
 1

Abstract—We present a Mutation-based Validation Paradigm

(MVP) technology that can handle complete high-level
microprocessor implementations and is based on explicit design
error modeling, design error simulation, and model-directed test
vector generation. We first present a control-based coverage
measure that is aimed at exposing design errors that incorrectly
set control signal values. We then describe MVP’s high-level
concurrent design error simulator that can handle various
modeled design errors. We then present fundamental techniques
and data structures for analyzing high-level circuit
implementations and present various optimizations to speed-up
the processing of data structures and consequently speed up
MVP’s overall test generation process. We next introduce a new
automatic test vector generation technique for high-level
hardware descriptions that generates a test sequence by
efficiently solving constraints on multiple finite state machines.
To speed up the test generation, MVP is empowered by learning
abilities via profiling various aspects of the test generation
process. Our experimental results show that MVP’s learning
abilities and automated test vector generation effectiveness make
MVP significantly better than random or pseudorandom
validation techniques.

Index Terms—Simulation-based design verification,
concurrent design error simulation, high-level deterministic test
generation, design error modeling.

I. INTRODUCTION
igital circuit design methodologies have reached a highly
optimized state, but the circuit validation methods used in

industry are still subjective to the validation engineer on the
job. Many circuit validation methods for high-level hardware
descriptions are available and are in competition with one-
another and most of these methods do not provide a stand-
alone solution. As a result, circuit validation is still an art
mastered by an engineer through experience and observations,
as opposed to a systematic technique that can be easily
disseminated. These validation engineers develop an intuition
on how to perform circuit validation, and most importantly, on
how much circuit validation is necessary. It is therefore

Manuscript received September 23, 2006; revised July 16, 2007. This work
was supported by the National Science Foundation under Grant No. 0092867.
Preliminary parts of this paper appeared in [1]-[5].

Jorge Campos is with the Park Vaughan & Fleming patent law firm, Davis,
CA (e-mail: jcampos@ucdavis.edu).

Hussain Al-Asaad is with the Department of Electrical and Computer
Engineering, University of California, Davis, CA (e-mail:
halasaad@ece.ucdavis.edu).

possible to reduce the time and money required to create
circuits by reducing the human effort required in circuit
validation through a systematic and easily-reproducible
system comprised of software tools and deterministic
practices, both in software and human effort.

“Black-box” circuit validation is a strategy that does not
require the validation system to have prior inside knowledge
of the circuit under validation. It currently relies on random or
pseudo-random test patterns to validate the “black box”
because such a validation system has no way of efficiently
deciphering how to generate the most effective instruction
sequence for circuit validation.

Current industry standard practices rely on random and
pseudo-random instruction sequence generation techniques
that bet on the statistical nature of their practices to eventually
explore a large-enough portion of the circuit. The simplicity in
these practices allows for a high-frequency of simulations, but
the ability of the simulator to traverse unexplored architectural
states quickly diminishes over time. Deterministic practices,
on the other hand, guarantee continued forward progress for
effectiveness as they allow the circuit validation engineer to
attack the problem head-on.

Unfortunately, current validation systems are neither
efficient nor effective enough to perform deterministic “black
box” validation on complete large circuit implementations.
Therefore, when handling complete large circuits such as
microprocessors and ASICs, companies rely on “white box”
circuit validation to attain an increase in circuit coverage and
validation effectiveness. To achieve this, circuit design teams
provide inside information to their validation strategy by
building “self-testing” knowledge into their implementations
and validation system.

In this paper, we describe the design and implementation of
MVP, a mutation-based validation paradigm. MVP is a circuit
validation tool for high-level hardware descriptions, and its
purpose is to provide expert deterministic validation methods
to the average design engineer. MVP provides a complete and
automated strategy for analyzing high-level hardware
descriptions that only leaves the circuit design engineer to
decide what portions of the circuit to validate, and not how to
validate it. These circuit analysis abilities allow MVP to
perform automated white-box circuit validation on high-level
RTL descriptions while providing the simplicity of black-box
validation to its users.

MVP does not require a priori information on the circuit
under validation for it to be effective, but instead gathers this

A Novel Mutation-Based Validation Paradigm
for High-Level Hardware Descriptions

Jorge Campos, Member, IEEE, and Hussain Al-Asaad, Senior Member, IEEE

D

 2

information real-time. This allows semiconductor companies
to analyze large circuit implementations in their entirety, and
allows them to analyze these projects even before they are
ready for circuit synthesis. The generality and completeness in
MVP’s design allows it to be used for all validation strategies:
from formal to simulation-based, static assertion-based to
dynamic assertion-based, deterministic vector generation to
pseudorandom vector generation, and from a static code-
coverage metric to any functional coverage metric.

A. Related Work
We next describe a few good examples of simulation-based

circuit validation systems aimed at ensuring the correctness of
complete large circuit implementations.
SymFony [6]. Many common validation environments that
employ symbolic automatic test pattern generation methods
rely on a gate-level implementation that has been previously
synthesized. Consequently, these symbolic methods are only
capable of generating a solution to circuits that contain few
registers.

SymFony attempts to circumvent this limitation by
extracting circuit macros from the gate-level implementation,
which act as reduced problems for the symbolic solver. It
employs two main algorithms: Forbidden is used to identify
all reachable states, and Justify is used to generate the
implications required by the FAN solver. To improve the run-
time performance, a pre-processing phase is used to identify
(from the synthesized gate-level implementation) F macros
that will be used by Forbidden and J macros that will be used
by Justify. At the register-transfer level, SymFony consider
control macros that are composed of each finite state machine
(FSM) state register, and data-path macros that are composed
of data registers/data-manipulating combinational logic.

SymFony’s automatic test vector generation (ATVG)
process can be applied to only small and medium circuits
because the Forbidden pre-processor computes the FSM for
the complete circuit, and the input/output constraint Binary
Decision Diagrams (BDDs) are intersected with the complete
FSM BDDs (next-state and output BDDs) during each
symbolic solver process.
Genesys-Pro [7]. Unlike many other verification tools, the
Genesys-Pro verification tool is capable of performing
verification on complete processor systems by implementing a
model-based test pattern generation approach. The approach
provides the building blocks found in processor
implementations to simplify the effort of creating a processor
model. A processor model is composed of a declarative
description, and testing knowledge for this model. A
processor model is verified through the use of a test template
language, such that a test template describes architecture-level
characteristics that should be tested. This test template is
converted into a verification program via the model-based test
pattern generator (implemented by a pseudorandom test
pattern generator) that uses the model’s included testing
knowledge. The strength of this technique is that it allows a
validation engineer to create test templates that are not

burdened by implementation details. This, of course, requires
significant human effort into generating this testing
knowledge that is only advantageous when there is extra
manpower or when the model belongs to a family of
processors with long lifetime expectancy. Furthermore, it
cannot be guaranteed that the modeling engineer has not left
out important corner cases that are difficult to stimulate.
μGP [8]. Some validation environments employ an instruction
library that contains a collection of mini-programs (known as
program macros) that are capable of exercising interesting
corners of the processor. These program macros can be
combined in various sequences to achieve test programs that
are more effective than purely random test generation
methods. This approach requires that the simulation method
connect the processor implementation onto a simulated
memory unit that contains the test program, as opposed to
forcing a fixed test sequence into the processor’s primary
inputs.

The methods in μGP employ an instruction library, and
achieve effective test programs via a genetic algorithm. The
program macros used in μGP are fine-grained such that it does
not render a sequence of program macros incapable of
stimulating interesting interactions among the instructions in a
pipeline. The goal of μGP is therefore to use a genetic
algorithm to generate a test program (composed of a sequence
of program macros) that achieves high design coverage.

