GP2

Figure 2 Examples of design errors.

v

G AND NAND OR NOR, , ,{ }∈

NOT BUF XOR XNOR, , ,{ }

1

1

1
0

1

1

a

b

c

d

e

f

g

G1

G2

G3

Figure 3 Critical path tracing in fanout-free circuits.

Critical

Non-critical

1

4

solution to stem analysis is to explicitly simulate the stems
to determine if they are critical. An efficient technique for
stem analysis has not been found yet. Due to stem analysis,
critical path tracing is not used alone in fault simulation. In
[16], it determines the criticality of non-stem lines as
described above, while the criticality of stems is deter-
mined by parallel-pattern single fault propagation
(PPSFP). This approach combines two concepts: single-
fault propagation and parallel-pattern evaluation.

• Single-fault propagation is a specialized serial fault
simulation method for combinational circuits. Each
SSL fault is injected in the circuit and the circuit is sim-
ulated; then the response is compared to the fault-free
response. If they differ, the fault is detected. To speed
this process, the faulty circuit is simulated starting at
the fault site and continuing to the primary outputs. The
gates at earlier levels than the fault site need not be
evaluated because they are not changed.

• Parallel-pattern evaluation is a simulation technique
that simulates W vectors concurrently, where W is in
most cases the width of word in the host computer. Of
course, this is only possible in combinational circuits
where the order of applying the vectors is irrelevant.
PPSFP starts by determining the fault-free response for
W vectors. Then, a fault is injected and the faulty
responses are computed. If the response of the circuit is
different for any of the W vectors, then the fault is
detected and the process is repeated for another fault.
After checking for the last fault, another set of W vec-
tors are selected and the process is repeated until either
the vectors are exhausted or all the faults are detected.

Unlike the methods discussed above that target SSL
faults only, ESIM is designed to efficiently fault simulate
several different types of error and fault models including
all those discussed in Section 2. The detection of an error/
fault in a target circuit is determined by ESIM using the

information about the criticality of the lines as well as the
activation conditions for the faults/errors. A fault/error in a
gate G is detected by a test t iff t activates the fault/error
and the output of G is critical under t. Hence, if the output
of a gate G is critical under a test t, then all the errors/faults
at G that are activated by t are detected by it. The activa-
tion conditions for the faults/errors are summarized in
Table 1. ESIM combines the following four techniques:
parallel pattern evaluation where packets of 32 tests are
simulated concurrently, multiple error and fault activation,
single fault propagation at stems, and critical path tracing
at the non-stem lines. We build explicit fault and error lists
for SSLs, IPs, GSEs, GCEs, and EIEs. However, since the
number of MIEs and WIEs is quadratic in the number of
nets in the circuit, we use implicit partial error lists for
these errors.

ESIM is written using C++ in approximately 9000 lines
of code. Its simulation algorithms for GP1 errors (GSEs,
GCEs, and EIEs) and GP2 errors (MIES and WIEs) are
shown in Figures 4 and 5, respectively. The simulation
algorithms for SSL and IP faults are similar to that of GP1.

4. Experimental results

The major application of ESIM is to evaluate the cover-
age of design errors and logical faults by using various test
sets that are determined by typical automatic test pattern
generation tools such as the following:

• ATALANTA [15]: This is a combinational test pattern
generator for SSL faults that is characterized by short
test generation time as well as small test set size. It is
based on the FAN algorithm [3] for test generation.

• RTESTS and ETESTS: These test pattern generators

Table 1 Conditions for activating a fault/error by a test.

