
ABSTRACT

This paper introduces two new methods for observing
and recording the vectors that have been asserted on a bus.
The first is a software approach that uses a novel data
structure similar to binary decision diagrams which allows
for a compact representation of stored values. Even though
the new data structure presented in this paper can poten-
tially grow to contain just as many nodes as there are pos-
sible values, such cases are often rare. The second is a
hardware approach that is based on a simple circuit con-
sisting of a small memory and two counters and has the
ability to perform at the speed of the microprocessor.

Keywords: Design validation, bus monitoring,
microprocessor verification, post-silicon debug.

1 INTRODUCTION

As microprocessor continue to grow in complexity,
the visibility to the internal state is adversely affected,
making it increasingly difficult to attain critical
debugging information. Methods such as JTAG and
sample-on-the-fly [1] can be used to alleviate this
problem, but continuous observation is often not pos-
sible or very time consuming. As a partial solution to
this problem, two methods for monitoring vectors
asserted on a bus are presented in this paper. The first
is a software solution that exploits the binary decision
diagrams (BDDs) ability to reduce itself to convey
information more concisely. A hardware solution to
the same problem that allows at-speed monitoring is
also presented.

The paper is organized as follows. Section 2
describes the motivation of using a BDD-like struc-

ture to store information on vectors appeared on a bus.
The details of our software approach and the obtained
simulation results are also presented in this section.
Section 3 describes our simple hardware approach and
the details of the monitoring circuit and its operation.
Finally, we conclude in Section 4.

2 SOFTWARE APPROACH

In this section, we describe our novel software
approach and the simulation results that show its fea-
sibility.

2.1 Motivation from bdds
BDDs [2] were originally designed as a way to

check for equivalence between two implementations.
A reduced and ordered BDD (ROBDD) is a canonical
(unique) representation for any given function. Any
pair of functions will have different ROBDDs unless
the functions themselves are equivalent. Since two
implementations are equivalent if and only if any
input vector produces the same output in both imple-
mentations, their output functions must be the same
and equivalence can be determined by comparing
their respective ROBDDs.

But how are ROBDDs created? Well, first an order
of inputs must be chosen (certain orders having
advantages over others). Then beginning with the first
input variable in the order chosen, the function is
evaluated with the value of this variable set to 0 and 1
and the resulting functions placed to the left and right
of the node respectively. Then the two functions just
calculated are evaluated with the next variable in the
order set to 0 and 1 resulting in four new functions,
and so on until all the variables have been covered or

APPROACHES FOR MONITORING VECTORS ON
MICROPROCESSOR BUSES

Hector Arteaga and Hussain Al-Asaad
Department of Electrical & Computer Engineering

University of California
Davis, CA, U.S.A.

1

until a definite value can be determined. Alterna-
tively, the ordered BDD (OBDD) can be determined
directly from the truth table and then reduced to cre-
ate the ROBDD. For example, let
be the function we wish to determine the ROBDD for
using the order . The truth table for this func-
tion, and the corresponding OBDD and ROBDD are
shown in Figure 1.

The construction of the OBDD is done as follows.
Beginning with node a (the root node), the functions
f(abcd) is evaluated with a = 0 and a = 1, resulting in

 and . These serve as
the input functions to the two b nodes, which are then
evaluated with and resulting in

 and .
Continuing on with this process for the variables c
and d we end up with the OBDD in Figure 1. Close
examination of this OBDD shows that the truth table
is present at the leaf nodes of the OBDD. It is also
evident from the OBDD that there are several terms
that appear a number of times, revealing potential for
simplification. Getting rid of these redundant terms
by grouping them into single nodes results in the
ROBDD shown in Figure 1. Any function with the
same truth table as in Figure 1 will have the ROBDD
shown in Figure 1.

As is evident by this example, a significant amount
of reduction is possible (the BDD was reduced from
15 nodes to only 4, excluding the leaf nodes) and only
a few nodes are necessary to specify the function.
This observation led us to believe that BDDs could be
used to efficiently store the vectors that have been
placed on a bus. We next describe the details of our
software method.