The quality of the test program generated by the validation
system can only be as good as the set of program macros that
define it. It is therefore dependent on the validation engineer
to develop a diverse enough set of program macros such that a
combination of program macros exists for every corner of the
design.

B. Overview of MVP’s Validation Process
A diagram depicting MVP’s validation process is provided

in Fig. 1. In the description phase, a microprocessor
implementation and a collection of abstract design error
models are created. Given that these implementations are
inherently C++ code, a standard C++ compiler is used to
create the runtime Simulation/ATVG system during the
construction phase. The design error/fault injection
application programming interface (API) is required to
implement the runtime simulation environment, and the ATVG
engine API is required to implement the runtime ATVG
environment. The target block of a double-lined arrow denotes
an object produced by the source block of the double-lined
arrows.

The simulation/ATVG phase executes the compiled program
where the microprocessor implementation and a collection of
user run-time configurations and commands are used as
inputs. The user specifies what outputs to produce and what
modeled errors to consider during the simulation and ATVG
efforts.

The Simulation/ATVG program creates the output files
during the reporting phase, including the instruction sequence
that detects the optimal set of modeled errors, the collection of

 3

simulation/ATVG statistical data, and the actual response of
the microprocessor implementation when the instruction
sequence is used as an input, as well as a collection of
responses that correspond to a user-specified set of modeled
errors. The instruction sequence is fed into the golden model
(specification) during the validation phase to generate the
expected response, which is compared with the actual
response of the implementation. Any detected discrepancy
needs to be analyzed to determine if it is a result of an actual
design error, or if it corresponds to an invalid input sequence.

The rest of this paper is organized as follows. Section II
discusses a control-based coverage metric that is used by
MVP. Section III introduces MVP’s concurrent mutation-
based circuit simulation techniques that provide real-time
coverage analysis. Section IV introduces MVP’s low-level
mechanisms for performing high-level circuit analysis.
Section V expands on the mechanisms of Section IV to apply
them into MVP’s ATVG algorithm. Section VI discusses the
real-time profiling techniques that allow MVP to learn and
adapt onto any circuit description. Section VII presents
experimental results from applying MVP onto an open-source
Motorola 6800 microprocessor implementation, and Section
VIII concludes this paper.

II. A CONTROL-BASED COVERAGE METRIC
Several coverage metrics have been proposed in the

literature. An exhaustive coverage metric would attempt to
apply every possible input vector onto every architectural state
of the processor. This obviously leads to the state explosion
problem. Two popular alternatives that reduce this coverage
space include state coverage (attempting to reach every
reachable state in the design) and transition coverage
(attempting to traverse every possible transition among the
states of the design) [9][10]. Another popular metric is the
FSM path-coverage metric [9] that encapsulates transition
coverage, and can potentially be more complex than the
exhaustive coverage metric. It attempts to exercise every
possible state sequence that is within a given length. Finally,
due to the extensive use of modern hardware description
languages (HDLs), a series of code-based coverage metrics
appeared including line coverage, transition coverage, and
path coverage [9][11].

It is important to employ a coverage metric that reduces the
search space from an exhaustive coverage metric without
notably degrading the quality of the tests that result from it.
This step is critical to the development of a validation
paradigm because an inefficient coverage metric will require
too many test vector generation iterations, and an over-
simplified coverage metric will sacrifice the effectiveness of
the resulting test sequence.

A control-based coverage measure is being employed for
our mutation-based validation paradigm, and the reasoning
behind it is as follows. A microprocessor’s explicit processor
state can be defined by combining all the control registers. A
simple 16-bit processor with a 5-stage pipeline would
therefore consist of a state register that is at least 64 bits wide;
this being because each of the last four pipeline stages
contains a control register that holds the currently residing
instruction. The state register would be even larger for
superscalar microprocessor implementations because they
employ a distributed control methodology through many
disjoint and cooperating functional and control units. Any
attempt to even perform a complete state coverage would face
the wrath of the state explosion problem, so a more effective
method must be employed.

Given that modern processor implementations are modular
in nature, we assume that modules are validated against their
description before the microprocessor is validated as a whole.
Consequently, the microprocessor-wide validation problem is
reduced to one of validating the control signals that merge
these units together. A study on bug occurrences in pipelined
and superscalar microprocessor implementations [12] shows
that over two-thirds of design errors are related to the control
logic.

At this point, it is obvious that the coverage metric becomes
one that ensures every possible value for each control signal is
exercised for every possible processor state. This may seem
like an even harder coverage metric to employ than the state
coverage metric, but it can actually reduce the state space by
ignoring redundant and irrelevant processor states.
Error Modeling (Mutants). It is obvious that an error results
in the generation of an erroneous value under a specific state
of the system. So, circuit design errors and physical faults are
governed by the rules of cause-and-effect. We can harness this

CPU impl.

Collection of
abstract design

error/fault models

Microprocessor
Simulation/ATVG

program

Compiler

Microprocessor validation
instruction sequence

Microprocessor
golden model

Comparator

Simulation/ATVG
statistical data

Collection of requested
waveforms from detected

design errors/faults
User run time

configuration/commands

Description phase Construction phase Simulation/ATVG phase Reporting phase Validation phase

Design error/
fault injection API

ATVG engine API

Input

Input

Input

Match?

Actual response
of CPU impl.

Expected
response

Fig. 1. MVP’s validation process overview.

 4

cause-and-effect characteristic to define the mutant construct.
Similar to some fault injection campaigns [13][14], we are
defining an error model by three basic characteristics: (i) the
activation criteria, (ii) the consequence of activation, and (iii)
error injection. Furthermore, let us define mutants as the many
instantiations of an error model that span a given design
space. Numerous mutants are to be simulated concurrently;
therefore each mutant must have a unique identification
number.

A mutant’s activation criteria specify a set of signals and the
conditions that they must satisfy before the mutant is
activated. Once the activation criteria of a mutant are met, its
code segment is executed as the consequence of activation to
generate a set of mutations for a corresponding set of injection
points. The mutant values are injected into the specified
signals within the circuit during error injection, which follows
immediately thereafter.

Given that a design error on an implementation of a modular
component will appear on every instantiation of that
component, all design error models have to obey the
hierarchical error model [15] where every instantiation of a
modular component will have the same set of design errors
with corresponding identification numbers. This is important
because it allows a design error to simultaneously appear at
multiple instantiations of a component if necessary, and it
correctly models aliasing in the case where these mutant
values mask each other’s propagation across the circuit.
The Mutation Control Error Model. Given the objective to
stimulate every control signal under every processor state, we
employ a modified version of the mutation control error
(MCE) model [16] as the preliminary error model for our
validation environment.

Our modified model accommodates for micro-architecture-
based (FSM-based) processor implementations and is defined
as the quadruplet (s, c, vc, ve) [1] such that the explicit
processor state s and a correct value vc of the control signal c
act as the activation criteria, signal c is mutated from vc to an
erroneous value ve as a consequence, and injected back into
signal c. This modification is possible because the arrival of
an instruction i into a processor cycle c of a structural
microprocessor implementation can be interpreted as a
processor state.
Implementing the Control-Based Coverage Metric. It is
possible to automate the generation of mutants that span the
control-based coverage measure. In fact, performing
automated generation of these mutants is expected to be most
influential for superscalar microprocessor implementations
because of their inherent complexity. If one were to analyze
the data dependency of a control signal onto the set of
registers and primary inputs, one would see that each control
signal is dependent on only a subset of the control registers. It
is therefore possible to prune the state space without
consequences as follows: For each control signal c, first
identify the set of control registers that affect the value of that
control signal and denote this set as state-space s. Then for
every correct value vc of control signal c under every possible

value of s, generate a set of mutants that modifies c from vc to
all erroneous values ve (such that vc ≠ ve) and inject their
corresponding ve back into c.