Fault/Error Activation Condition
SSL l/v l’s value is the complement of v

IP The input pattern is V

SIGSE None

MIGSE G/G’ Input pattern to G distinguishes
between G and G’

EGE Same as MIGSE

MGE MG(G’,G) Input pattern distinguishes between
the existence and the absence of G’

EIE EI(e,G)
e is the only controlling input of G, if G
is AND, NAND, OR, or NOR
e is 1 if G is XOR or XNOR

MIE MI(m,G)
m is the only controlling input if G is
AND, NAND, OR, or NOR
m is 1 if G is XOR or XNOR

WIE WI(u,w,G) u is critical and w’s value is the
complement of that of u

V ′ FV FV=()

/* C is the circuit*/
/* T is the simulation test set */
procedure GP1-Simulation(C,T);
begin

Form the fault/error list L;
Form stem list S;
repeat

Select a packet P of 32 tests from T;
T := T - P;
Set all signals in C to noncritical;
S := S - {stems with no faults in their fanout-free regions;}
Perform fault-free simulation using P;
Determine criticality of stems in S;
Traverse C backwards and determine criticality of

all signals;
Identify detected faults/errors D;
L := L - D;

until T is empty or L is empty;
Output the results;

end;

Figure 4 Error simulation algorithm for GP1 errors.

5

were developed by us to produce random and exhaus-
tive tests, respectively.

We now describe several experiments that illustrate the
capabilities of ESIM. The circuits used in the experiments

are the ISCAS-85 benchmark set [10] as well as few cir-
cuits from the 74X TTL IC series [20]. Table 2 shows the
number of design errors and logical faults in these circuits.

• Experiment 1 (Exhaustive simulation): The first
experiment was conducted to investigate exhaustive
simulation using tests generated by ETESTS. This
experiment gives us the percentage of redundant design
errors and logical faults in the simulated circuits. The
results of the experiment are shown in Table 3, from
which we see that the redundancy of some types of
design errors can be as large as 11.6%, and that of IP
faults can be as large as 33.5%. This experiment is per-
formed only for those benchmarks where simulation
with exhaustive tests is feasible—circuits with approx-
imately 16 or fewer inputs.

• Experiment 2 (Random simulation): The second
experiment evaluates the random simulation approach.
Random test sets of sizes 1 through 20 were generated
by RTESTS for the c74283 carry-lookahead adder cir-
cuit and the coverage of design errors was determined
using ESIM. The process was repeated 50 times and the
average coverage obtained is shown in Table 4. The
table shows that a small number of vectors provide
good (but not full) coverage of design errors. The main
problem with random simulation of this type is that it
cannot guarantee high coverage with a relatively small
number of vectors.

Figure 5 Error simulation algorithm for GP2 errors.

procedure GP2-Simulation(C,T);
begin

Form gate list GL;
repeat

Select a gate G from GL;
GL := GL - {G};
CT := T;
repeat

Select a packet P of 32 tests from CT;
CT := CT - P;
Perform fault-free simulation using P;
Determine criticality of G’s output;
NC := {gates of C not in the cone of influence of G};
if (G’s output is critical) then
repeat

Select a gate G’ from NC;
NC := NC - {G’};
Mark all detected MIEs and WIEs that have the

output of G’ as the wrong source;
until NC is empty;

until CT is empty;
Update the results;

until GL is empty;
Output the final results;

end;

Table 2 Numbers of faults and design errors in the circuits used in the experiments.

Circuit SSL
faults IP faults GSEs GCEs ICEs WIEsSIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 22 24 11 30 2 0 12 40 92
c432 524 2508 312 600 67 9460 296 18482 52063
c499 758 1072 337 810 104 1500 368 31452 81576
c880 942 1614 586 1470 199 1040 640 120779 299868
c1355 1574 2384 881 2370 216 1500 992 208476 480408
c1908 1879 5374 1467 2205 252 12775 1059 358816 1217410
c2670 2747 4842 1994 3380 476 4485 1559 940307 2881417
c3540 3428 10258 2584 4780 634 23470 2226 1513437 4658069
c5315 5350 11728 3902 7065 986 18110 3492 3454806 10738696
c6288 7744 9600 3904 11920 944 0 4768 4999155 10055805
c7552 7550 14636 5450 10510 1408 14390 4734 7707830 22536439
7485 137 472 86 155 20 1565 97 974 3456
74181 237 454 146 265 36 855 143 3750 11621
74283 128 240 74 150 17 460 76 985 3285

Table 3 The coverage of faults and design errors using exhaustive test sets.