2.2 Novel software method
We introduce a new BDD-like structure called a

bus tree (BT) that represents the vectors appeared on
a bus. The BT starts of as just the root node since ini-
tially no vectors have been placed on the bus. As vec-
tors are detected on the bus, the BT adds the paths
associated with those vectors, looking for redundan-
cies to reduce the overall BT size. For example, Fig-
ure 2 shows the BT with the vectors 0000, 0001,
1011, and 1111 already inserted. The vectors 0000

f abcd() ab cd+=

<abcd>

f 0bcd() cd= f 1bcd() b cd+=

b 0= b 1=
f 00cd() f 01cd() f 10cd() cd= = = f 11cd() 1=

abcd f abcd f
0000 0 1000 0
0001 0 1001 0
0010 0 1010 0
0011 1 1011 1
0100 0 1100 1
0101 0 1101 1
0110 0 1110 1
0111 1 1111 1

(b) OBDD

(c) ROBDD

(a) Truth table

Figure 1 The (a) truth table, (b) OBDD, and (c)
ROBDD of the function f(abcd) = ab + cd.

a

b b

cccc

ddd ddddd

f = ab+cd

b+cdcd

cdcd cd 1

0 d 0 d 0 d 1 1

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

a

b

c

d

f = ab+cd

b+cdcd

cd

0 d

0 1

0

1

2

and 0001 can both be represented with the single vec-
tor by replacing the least significant bit with a vari-
able to indicate that both values of that bit are present,
i.e. 000x. Thus, the node shaded in Figure 2 is not
needed and both vectors can be represented as being
in the BT by identifying the left path in the b1 node
above the shaded node as being full, as shown in Fig-
ure 3. As more vectors are inserted, it becomes more
likely that a reduction such as the one above is possi-
ble.

For an n-bit bus, if this method was followed and
no reductions made, a full BT would have 2n–1 nodes
at the b0 level, 2n–2 nodes at the b1 level, 2n–3 nodes at

the b2 level, … 2 nodes at the bn–2 level and 1 at the
bn–1 level (the root node). Thus, in the worst case, the
size of the BT without counting the leaf nodes, could
grow to be 2n–1 + 2n–2 + … + 2 + 1 = 2n – 1 nodes,
which is one less than number of representable values
in an n bit number; not a substantial gain. However,
this case is highly unlikely and the actual size of the
BT is expected to be significantly less. In fact, if the
vectors asserted on the bus follow a binary order
(0...000, 0...001, 0...010, 0...011,....), then the worst
case size of the BT is n. Now, let us discuss the leaf
nodes. Since all the leaf nodes are the same, they can
all be grouped into a single element (not necessarily
an actual node) that identifies a path as being full. By
making all full paths point to the same element, all
the leaf nodes can be lumped together, thus relieving
some of the memory requirements.

2.3 Simulation Results
Figure 4 shows the growth of the BT as random

vectors are inserted into it. As expected, the size of
the BT grew linearly at first, but quickly tapered off.
The growth is approximately 3x for the first 30 - 40
vectors and then begins to slowly die down, reaching
a maximum of 193 nodes at the insertion of the 159th

random vector (note that there are 256 distinct input
vectors). The reason that the growth is not initially 8x
is because as more and more vectors are inserted into
the BT, the following vectors will have part or all of
the vector already present in the BT. For example, if
the vector 10010100 is the first vector inserted, the
BT will grow from 1 to 8 since 7 new nodes will be
necessary (root node already exists). Now, if the next
vector to be inserted is 10001001 only 4 new nodes
will be created since the 3 most significant bits of the
vector, 100, are the same as that of the previously
inserted vector. The size will grow to 12 instead of
16. If a vector is the same as a previously inserted
vector, the BT remains as it is and only the number of
vectors inserted increases. As more and more vectors
are inserted into the BT, the likelihood that this will
occur increases and fewer nodes are added to the BT.
Eventually, the number of nodes needed for a vector
to be inserted will be 0 and the size of the BT will
reach its maximum. As vectors continue to be
inserted, the number of nodes discarded due to the

Figure 2 BT with 4 vectors inserted.

b3

b2

b1

b0

b[3:0]

0

0 1

0 1

1 1 1 1

0 1

1

0

1

b2

b1 b1

b0 b0
11

Figure 3 BT with vectors combined.

b3

b2

b1

b[3:0]

0

0 1

0 1

1

1 1

1

0

1

b2

b1 b1

b0 b0
11

3

reduction of the BT will exceed the nodes added for
the vectors and the size will begin to decrease. The
BT will continue to decrease in size until all possible
vectors have been inserted in which case the BT will
return to its original size of 1 node as can be seen in
Figure 4. (As a convention, we identify an empty BT
as the root node with both its left and right paths
empty and a full BT as the root node with both its left
and right paths full. Alternatively, flags can be used
to identify these two states in which case the initial
and full BT size will be 0.)

Table 1 shows the maximum size of the BTs (in
nodes) for four different bus lengths over ten random
simulations. The table shows that the maximum size
of the BT rarely exceeds three fourths of the total rep-
resentable vectors, 2n. Of the 40 simulations shown,
only 2 resulted in a maximum size that exceeded this
quantity. Furthermore, the results indicate that as the
bus width increases, it is less likely that the maximum
size will surpasses this value.