This error modeling technique follows closely from the
modified MCE model, but it is more effective because it only
generates useful mutants for every control signal by first
identifying the relevant control registers. The set of relevant
control registers for a particular control signal can be found
easily by analyzing that control signal’s set of prospect states.
A prospect state (pState) is introduced and defined in Section
IV and can be generated as discussed there. Each pState for a
given signal defines a possible data dependency that satisfies
the signal constraint, and the set of control requirements that
allow for that data dependency to be satisfied. All pStates
generated from the control signal must have its solution space
searched for relevant control registers.

III. CONCURRENT MUTANT SIMULATION
Significant work has been performed on mutation-based

analysis and verification, especially in the software
verification arena. A lot of the foundation of mutation-based
hardware verification is an adaptation from the software area.
However, when it comes to hardware, building the fault
dictionary and injection of the faults requires special attention.
The fault injection needs to be dynamic in nature for certain
types of faults. In this section, we describe a concurrent
mutant simulator that is characterized by a dynamic injection
of modeled design errors (mutants) where only the design
errors that are activated are injected back into the circuit.

Error modeling for circuit validation is used to create an
artificial collection of simple modeled design errors (mutants)
that span throughout the corner cases of an implementation.
As a consequence to the coupling effect between simple and
complex design errors [17], a test sequence that is capable of
detecting these known simple modeled errors is implicitly
capable of detecting actual complex design errors as well.
Therefore, one application for a concurrent mutant simulator
is to grade a test sequence’s ability to traverse the design
space by concurrently and efficiently applying it to the
complete set of mutants and reporting its coverage. A more
important application of mutation-based circuit simulation is
that it can be used as a part of the mutation-based testing
engine as we have done in our MVP.

A. Limitations of Modern Error Injection Campaigns
Analysis of controllability and observability measures

through concurrent simulation methods has been previously
investigated via a tag simulation calculus [18]. Under this
simulation method, a single tag is propagated throughout the
simulation to designate a possible change in a signal value due
to an error. This method, however, results in an estimation of
observability given that mutations on a signal are represented
by a tag that only represents a positive or negative polarity.
Furthermore, this method requires the modification of the
hardware description when condition statements are involved
in order to compute the effects of the fault model when it

 5

causes the wrong path to be taken.
The methods in [19] are an improvement as behavioral fault

simulations are implemented with fault lists, such that Petri
Nets are used to propagate the fault lists in their event-
triggered simulation environment. They fell short of creating a
concurrent fault simulation environment because they use an
initial fault free simulation phase to guide the subsequent
simulation with fault-list propagation phase. This prevents the
simulator from being used alongside the automatic test pattern
generator in a fine-grained fashion, therefore preventing the
possibility of a closed-loop validation strategy.

Other related papers discuss methods of generating
mutations of a hardware description as a means to find a test
pattern that can distinguish a program from its faulty versions
[13][14]. These techniques, however, generate a collection of
mutant implementations by modifying the original
implementation. This results in a collection of separate
implementations that require independent simulations.

B. The Concurrent Approach
The initial step in developing the high-level concurrent error

simulator consists of determining how a signal should
maintain its fault list, and how the basic signal operations
should be performed on the complete fault lists. To
accomplish this, a signal is first defined as an object that
consists of a fault-free value and a list of mutant values, where
each mutant m in the signal S is obtained as a result of the
corresponding parent error model. Let us denote the parent
construct of a mutant value m by π(m). It is common that
aliasing occurs between the fault-free value and one or more
mutant values, in which case it is advantageous to collapse the
error lists as a means to minimize the memory demand and the
number of operations required by each list.

The simulator takes as input a collection of mutants E,
which are used to generate and insert a mutant into a specific
fault site when appropriate. Let ai be the set of fault values in
signal A, such that ai=0 denotes the fault-free value and ai≠0
denotes the mutant value associated with the mutant construct
π(ai) that has an ID value i. Given that the fault list-enabled
signals implement fault collapsing, an arbitrary mutant value
ai will only exist in signal A when all of the following
conditions are met:

• The mutant construct π(ai)∈E has been activated.
• The corresponding error has been injected or propagated

into signal A, thus producing the mutant value ai.
• The corresponding mutant value ai is not aliased by the

fault-free value a0 (ai ≠ a0).
Based on the above definition of a signal’s fault list, we

developed MVP’s concurrent mutant simulator that allows us
to propagate fault lists across operations in high-level
hardware descriptions. The simulator devises a novel method
to implement conditional execution on signals containing a
fault list. The problem of executing a statement based on a
fault list-enabled condition is that the condition will be met by
some of the mutants and not by others. As a result, the fault
list of the signals in the condition statement must be split into

two partitions: the set of mutants that meet the condition, and
the set of mutants that do not. The complete details of the
simulator and its implementation are described in [1].

C. Integrating Mutant Value Generation into the
Simulation Environment
The core concurrent mutant simulator does not produce

mutant values; its purpose is simply to propagate them. The
mutant values are generated by separate engine(s) that we
denote as mutant value generator(s). As a result, we can have
a simulation environment that is adaptable to any design-
based/fault-based error model by creating the appropriate
mutant value generator(s) that are in charge of inserting the
appropriate mutant values into the appropriate signal(s) under
the appropriate condition(s).

A mutant generator is a unit within a simulation
environment in charge of activating any of its mutants when
the proper activation criteria are met, at which point it
generates the corresponding mutant value and injects it into
the circuit. Therefore for each mutant generator, the collection
of signals in the circuit that act as activation criteria to any of
its mutants needs to propagate any change in value to this
mutant generator. Also, whenever an activation criterion
propagates into a mutant generator, the mutant generator
needs to search through its set of mutants and identify every
mutant that needs to be activated. When developing a mutant
value generator, the effects of propagation complexity (the
number of extra mutant signal propagations per simulation
iteration such that a mutant value generator is the target) and
activation complexity (the number of mutants that need to be
considered for activation upon the propagation of a signal into
a mutant value generator) need to be taken into consideration.

There are three implementation alternatives for the
distribution of mutant constructs among mutant value
generators: (i) a centralized mutant generator where only one
unit in the simulation environment is in charge of generating
mutant values (low propagation complexity and high
activation complexity), (ii) distributed mutant generators
where one mutant value generator is assigned to each mutant
construct (high propagation complexity and low activation
complexity), and (iii) hybrid (clustered) mutant generators
where mutant constructs are “clustered” into groups that have
common activation criteria, therefore maintaining the
propagation complexity and activation complexity per mutant
value generator at feasible levels.

In a validation system where multiple error models are being
used, the hybrid mutant generation technique gives us the
flexibility of keeping mutants of disjoint activation criteria in
separate clusters and allows us to optimize the search
algorithm of each mutant value generator by introducing a
“clustering and partitioning” technique. The technique reduces
the search space per mutant generator by selecting the signal
that acts as the most common activation criteria in that cluster
and designating this signal as the partitioning point. A detailed
description of our “clustering and partitioning” technique can
be found in [2].

 6

D. Concurrent Simulation Results
We have used the modified MCE model in conjunction with

an automatic mutant generator for the micro-architectural
implementation of the Motorola 6800 microprocessor by John
E. Kent [20]. The exhaustive set of MCEs for this
implementation consists of 300,092 mutants, and they have
been simulated using a random test sequence. The simulation
results demonstrate that there is a significant correlation
between the number of mutants that are detected and the
number of mutants that are active per simulation iteration
(Fig. 2); therefore establishing that it is fruitful to focus our
ATVG efforts on maintaining the number of active mutants at
its highest possible value.