Circuit Test
set size

Detected
SSL faults

Detected
IP faults

Detected GSEs Detected GCEs Detected ICEs Detected
WIEsSIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 32 100 100 100 100 100 n/a 100 95.0 100
7485 2048 100 66.5 100 88.4 100 94.4 100 91.2 97.5
74181 16384 100 96.5 100 98.5 88.9 99.5 100 96.6 99.1
74283 512 100 96.7 100 94.7 100 100 100 90.0 96.9

6

• Experiment 3 (Simulation using SSL tests): A third
experiment was conducted to determine the coverage
of design errors and logical faults using tests for SSL
faults. The effectiveness of a complete test set for SSL
faults (determined by ATALANTA) in detecting
design errors is shown in Tables 4 and 5. As discussed
earlier, most of the simulation time is spent in the sim-
ulation of GP2, especially as the circuits become larger.
The effectiveness of the complete test sets for SSL
faults in detecting IP faults is shown in Table 7. The
results show that complete test sets for SSL faults do a

very poor job in detecting IP faults.
Although ESIM was designed to handle the simulation

of design errors and logical faults, it has capabilities that
can be used in other applications.

• Test grading: The error simulator can determine the
number of faults detected by a given test. This informa-
tion is useful in applications such as hardware test
generation and test set compaction.

• Fault and error grading: This refers to classifying the
faults and errors as hard-to-detect (also called random
pattern resistant) or easy-to-detect. Fault and error
grading has many applications such as test generation
and test point selection.

• Fault table generation: ESIM can generate a complete
fault table for circuits with 16 or fewer inputs; for
larger circuits, partial fault tables can also be generated.

Table 4 The coverage of SSL faults and design errors
in the 74283 adder using random test sets.

Test
set
size

SSL SIGSE MIGSE EGE MGE EIE MIE WIE

1 28.5 47.7 48.1 60.9 23.1 17.3 17.7 23.0
2 44.9 61.1 65.2 76.7 35.6 30.2 29.5 38.0
3 54.1 68.3 72.5 86.4 45.7 39.3 36.3 47.2
4 63.8 75.6 80.6 93.4 54.1 48.5 45.3 57.1
5 67.7 78.1 81.9 92.7 56.2 53.1 49.4 60.5
6 72.1 81.0 86.5 96.7 61.3 57.7 54.5 65.6
7 73.6 81.8 87.5 96.5 62.5 59.9 57.1 67.8
8 78.1 86.9 89.3 99.1 70.2 66.9 60.2 72.8
9 76.9 84.5 88.9 97.9 69.7 66.6 60.2 72.2
10 80.9 87.6 90.7 99.8 72.1 70.4 65.8 75.8
11 81.1 87.4 91.4 99.8 74.0 73.2 65.5 76.5
12 83.2 89.6 91.3 99.8 76.0 74.9 68.2 78.6
13 84.0 90.7 92.5 100.0 78.7 75.2 70.4 79.5
14 82.6 90.2 92.1 100.0 79.8 76.6 68.4 78.9
15 85.1 92.0 92.5 100.0 80.7 78.1 71.3 81.0
16 85.5 92.4 93.0 100.0 82.2 78.1 71.8 81.5
17 85.2 91.6 92.7 100.0 80.9 79.3 71.7 81.3
18 87.9 94.4 93.2 100.0 84.7 81.2 74.8 83.9
19 87.4 93.1 93.0 100.0 83.9 81.7 74.8 83.3
20 87.9 93.4 93.3 100.0 84.6 82.2 74.8 83.9

Table 5 The coverage of SSL faults and design errors using ATALANTA’s complete SSL tests.