3 HARDWARE APPROACH

As an alternative to the software approach, we
have also designed a circuit that holds the values
placed on a bus in memory as shown in Figure 5. The
circuit primarily consists of two counters and a small

 bit memory. During normal operation the
output_en signal will be set to 0 allowing the data

0
20
40
60
80
100
120
140
160
180
200

0 200 400 600 800 1000 1200 1400

Number of inserted vectors

N
um

be
r o

f n
od

es

Figure 4 The size of the BT as 1500 random vectors of width 8 are inserted.

2n 1×

Table 1 Maximum size of the BT for various
bus widths through several random

simulations.
8-bit
Bus

10-bit
Bus

12-bit
Bus

14-bit
Bus

1st
Simulation

173 750 2982 11769

2nd
Simulation

179 753 2987 11856

3rd
Simulation

174 757 2965 11857

4th
Simulation

180 757 2953 11821

5th
Simulation

188 761 2986 11819

6th
Simulation

188 760 2930 11808

7th
Simulation

192 758 2932 11797

8th
Simulation

194 757 2974 11759

9th
Simulation

181 789 2947 11968

10th
Simulation

192 735 2909 11823

2n*(3/4) 192 768 3072 12288

4

from the bus to reach the memory as an address and
prohibiting the writing of any data on the output_bus.
The single bit in this address will then be set to one
since the write enable (wr_en) line on the memory
will be set to 1 and the write data (wr_data) is hard-
wired to 1. A value of 1 in a certain memory location
indicates that the address corresponding to this loca-
tion has been observed on the bus.

Once it is desired to view the results, the output_en
signal is asserted and both counters reset. This allows
the memory to obtain its addresses from the first
counter and indicates that the memory should now be
read from. As the counter executes its sequence of
numbers, the corresponding memory location will be
read. If a particular memory location contains a value
of 1 the second counter will increment its value and
the tri-state buffer will be enabled allowing the
address to propagate to the output_bus. Once 2n

cycles have elapsed, all the memory locations will
have been read and all values placed on the
output_bus. The second counter will contain the total
number of vectors placed on the bus, which will sim-
plify the task of determining what percentage of vec-
tors have been asserted. During this time, the
processor can be busy performing other operations
that do not require the bus to be monitored. To restart

the sequence again, the memory is reset and the
output_en signal is set to 0 once again.

The simplicity of the circuit allows for at-speed
operation. However this design’s greatest disadvan-
tage is the cost of implementing the memory, which
can take up a significant amount of chip area.

4 CONCLUSIONS

Two methods for monitoring bus activity have
been presented. The first method is a software solu-
tion that uses a BDD-like structure called BT to store
the data. This method allows a great degree of flexi-
bility. The size of the BT depends on the order of
input vectors appearing on the bus and it is bounded
by [n, 2n – 1]. The software approach cannot be run as
fast as the hardware due to the time needed to process
the BT. The second method is a hardware approach
that allows for at speed data acquisition. However,
the cost of this approach can be high due to the chip
area of the used memory.

ACKNOWLEDGEMENT

This material is based upon work supported by the
National Science Foundation under Grant No.
0092867.

Figure 5 A bus monitoring circuit.

n-bit
counter

clk reset

n

inc

clk reset

output_en

2n x 1 bit
memory

output_en

1

rd_en
wr_en
wr_data

output_bus

number_of_vectors_stored

nn

n-bit
counter

clk reset

n

output_en

n

n

n

0

1

inc

Monitored n-bit bus

tri-state
buffer

2n 1×

5

REFERENCES

[1] M. S. Abadir, T. M. Mak, and Li-C. Wang,
“Tutorial 15: Validation and verification of high-
performance microprocessors: Common chal-
lenges and solutions”, Proc. International Test
Conference, 2003.

[2] R. Bryant, “Graph-based algorithms for boolean
function manipulation”, IEEE Transactions on
Computers, C-35, pp. 677-691, June 1986.

[3] D. D. Josephson, S. Poehlman, and V. Govan;

“Debug methodology for the McKinley proces-
sor”, Proc. International Test Conference, 2001,
pp. 451-460.

[4] A. Carbine and D. Feltham, “Pentium Pro pro-
cessor design for test and debug”, Proc.
International Test Conference, 1997, pp. 294-
303.

[5] B. Vermeulen, T. Waayers, and S. K Goel,
“Core-based scan architecture for silicon debug”,
Proc. International Test Conference, 2002, pp.
638-647.

6