Fig. 2 also brings to our attention the difficulty in generating
tests to detect mutants given that a random test sequence
activated a mere peak of 525 mutants out of a collection of
300,092 (less than 0.2%) mutants. The low activation rate for
mutants and the strong correlation between the active and the
detected mutant counts serve to encourage the implementation
of a concurrent mutant simulator for our MVP validation
technique because an exhaustive set of mutants can be
simulated with an acceptable performance cost and significant
observability rewards.

IV. HIGH-LEVEL CIRCUIT ANALYSIS
 Once a set of mutants have been generated, they are

efficiently simulated on the hardware description under
validation to utilize the test sequence and track its effect.
Now, to promote an effective validation paradigm, we need to
devise a systematic test pattern generation strategy that can
satisfy the simultaneous constraints specified by any mutant.
To do this, we first need to convert the set of simultaneous
constraints into a solution space. This solution space must list
all target architectural states that can satisfy all simultaneous
constraints, and any of these target architectural states can be
used as the starting point when generating a test sequence.

It is important to take the time to identify the complete set of
few target architectural states because doing so prunes out the
many irrelevant architectural states. Given that only one of

these target architectural states is necessary, let us denote each
target architectural state in the solution space as a prospect
state (pState). Also, let us define each pState by: (i) the
simultaneous constraints to be satisfied, and (ii) the data and
control dependencies among the constraints’ identifiers in the
circuit under validation. Each of the above components of a
pState is implemented using a type of constraint dependency
graph (CDG) that we describe next.

A. Constraint Dependency Graphs (CDGs)
The CDG is a structure that can represent possible solutions

by using range information akin to fuzzy logic. Fig. 3(a)
depicts an example CDG produced by the “when others”
block of a case statement for signal A, such that the guards for
the case statement’s two explicit cases are: (i) “when 1” and
(ii) “when 3”. In solving CDGs, we would prefer to avoid
operators that impose solutions with multiple disjoint ranges
in values. An example of such an operator is the inequality
operator. A statement A/=B returns a true Boolean value if
A<B or A>B, therefore splitting the solution space into two
explicit value ranges. Let us define such operators as
“disjoining” operators. Instead of solving a CDG by
transferring multiple value ranges across CDG operators as a
result of disjoining operators, we can restructure a CDG into
an equivalent graph that does not contain these disjoining
operators.

In our restructured CDG representation, there is only one
disjoining operator that we allow to remain in our CDG
structure as it binds all disjoint range of values into a set. We
use the Boolean OR operator to reference the CDG structures
that define a specific explicit value range, and a set of these
CDG structures is linked by a chain of Boolean OR operators.
As a result, we get a CDG structure in the form of a
disjunction of conjunctions, such that each conjunction
defines a specific explicit range in values for its identifiers.
More specifically, all nodes in a conjunction share the range
in values for the variables and signals they refer to. The nodes
in our restructured CDG follow a hierarchy in the following
order: OR operators, AND operators, relational operators,
computational operators, and literals/identifiers. The Boolean
OR and Boolean AND operators are propagated towards the
first and second layers in the CDG, respectively, via
DeMorgan’s Theorem.

MVP’s pStates are generated and solved throughout the
ATVG process to justify a set of constraints, making the
algorithms that restructure and solve the CDGs to be MVP’s
limiting factor. Therefore optimizing the worst-case scenario
for the algorithm that restructures and solves a CDG will have
a significant impact on MVP’s overall performance. Case
statements (commonly used in hardware descriptions) can be
significantly large, especially when they are used to describe
the functionality of an FSM. These large case statements will
be the limiting factor for MVP’s performance because we
need to analyze the assignment statements and control
requirements for every block in the case statement.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

0 200 400 600 800 1000 1200 1400 1600 1800
Input Vector No.

D
et

ec
te

d
Er

ro
r C

ou
nt

 (A
cc

um
ul

at
ed

)

0

100

200

300

400

500

600

700

800

900

1000

A
ct

iv
e

Er
ro

r C
ou

nt

Detected Error Count
Active Error Count

Fig. 2. Detected/active error comparison [1].

 7

If a case statement contains a “when others” block, its
control requirements (guard) will be the conjunction of the
negated guards of all explicit cases. This block’s control
requirements will therefore be a conjunction of disjoining
operators, where a disjoining operator is an operator that
imposes a disjoint range of values onto any identifier operand.
Our goal is to convert this graph into a disjunction of
conjunctions such that each conjunction defines a contiguous
range of values for all discrete identifiers within it, therefore
we must restructure the CDG into an equivalent graph that is
free of disjoining operators.

Restructuring the graph into our desired form forces us to
recursively replace each sub-tree rooted at a disjoining
operator with an equivalent tree that is free of disjoining
operators, but is bigger in size. An inequality operator is
replaced by a disjunction of relational operators, which
unfortunately is a complete tree with twice the number of leaf
nodes than the original. The size complexity is exacerbated by
the modified graph’s conjunction of disjunctions structure.
Performing a brute-force restructuring process to convert this
graph into a disjunction of conjunctions through the use of
DeMorgan’s Theorem produces a graph that is exponential in
size in terms of the number of disjoining operators. This size
complexity quickly becomes a burden because restructuring
requires an exponential runtime complexity, and soon
thereafter becomes a limitation because it may easily consume
all available memory. Fig. 3(b) shows the restructured CDG
(with no optimization) using the method described above.

By analyzing the restructured graph of Fig. 3(b), we can
notice the presence of sub-trees that can be removed early in
the restructuring process because they evaluate to false. We
consider these sub-trees as unconditionally false and we can
identify them by attempting to force a Boolean true value onto
any Boolean operator or relational operator. A sub-tree will
only be able to satisfy the true value if the range of values
imposed onto all identifiers at that sub-tree intersects with the
range of values imposed on corresponding identifiers at all
other sub-trees of the same conjunction.

In addition to the above, we can notice the presence of sub-
trees that can be removed early in the restructuring process
because they evaluate to true. These sub-trees occur when a

comparison on an identifier does not reduce the range of
values imposed on that identifier; therefore we consider these
sub-trees as unconditionally true. Applying the above
optimizations to the CDG of Fig. 3(b) produces the CDG
shown in Fig. 3(c).

The optimization presented above effectively reduces the
size complexity and runtime complexity of the restructure
process. More details about this optimization method are
presented in [4].

B. Generating a Prospect Code Path
 As previously mentioned, an activation criteria denotes a

collection of signal instantiations and a corresponding set of
values that these signals are required to satisfy. These
activation criteria are used as the initial set of ATVG goals.
Before attempting to identify the sets of implications that
satisfy the ATVG goals, we can reduce the search space by
first identifying, for each ATVG goal, the basic blocks of
HDL code that can assign the required value onto the required
signal. For each of these identified basic blocks, we need to
extract the guards (conditions from condition statements) that
allow this block to be reached and combine the identified
guard constraints to form the set of control requirements. Let
us therefore define a prospect code path as one of the many
assignment statements that may be able to satisfy an ATVG
goal’s constraint, such that the assignment statement can be
reached when the identified control requirements are satisfied.
A prospect code path for an ATVG goal will therefore
contain: (i) the constraint to be satisfied, and (ii) the
assignment statement and control requirements that allow this
constraint to be satisfied. It is important to mention that
generating a prospect code path for an ATVG goal is
performed independently of all other prospect code path
generations for other goals, and it only need consider the
scope of the module in which the ATVG goal exists.