Circuit Test
set size

Detected
SSL faults

Detected GSEs Detected GCEs Detected ICEs Detected
WIEsSIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 5 100.0 100.0 80.0 100.0 n/a 100.0 57.5 88.0
c432 46 99.2 100.0 89.3 100.0 95.5 98.7 71.3 96.4
c499 52 98.9 100.0 97.8 46.2 89.6 97.8 88.8 98.6
c880 47 100.0 100.0 90.3 100.0 94.6 100.0 84.9 98.6
c1355 85 99.5 100.0 82.0 100.0 89.6 99.2 82.2 98.6
c1908 115 99.5 100.0 84.7 97.6 88.7 99.2 85.8 97.0
c2670 106 95.7 99.7 86.5 87.6 88.9 93.2 85.9 97.4
c3540 152 96.0 99.3 89.5 90.5 81.2 94.2 82.7 97.5
c5315 106 98.9 100.0 89.5 98.9 91.7 98.3 94.5 98.9
c6288 35 99.6 99.6 85.6 100.0 n/a 99.3 89.3 99.6
c7552 199 98.3 100.0 86.6 97.4 90.3 97.2 93.2 98.7
7485 25 100.0 100 88.4 100.0 89.8 100.0 83.4 92.7
74181 18 100.0 100 96.2 88.9 90.6 100.0 81.7 94.0
74283 12 100.0 100 91.3 100 84.1 100.0 74.5 92.2

Table 6 ESIM design error simulation time using
ATALANTA’s complete SSL tests.

C
ir

cu
it

Initializa-
tion

Simulation
 for GP1

Simulation
for GP2 Total

timea

a. In seconds on a SUN SPARC 20.

Time % Time % Time %
c17 0.04 50.0 0.02 25.0 0.02 25.0 0.08
c432 0.26 1.1 15.81 67.6 7.31 31.3 23.38
c499 0.34 2.3 3.70 24.9 10.81 72.8 14.85
c880 0.55 1.5 1.88 5.3 33.14 93.2 35.57

c1355 0.86 0.7 7.33 6.1 112.84 93.2 121.03
c1908 1.36 0.4 25.41 9.2 250.91 90.4 277.68
c2670 1.99 0.4 18.13 3.5 493.21 96.1 513.33
c3540 2.96 0.2 218.99 16.1 1140.77 83.7 1362.71
c5315 6.38 0.3 89.50 3.9 2199.19 95.8 2295.07
c6288 5.25 0.3 73.76 3.9 1824.62 95.8 1903.63
c7552 8.35 0.1 179.70 2.5 7079.72 97.4 7267.77
7485 0.08 3.6 1.85 82.2 0.32 14.2 2.25
74181 0.12 7.7 0.51 32.7 0.93 59.6 1.56
74283 0.07 11.7 0.29 48.3 0.24 40.0 0.60

7

This feature of the simulator is used to analyze the
faults of a given circuit. Note that ESIM performs sim-
ple SSL fault collapsing to reduce the size of the fault
table.

• Test generation: The simulator also supports a fast,
greedy test generation algorithm based on covering the
fault table. Experimental results show that the algo-
rithm often produces near-minimal test sets in circuits
with a small number of inputs.

• Dependency evaluation: This refers to the structural
dependency between any two circuit outputs. The idea
is to determine the common lines in the cones of influ-
ence of two outputs. This is useful in on-line testing,
where circuit outputs are compacted to decrease the
hardware overhead of the hardware test/signature
generator.

• Netlist translation: Most CAD tools accept various
netlist formats, such as ISCAS-85 and BLIF. ESIM can
translate any ISCAS-85 description to ISCAS-89 [9],
BLIF, and Verilog. A major use of the translator is in
the synthesis of logic circuits using SIS [18], whose
input format is BLIF.

ESIM also reports some statistics about the circuit being
simulated. This can be seen by the sample run shown in
Figure 6, where ESIM determines the coverage of an
exhaustive test set for 74283, a 4-bit carry-lookahead adder
circuit.

It is difficult to compare the results obtained by ESIM
to related work in the literature for several reasons: (1) dif-
ferent error models are used; (2) test set sizes are missing
from the results of [13]; and (3) standard benchmarks are
not used in most prior work.

ESIM is useful not only for combinational but also for
sequential circuits. Preliminary experimental results using

a sequential version of ESIM on a subset of non-scan
sequential benchmarks from the ISCAS-89 suite [9] are
shown in Table 8. The test sequence S used in the simula-
tion was generated in [5] to detect the design error models
in GP1. In addition to computing the coverage of design
error models in GP1 and GP2, ESIM returns the coverage
of extra latch errors (ELEs) and missing latch errors
(MLEs). The coverage of design errors is high for all cir-
cuits, except for s420 whose internal nets have low con-
trollability and observability.