To implement the environment that extracts the prospect
code paths for a given module, a statement tree is created such
that it preserves the structural integrity of all statements in the
module and is able to provide an absolute path and control
requirements to a given statement. The tree is implemented by
a collection of StatementList nodes that contains a series of
statements, and the control requirements that allow these

(b) (c)(a)
Fig. 3. (a) A sample CDG and its corresponding restructured CDG with (b) no optimization and (c) complete optimization.

 8

statements to be reached. The root level only contains the
concurrent items in the module and thus does not impose any
control requirements. Any of these concurrent items can be a
statement outside of process declarations, or they can be a
process declaration. All other levels contain sequential items.
An HDL process is created into a sequential node by inserting
all statements in the order in which they appear, such that a
child StatementList node is created for any nested condition
statements and a link to it is inserted in its place. Conditional
assignment statements that exist outside of a process can
themselves be converted into a process for their
implementation [21][22], which allows us to extract the
prospect code path for such a statement just as we would for
an assignment statement in a process.

There may be numerous assignment statements capable of
satisfying any given constraint, so a new prospect code path
needs to be generated for each of these alternatives. A process
is spawned to convert a constraint into a set of prospect code
paths as follows: If the statement references a non-shared
variable, then the scope of this variable is expanded by
inserting the previous assignment statement to that variable
within the current code path. Shared variables are not
supported because of their nondeterministic behavior when
multiple processes modify the same shared variable at the
same simulation iteration [22].

The program segment of Fig. 4(a) is from the Motorola 6800
microprocessor implementation from John E. Kent; it is a
process whose purpose is to update the value to the program
counter (pc) register. This is the only location in the
microprocessor implementation where the pc register is
written to, and generating the initial CDG for the signal pc
gives us Fig. 4(b). Notice that temppc and tempof are both
variables, and the assignment statement to signal pc lies at the
end of the process. Therefore when generating the CDGs for
an ATVG goal on signal pc, any assignment to temppc and
any assignment to tempof earlier in the process may be used as
long as their control requirements do not conflict. The
complete set of prospect code paths for an assignment to
signal pc is generated and the resulting eight CDGs are shown
in Fig. 4(c).

Any of the prospect code paths deduced from these eight
CDGs may be used to satisfy the ATVG goal on signal pc,
and obviously some choices are better than others. By
inspection we see that CDGs (5) and (6) may be used in
sequence to effectively satisfy a constraint on signal pc,
primarily because they have access to primary input signals.

C. Generating Prospect States
At this point, we have for each constraint a collection of

prospect code paths that are capable of performing the desired
signal assignment. For each of these code paths, we have a

pc_mux: process(clk, pc_ctrl, pc ,out_alu, data_in, ea)
variable tempof: std_logic_vector(15 downto 0);
variable temppc: std_logic_vector(15 downto 0);
begin

case pc_ctrl is
when add_ea_pc =>

if ea(7) = ‘0’ then tempof := “00000000” & ea(7 downto 0);
else tempof := “11111111” & ea(7 downto 0);
end if;

when inc_pc =>
tempof := “0000000000000001”;

when others=>
tempof := “0000000000000000”;

end case;
case pc_ctrl is
when reset_pc =>

temppc := “1111111111111110”;
when load_ea_pc =>

temppc := ea;
when pull_lo_pc =>

temppc(7 downto 0) := data_in;
temppc(15 downto 8) := pc(15 downto 8);

when pull_hi_pc =>
temppc(7 downto 0) := pc(7 downto 0);
temppc(15 downto 8) := data_in;

when others =>
temppc := pc;

end case;
if clk'event and clk = '1' then

pc <= temppc + tempof;
end if;

end process;

temppc tempof
+

pc

Control requirements
clk’event && clk = 1

+

pc

Control requirements
clk’event && clk = 1 &&

0x“FFFE” 0x“0000”

pc_ctrl = reset_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = load_ea_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = inc_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = latch_pc

+

pc

ea 0x“0000”

+

pc

pc 0x“0001”

+

pc

pc 0x“0000”

(1) (2)

(3) (4)

+

pc

0x“0000”&

pc (15:8) data_in

+

pc

0x“0000”&

data_in pc (7:0)

+

pc

&pc

0x“00” ea (7:0)

+

pc

&pc

0x“FF” ea (7:0)

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_lo_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_hi_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

ea (7) = ‘0’ ea (7) != ‘0’

(5) (6)

(7) (8)

(a)

(b) (c)

Fig. 4. (a) An example process implementation which uses signals and variables and its corresponding (b) incomplete CDG for the signal pc and (c) possible
CDGs for an ATVG goal on the signal pc.

 9

collection of control constraints that need to be satisfied in
order for the corresponding assignment statement to be
reached. It is possible to narrow down the search space into a
collection of the target architectural states that can satisfy a set
of constraints across module boundaries. For the remainder of
this paper, we will refer to each of these prospect architectural
states as pStates.

Mutants will commonly have multiple constraints as their
activation criteria that must be satisfied simultaneously. The
set of constraints can originate from distinct module
instantiations within the circuit implementation, but each of
the prospect code paths has a scope that does not reach past its
module instantiation. Therefore, each pState serves as a
specific focal point for the constraint solver such that every
constraint’s possible solution space is directly specified by a
unified CDG. Since each module instantiation contains a
statement tree and contains references to all its embedded
modules, then the collection of pStates can be generated as
follows: Each module instantiation is responsible for creating
a prospect code path for every constraint that resides inside
itself. It is also responsible for generating the complete set of
pStates from the set of prospect code paths that reside inside
itself; these pStates have a domain that does not surpass its
module’s scope.

Each module instantiation uses the pStates it receives from
its children to generate the pStates at its level of scope. When
a module instantiation receives a pState from any of its
children, it will first replace the child module’s primary inputs
with the corresponding local signals as specified by the port
map. Then it will create a cross-product of the pStates from its
child with its own (if any exist) into an expanded set of
pStates. It does this by merging the data dependencies and
control requirements from all its local pStates with those of its
entire child’s pStates to generate all acceptable merges. Once
it merges its local pStates with those of all its children, each of
these pStates encompasses all constraints that lie at or below
this point in the module hierarchy. The pState framework
allows us to apply the CDG solver and the circuit’s HDL
knowledge onto a given constraint to handle one time frame in
the ATVG problem.

V. HIGH-LEVEL ATVG
It was the efficiency and effectiveness of our simulation

strategy that inspired the development of MVP’s efficient and
effective constraint solver. Section IV introduced the
deterministic circuit analysis methods that make up this
constraint solver, and it is the purpose of this section to exploit
MVP’s simulation and circuit analysis abilities to generate a
test sequence that exposes an optimal set of mutants after
every ATVG iteration.

A. Identifying the Most Effective ATVG Goals
We can take advantage of the outcome of the “clustering-

and-partitioning” technique introduced in Section III and [2]
to produce an ATVG algorithm (Fig. 5) that gives priority to
the activation of the partition with the highest density of

undetected mutants (deterministic-activation) and only
performs deterministic-propagation (to any pre-designated
observation point) in the case where probabilistic-propagation
is insufficiently effective. Line 1 of the algorithm sorts the list
of partitions into the order of descending member size to
ensure that any unsuccessful attempt to generate a test for a
partition P is followed by an attempt on the next best partition
during the subsequent iteration of the while loop. Line 6
attempts to generate a test sequence that activates an inactive
mutant in P, and any failed attempt results in the removal of
that mutant from P (fault dropping). These dropped mutants
are marked as unexcitable. Line 10 handles the case where the
activation criteria for the partition P are already met, which is
expected to happen whenever probabilistic propagation on the
set of active mutants from P is insufficiently effective.
Therefore line 10 is used to generate a test sequence that
propagates an active mutant in P to a primary output, and any
failed attempt results in the removal of that mutant from P.
These dropped design errors are marked as undetectable.

At the start of the ATVG effort, it is expected that
deterministic activation on the dominant partition will be
effective in causing the detection of enough mutants from this
partition so as to demote it from its dominant status. The
probabilistic-propagation technique will continue to be
effective for as long as there are enough mutants with simple
propagation requirements. Whenever the ATVG algorithm
encounters a partition that has an insufficient number of
mutants with simple propagation requirements, the
deterministic activation iteration can be followed by
deterministic propagation iteration on the same dominant
partition.

B. FSM Analysis for Test Sequence Generation
We can argue that a control signal is only dependent on a

Precondition: Lp = list of all partitions from every cluster

ATVG-ITERATION(Lp)
1. Sort Lp into descending order of member size
2. P first partition in Lp
3. SUCCESS false
4. while P exists and SUCCESS = false
5. if activation criteria for P is not met
6. then TP generate activation pattern(s) for any

inactive error in P while dropping
errors from unsuccessful ATVG attempts

7. if activation is successful
8. then SUCCESS true
9. else P next partition in Lp
10. else TP generate propagation pattern(s) for any

active design error in P while dropping
errors from unsuccessful ATVG attempts

11. if propagation is successful
12. then SUCCESS true
13. else P next partition in Lp
14. if SUCCESS
15. then return TP
16. else fail

←
←

←

←
←

←

←
←

Fig. 5. Algorithm for each ATVG iteration.

 10

subset of a design’s internal registers. This encourages us to
decompose an RTL implementation into a set of interacting
FSMs, such that one FSM is generated per internal register.
Given a set of simultaneous constraints, we can identify –
using a corresponding pState – the set of registers (and their
corresponding target values) that help satisfy these constraints.
Thus the final step in ATVG requires us to trace the target
values for these registers to their current simulation values by
analyzing their corresponding FSMs.

Analyzing the solution space for multiple simultaneous
FSMs at a time interval is similar to the problem of analyzing
the solution space for multiple simultaneous constraints, such
that contradictions cannot exist in the control values of the
solution space. For multiple simultaneous FSMs, the control
values that define the state transition of one FSM cannot
contradict the control values that define the state transition for
any other FSM in the same time frame. Even though this inter-
dependency between FSMs does complicate the ATVG
problem, we can exploit it to identify contradictions early in
the search process, similar to the generation of a pState.

Finite state machines are often described as a directed graph,
such that each state transition can be represented by a function
y = δ(s, x) [6]. In this function, y represents the next state, s
represents the current state, and x represents the input to the
FSM. By using pStates, we are converting a set of
simultaneous constraints to a target state y’, and we are
identifying the internal register values s and primary input
values x that allow y’ to be reached. This allows us to generate
a test sequence by stepping backwards in time starting at y’.
All FSM graph edges have equal weight, thus we are limited
to employing either a depth-first-search (DFS) or a breadth-
first-search algorithm when generating a test sequence. A
breadth-first-search algorithm guarantee finding the shortest
test sequence, but it will require a significant amount of extra
memory to store all pending paths being searched. Therefore,
our FSM search algorithm is best implemented using DFS,
such that we specify a maximum path length l to eliminate
lengthy solutions and limit the search space.

Concerning multiple simultaneous FSMs, we can adapt the
DFS algorithm as shown in Fig. 6. In this algorithm, TS holds
the test sequence that will be returned, Y holds the constraints
to be satisfied (target state), S returns the control requirements
that satisfy the constraints to Y (previous state to Y), and l is
the size limit to the instruction sequence. This multi-FSM
DFS algorithm gives us the advantage of only searching the
relevant portion of a microprocessor’s FSM, as it allows us to
generate a test sequence using a subset of the
microprocessor’s registers.

To illustrate the operation of the multi-FSM DFS algorithm
across multiple time frames, an example scenario is shown in
Fig. 7. In this example, we begin from the right with two
signal constraints {Sigα = yα, Sigβ = yβ} whose data
dependency is mapped to three registers {R1 = y1, R2 = y2, R3 =
y3} by a specific pState. From here on, the multi-FSM DFS
algorithm identifies for each register an incoming transition
that is compatible with all other registers’ incoming

transitions, such that all transition information (δ(s, x) in Fig.
7) is combined to define the control space (S in Fig. 6) for that
specific time frame. This control space consists of a set of
register values and primary input values, thus it defines the
state space for the previous time frame. At some intermediate
time frames, this control space will introduce a dependency on
a new register (i.e. introduction of R4 @ t=2, R5 @ t=1 in Fig.
7) whose FSM will also need to be analyzed. Similarly at
some other time frames, this control space will no longer
denote a dependency on a specific register (i.e. absence of R3
@ t=0 in Fig. 7); this can happen at time frames when a data
register is assigned the required data value. Once the reset
state is reached, the recursive multi-FSM DFS algorithm
reports the primary input values in chronological order as it
returns; reporting a test sequence {X0, X1, X2, X3} in the case
of Fig. 7.

C. Test Generation Using Prospect States
If we carefully analyze the multiFSM_DFS algorithm of Fig.

6, we can see that lines 3-10 simply map a constraint set Y to
any constraint set S, such that satisfying S results in Y as the
next state; notice this is the inherent purpose of a pState.
Knowing this, we can easily modify the multiFSM_DFS
algorithm to use pStates when generating an instruction
sequence. Doing this gives us the algorithm in Fig. 8, which is
easier to understand, and its implementation works well with
the definition and implementation of a pState. In line 4, we
convert a set of constraints (target state) into a pState; this
pState has a defined set of data dependencies, and needs to
have its control requirements identified and solved. Line 4
solves this pState as discussed in Section IV, and stores all
possible solutions into the set P. We only need to use one
solution in P, therefore the FOR loop starting at line 5
continues to iterate until a solution is found or all entries in P
have been explored. To explore the previous time frame, the
control requirements from the current pState t are passed as
the constraints to the next recursive call to the multiFSM_DFS
algorithm. Finally, the recursive multi-FSM DFS algorithm
reports the test sequence in chronological order; this happens

multiFSM_DFS(testSequence TS, constraintSet S,
constraintSet Y, int l)

1. If (l = 0) return FAIL
2. If (Y ≠ Ø)
3. let v ∈ Y
4. U getAllIncomingTransitions(v)
5. For each t ∈ U
6. If (S = Ø) T t
7. Else T S t
8. If (T ≠ Ø && multiFSM_DFS(TS, T, Y– v, l)

= SUCCESS)
9. TS TS + getPrimaryInputs(S)
10. return SUCCESS
11. Else
12. TS TS + getPrimaryInputs(S)
13. return SUCCESS
14. return FAIL

←

←
← ∩

←

←

Fig. 6. Multi-FSM DFS algorithm for each ATVG iteration.

 11

in lines 8 and 9 of Fig. 8.

VI. REAL-TIME CIRCUIT PROFILING
The methods presented in Section V provide for an effective

test pattern generator that is capable of exposing complex
circuit design errors. Unfortunately, these methods used alone
are burdened by the analysis of irrelevant HDL code
segments, and by the traversal of already-explored
architectural states. We can significantly improve MVP’s run-
time performance by implanting mechanisms that enable it to
learn important details of the circuit under validation as a
means to avoid irrelevant circuit scenarios. These mechanisms
[5] can exist as a pre-processor that gathers circuit information
prior to the circuit validation process, and can exist as run-
time entities that allow MVP to learn from its experience.