5. Discussion

ESIM is based on a novel combination of parallel-pat-
tern evaluation, multiple fault/error activation, single fault
propagation, and critical path tracing. It can handle several
types of design errors and logical faults, and can readily be
extended to cover additional error/fault models. The exper-
iments reported here show that ESIM is relatively fast.
They also confirm a number of interesting observations
made before [2][6] such as: (i) most design errors and logi-
cal faults can be covered by small test sets, (ii) the percent-
age of redundant design errors and IP faults is large in
some circuits, and (iii) complete test sets for SSL faults are
reasonably good tests for simulation-based design verifica-

Table 7 The coverage of IP faults using
ATALANTA’s complete SSL tests.

Circuit Test
 set size

Detected
IP faults

Simulation
timea

a. In seconds on a SUN SPARC 20.

c17 5 75.0 0.0
c432 46 25.7 1.0
c499 52 80.8 1.1
c880 47 85.3 3.8
c1355 85 75.3 6.2
c1908 115 61.9 17.3
c2670 106 76.5 21.4
c3540 152 50.3 79.1
c5315 106 74.3 183.1
c6288 35 81.7 219.1
c7552 199 78.5 391.8
7485 25 40.7 0.1
74181 18 70.7 0.1
74283 12 56.7 0.1

Figure 6 Output generated by a sample run of ESIM.

esim c74283.isc c74283.xhv

Gates = 104
=================================
 Gtype Ngates Mxfin Mxfout
=================================
 nand 4 2 7
 and 14 5 1
 nor 8 5 5
 or 0 0 0
 xor 4 2 0
 xnor 0 0 0
 inpt 9 0 2
 from 59 1 1
 not 6 1 5
 buff 0 0 0
=================================
Levels = 6
Inputs = 9
Outputs = 5
Stems = 22
Tests = 512

 SSL 128 128 100.00 0.09
======= ======= ======= ======= ======
 SIGSE 74 74 100.00
 MIGSE 150 142 94.67
 EGE 17 17 100.00
 MGE 460 460 100.00
 EIE 76 76 100.00
 TOTAL 777 769 98.97 0.22
======= ======= ======= ======= ======
 MIE 1143 1029 90.03
 WIE 3285 3184 96.93
 TOTAL 4428 4213 95.14 2.86
======= ======= ======= ======= ======
 IP 240 232 96.67 0.15
======= ======= ======= ======= ======

Initialization Time = 0.27
Simulation Time = 3.32
Total Time = 3.59

8

tion.
Several aspects of ESIM’s error modeling and simula-

tion capabilities remain to be investigated, especially in the
case of sequential circuits. Its overall performance could
be improved by introducing error collapsing. Finding ways
to collapse the number of the missing or wrong inputs that
need to be considered would be especially useful. As Table
6 shows, most of ESIM’s simulation time is spent on MIEs
and WIEs. The relation between design errors and IP faults
also seems worth exploring since tests for IP faults appear
to cover many design error types including hard-to-model
errors, as well as unknown manufacturing fault types [8].

Acknowledgment

This research was supported by the National Science
Foundation under Grant No. CCR-9872066.

References

[1] E. J. Aas, T. Steen, and K. Klingsheim, “Quantifying design
quality through design experiments”, IEEE Design and Test,
Vol. 11, No. 1, pp. 27-37, Spring 1994.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design
verification via test generation”, IEEE Transactions on
Computer-Aided Design, Vol. 7, pp. 138-148, January 1988.

[3] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, Computer Science
Press, New York, 1990.

[4] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical
path tracing: An alternative to fault simulation”, IEEE
Design and Test of Computers , Vol. 1, No. 1, pp. 83-93,
February 1984.

[5] H. Al-Asaad, Lifetime Validation of Digital Systems via
Fault Modeling and Test Generation, Ph.D. Dissertation,
University of Michigan, 1998.

[6] H. Al-Asaad and J. P. Hayes, “Design verification via sim-
ulation and automatic test pattern generation”, Proc.
International Conference on Computer-Aided Design,
1995, pp. 174-180.