A. Pre-processor Circuit Profiling
The pre-processor to MVP’s circuit validation process

should be a light-weight task that provides MVP with valuable
insight capable of directing its test pattern generation process
towards a solution. The pre-processor should not attempt to
solve actual constraints, but rather solve early the sub-
problems that provide MVP with the most valuable
information. Instead of analyzing the implications that the

circuit has onto each statement in the HDL as is done in the
real-time circuit analysis process, the pre-processor should
analyze the implications each statement has onto the overall
circuit.

Pre-processor circuit profiling concentrates on the following
categories:

• Assignment statement profiling: Solving a constraint
involves exploring all relevant assignment statements
that can satisfy its unresolved data implications. Doing
this requires a significant amount of work that is often
repeated for a great deal of assignment statements that
cannot help satisfy the constraint. Much of this dead-end
work can be prevented by indexing each assignment
statement with the identifier value implications that it has
onto the hardware description.

• Implicit memory profiling: MVP explores all signals in
the hardware description in search for implicit memory
elements. It does this by negating the explicit guards to
all assignment statements onto the signal being analyzed,
and inserting them into a single conjunction (unified by
Boolean AND operators). This process exploits MVP’s
efficient CDG solver, and a CDG that does not evaluate
to false signifies an implicit memory element.

• Basic-block guard profiling: In most cases where a data
contradiction is encountered when solving a constraint,
the contradiction arises from the union of the guards in
the multiple prospect code paths. Experiencing an
identifier value contradiction within the guard of a basic
block is significantly more costly than experiencing a
contradiction within the statement itself because the
aggregated guards leading up to a basic block is larger in
most cases. Therefore, having pre-computed knowledge
as to the constraints imposed by the guard of a statement
can help reduce the number of pStates that are generated
and computed.

Fig. 7. Multiple-timeframe example for multi-FSM DFS algorithm.

multiFSM_DFS(testSequence TS, pStateSet Y, int l)
1. If (l = 0) return FAIL
2. If (Y = reset state)
3. return SUCCESS
4. P solve(Y) //Generates set of solutions
5. For each t ∈ P
6. S get_previous_timeFrame(t)
7. If (multiFSM_DFS(TS, S, l-1) = SUCCESS)
8. TS TS + getPrimaryInputs(S)
9. return SUCCESS
10. return FAIL

←

←

←

Fig. 8. Using prospect states during ATVG.

 12

B. Runtime Circuit Profiling
MVP’s run-time circuit validation process should be a

complete task focused on exploring uncharted territory within
the processor. Complete FSM coverage commonly requires a
significant amount of redundant state exploration. Therefore
as MVP gets further into its validation process, it will be
forced to retrace more of the previously-explored state space.
Also, there are many architectural states that have a high
occurrence frequency as they are a precursor to a wide range
of other architectural states, thus retaining some of their pre-
solved information can optimize MVP’s performance in the
long run.
Finite State Machine Profiling. When a specific target state
can be reached by multiple states, we can use a weight scheme
such that the state s with the lowest weight provides MVP
with two advantages:

• When the pStates have never been explored (thus they
are un-indexed), it will allow MVP to choose the state s
with the least number of constraints that will need to be
satisfied at the subsequent ATVG iteration.

• When any of the pStates has been previously explored,
its weight will be lower than all unexplored pStates, and
will provide MVP with guidance towards the reset state.

The aforementioned global FSM profiling effort is meant to
interpret the low-level FSM profiling information and identify
the shortest FSM path that can reach the circuit’s reset state. A
low-level FSM profiling effort is often focused on depositing
information onto each statement in the hardware description
during runtime to record its scope (range in values) and the
success it provides (proximity to FSM reset state).
Conversely, the global FSM profiling effort is focused on
unifying the information gathered from all statement sources
that represent a given solution as a means to avoid costly or
irrelevant scenarios.
Explored State-Space Tracking. Preventing the ATVG
algorithm from revisiting a pState that is visited earlier in the
same test sequence will avoid analyzing FSM loops.
Furthermore, preventing the ATVG algorithm from revisiting
a pState that was visited by a previous test sequence branch
that failed to generate a result will prevent analyzing
unsuccessful paths more than once.

VII. EXPERIMENTAL RESULTS
Results on MVP’s effectiveness have been generated by

following the key steps in a validation paradigm: coverage
metric definition, error modeling, circuit simulation, and
ATVG. The strategy for each of these steps has been covered
by this paper in that order, and the results are provided in this
section. All tests have been performed on a Dual 2.5GHz G5
workstation under OS X Tiger using gcc 4.0. MVP has been
implemented as a library using GNU’s autotools (autoconf,
automake, libtool) in 20K physical lines of C++ code.

The collection of MCEs for the Motorola 6800
implementation [20] are generated to bind all possible
combinations between the explicit state signal to all other

control signals. The set of control signals also includes the
next_state signal, which allows us to stimulate the data paths
as well as the FSM transitions. Having a combination of
values between a control signal and the explicit state as
ATVG constraints allows us to stimulate every combination of
the control signal’s set of resulting data paths at every explicit
microarchitectural state. Furthermore, having a combination
of values between the state signal and the next_state signal
allows us to stimulate every transition in the
microarchitectural FSM.

The brute force approach of implementing the control-based
coverage metric has resulted in a collection of 300,092
mutants. The activation criteria of each mutant is designated
by (i) an activation criterion (described by a signal/value pair)
for the explicit “state” signal, (ii) an activation criterion for
one of the explicit control signals, and (iii) an error injection
for the control signal that mutates it to a value other than it’s
activation criterion. From this exhaustive collection, MVP was
able to easily identify that 287,565 mutants in the collection
are irrelevant because the corresponding constraints are not
supported by the M6800 implementation. These irrelevant
mutants weren’t a burden to MVP’s runtime performance
because they were each identified and removed in under 0.01
seconds.

MVP’s true effectiveness is due to its ability to continuously
traverse the unexplored portions of a circuit’s architectural
state-space. By applying a given set of mutants onto MVP’s
concurrent mutant simulator, we can directly compare the
effectiveness in MVP’s approach to the random methods
commonly used to expose circuit design errors. Fig. 9 presents
MVP’s effectiveness at stimulating mutant peaks, resulting in
a continuous mutant detection rate. After input vector 700,
MVP has already stimulated every mutant by activating (or
removing) it and is now making a second pass to attempt in
exposing mutants in the remaining partitions.

Fig. 10 shows an effectiveness comparison between MVP’s
ATVG results and random ATVG results. From this figure,
we can see that random ATVG is initially more effective than
MVP’s deterministic ATVG. The reason for this initial lead
for random ATVG is because every input sequence generated

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

0 100 200 300 400 500 600 700 800 900 1000
Input Vector No.

D
et

ec
te

d
M

ut
an

t C
ou

nt

0

100

200

300

400

500

600

700

800

900

1000
A

ct
iv

e
M

ut
an

t C
ou

nt

Max Detection Count
Detected Mutant Count
Active Mutant Count

Fig. 9. MVP’s ATVG effectiveness.

 13

by MVP begins at the circuit’s reset state. As a result, the
initial input vectors in a sequence from MVP traverse already-
explored architectural states. Each of these input sequences
has an average length of 15 vectors, resulting in a constant
toggling of the reset signal. It is for this reason that the active
mutant count of Fig. 9 (MVP’s ATVG input stimuli) is so low
in comparison to the active mutant count of Fig. 10 (random
ATVG input stimuli).