[7] D. B. Armstrong, “A deductive method of simulating faults
in logic circuits”, IEEE Transactions on Computers, Vol. C-
21, pp. 464-471, May 1972.

[8] R. D. Blanton and J. P. Hayes, “Properties of the input pat-
tern fault model”, Proc. International Conference on
Computer Design, 1997, pp. 372-380.

[9] F. Brglez, D. Bryan, and K. Kozminski, “Combinational
profiles of sequential benchmark circuits”, Proc. Interna-
tional Symposium on Circuits and Systems, 1989, pp. 1929-
1934.

[10] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combina-
tional benchmark circuits and a target translator in fortran”,
Proc. International Symposium on Circuits and Systems,
1985, pp. 695-698.

[11] B. Chen, C. L. Lee, and J. E. Chen, “Design verification by
using universal test sets”, Proc. Third Asian Test Sympo-
sium, 1994, pp. 261-266.

[12] S.-Y. Huang et al., “ErrorTracer: A fault simulation-based
approach to design error diagnosis”, Proc. International
Test Conference, 1997, pp. 974-981.

[13] S. Kang and S. A. Szygenda, “The simulation automation
system (SAS); Concepts, implementation, and results”,
IEEE Transactions on VLSI Systems, Vol 2, No. 1, pp. 89-
99, March 1994.

[14] H. K. Lee and D. S. Ha, “An efficient forward fault simula-
tion algorithm based on the parallel pattern single fault
propagation”, Proc. International Test Conference, 1991,
pp. 946-955.

[15] H. K. Lee and D. S. Ha, “On the generation of test patterns
for combinational circuits”, Department of Electrical Engi-
neering, Virginia Polytechnic Institute and State University,
Tech. Rep. 12-93, 1993.

[16] F. Maamari and J. Rajski, “A method of fault simulation
based on stem regions”, IEEE Transactions on Computer-
Aided Design, Vol. 9, pp. 212-220, February 1990.

[17] D. Nayak and D. M. H. Walker, “Simulation-based design
error diagnosis and correction in combinational digital cir-
cuits”, Proc. VLSI Test Symposium, 1999, pp. 70-78.

[18] E. M. Sentovich et al., “SIS: A system for sequential circuit
synthesis”, Dept. of Electrical Engineering and Computer
Science, University of California, Berkeley, Memorandum
No. UCB/ERL M92/41, May 1992.

[19] S. Seshu, “On an improved diagnosis program”, IEEE
Transactions on Electronic Computers, Vol. EC-12, pp. 76-
79, February 1965.

[20] Texas Instruments, The TTL Logic Data Book, Dallas, 1988.
[21] E. G. Ulrich and T. G. Baker, “Concurrent simulation of

nearly identical digital networks”, IEEE Computer, Vol. 7,
pp. 39-44, April 1974.

[22] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge,
and R. Brown, “High-level design verification of micropro-
cessors via error modeling”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 3, No. 4, pp. 581-
599, October 1998.

Table 8 The coverage of SSL faults and design errors in sequential benchmarks.

Circuit Size of S
Detected errors/faults

 SSL SIGSE MIGSE EGE MGE EIE MIE WIE ELE MLE
s27 49 100.0 100.0 95.0 100.0 n/a 100.0 74.7 94.4 100.0 100.0
s208 448 95.6 91.3 87.9 87.8 83.8 91.6 72.4 93.0 87.5 81.8
s298 448 86.4 91.1 93.6 100.0 96.92 77.5 67.5 84.6 100.0 100.0
s344 264 93.9 97.3 90.7 100.0 85.0 91.9 76.9 94.2 100.0 95.0
s349 352 94.9 97.7 90.8 100.0 85.0 93.5 79.9 95.9 100.0 95.0
s386 500 85.1 97.1 92.7 78.4 98.2 69.6 67.1 87.6 100.0 92.9
s420 499 54.5 58.1 69.4 71.9 48.1 51.8 32.8 52.8 81.3 36.8
s641 360 87.6 93.5 94.8 73.5 90.6 81.7 65.2 90.4 78.9 89.8