MVP’s use of the reset state as the common input sequence
starting point provides us with two advantages: (i) the ATVG
unit is able to perform real-time profiling such that each HDL
line of code can hold its weight with respect to its known
shortest distance to the reset state, and (ii) any given input
sequence that exposes an actual circuit design error is self-
sustained and can be utilized independently, as it begins with
the circuit’s reset state and ends when the circuit design error
is exposed.

Now, if we look past input vector number 200 of the
simulations in Fig. 10, we can see that MVP’s deterministic
ATVG is significantly more consistent and effective than a
random ATVG approach. The results from the random ATVG
simulation soon transforms into a linear trend that relies on
sudden bursts of productivity, which only happens when the
random input vectors happen to stimulate an unexplored
portion of the state-space. These sudden bursts of productivity
cannot be predicted, and are commonly a source of false-
positives in circuit verification because of the inflection points
that it introduces. MVP’s deterministic ATVG, however, has
consistent bursts of productivity due to MVP’s closed-loop
verification strategy between circuit simulation and automated
ATVG.

The simulation results of Fig. 11 are provided to
demonstrate MVP’s effectiveness to navigate through a circuit
implementation despite its dependency on the reset state. It
compares MVP’s detection rate (from Fig. 9) with the
detection rate of a random ATVG effort where the reset signal
is toggled at roughly the same rate as MVP’s simulation run
(every ~15 vectors). What Fig. 11 shows is that the random
ATVG effort is initially decent as expected, but quickly has
trouble in traversing a unique path in the circuit’s state space

following every toggle of the reset signal.
Without the use of its runtime profiling techniques, MVP

was not effective at generating a meaningful input sequence
because the runtime for each justification ATVG iteration
exceeded 25,000 time frames. Therefore the purpose of
MVP’s pState weighing scheme is to help it forecast the
easiest path to the circuit’s reset state by selecting the pState
with the least number of simultaneous constraints. This
optimization alone has allowed MVP to achieve a feasible
runtime by allowing it to satisfy all ATVG problems at fewer
than 1000 time frames during FSM analysis. Fig. 12 is a
testament to the significant contribution provided by MVP’s
weight estimation scheme, as it shows how manageable FSM
traversal can be.

If we compare the number of time frames analyzed per
ATVG iteration between the two graphs of Fig. 12, we can see
that MVP’s effectiveness in reaching the reset state is highly
optimized by incorporating FSM weight indexing. By using
weight indexing, the typical FSM search space was reduced
from over 300 time frames down to approximately 100 time
frames per justification ATVG iteration. There are still
occasional justification problems that are difficult to solve as
shown by the large bars around vectors 600 and 1000, but
they do not dominate the problem space and their solutions

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 300 600 900 1200 1500 1800 2100 2400
Input Vector No.

D
et

ec
te

d
M

ut
an

t C
ou

nt

0

100

200

300

400

500

600

700

800

900

1000

A
ct

iv
e

M
ut

an
t C

ou
nt

Detected Mutant Count - MVP ATVG
Detected Mutant Count - Random ATVG
Active Mutant Count - Random ATVG

Fig. 11. MVP ATVG vs. random ATVG w/reset toggles.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600 1800
Input Vector No.

D
et

ec
te

d
M

ut
an

t C
ou

nt

0

100

200

300

400

500

600

700

800

900

1000

A
ct

iv
e

M
ut

an
t C

ou
nt

Detected Mutant Count - MVP ATVG
Detected Mutant Count - Random ATVG
Active Mutant Count - Random ATVG

Fig. 10. MVP ATVG vs. random ATVG.

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000
Time

B
ac

kt
ra

ck
in

g
C

ou
nt

 (O
pt

im
iz

ed
)

With Weight Estimation
With Weight Estimation & Weight Indexing

Fig. 12. ATVG search space with runtime FSM profiling.

 14

contribute to MVP’s FSM learning process.

VIII. CONCLUSIONS
We have presented a Mutation-based Validation Paradigm

(MVP) technology that automates the design-to-verification
process and contains fundamental techniques for analyzing
high-level circuit implementations. MVP is unique in the way
it exploits these techniques to validate circuit
implementations. MVP’s methods help deliver certainty into a
circuit verification project in two ways: (i) it provides real-
time observability into the validation effort through a
concurrent mutant simulator that quantifies the circuit
coverage (certainty level) at every simulation time-frame, and
(ii) it employs deterministic circuit analysis techniques that,
together with the observability provided by its concurrent
mutant simulator, allow it’s ATVG effort to consistently
explore new corners in a circuit’s architectural landscape.
These contributions enable MVP to mitigate the risk of
verification false-positives due to unexposed bugs, which is
commonly encountered when random or pseudorandom
ATVG fail to travel towards unexplored portions of the circuit
under validation. Furthermore, the smooth slope of MVP’s
mutant detection rate allows a verification engineer to predict
when enough circuit verification has been performed, given
that further input vectors cannot promise much observability.

REFERENCES
[1] J. Campos and H. Al-Asaad, “Concurrent design error simulation for

high-level microprocessor implementations,” Proc. AUTOTESTCON,
2004, pp. 382-388.

[2] J. Campos and H. Al-Asaad, “Mutation-based validation of high-level
microprocessor implementations,” Proc. International High-Level
Design Validation and Test Workshop, 2004, pp. 81-86.

[3] J. Campos and H. Al-Asaad, “MVP: A mutation-based validation
paradigm”, Proc. International High-Level Design Validation and Test
Workshop, 2005, pp. 27-34.

[4] J. Campos and H. Al-Asaad, “Search-space optimizations for high-level
ATPG”, Proc. Microprocessor Test and Verification Workshop, 2005,
pp. 84-89.

[5] J. Campos and H. Al-Asaad, “Circuit profiling mechanisms for high-
level ATPG”, Proc. Microprocessor Test & Verification Workshop,
2006, pp. 9-14.

[6] F. Corno, U. Glaser, P. Prinetto, M.S. Reorda, H.T. Vierhaus, and M.
Violante, “SymFony: A hybrid topological-symbolic ATPG exploiting
RT-level information,” IEEE Transactions on Computer-Aided Design,
Vol. 18, pp.191-202, February 1999.

[7] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A.
Ziv, “Genesys-Pro: Innovations in test program generation for functional
processor verification,” IEEE Design and Test of Computers, Vol. 21,
pp.84-93, March-April 2004.

[8] F. Corno, E. Sanchez, M.S. Reorda, and G. Squillero, “Automatic test
program generation: A case study,” IEEE Design and Test of Computers,
Vol. 21, pp.102-109, March-April 2004.

[9] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design and Test of Computers, Vol. 18,
pp.36-45, July-August 2001.

[10] D. Moundanos, J.A. Abraham, and Y.V. Hoskote, “Abstraction
techniques for validation coverage analysis and test generation,” IEEE
Transactions on Computers, Vol. 47, pp.2-14, January 1998.

[11] J. Shen and J.A. Abraham, “An RTL abstraction technique for processor
microarchitecture validation and test generation”, Journal of Electronic
Testing: Theory and Applications, Vol. 16, pp. 67-81, February-April
2000.

[12] M. N. Velev, “Collection of high-level microprocessor bugs from formal
verification of pipelined and superscalar designs,” Proc. International
Test Conference, 2003, pp. 138-147.

[13] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
into VHDL models: The MEFISTO tool,” Digest of Papers:
International Symposium on Fault-Tolerant Computing, 1994, pp. 66-
75.

[14] L. Berrojo, I. Gonzalez, F. Corno, M.S. Reorda, G. Squillero, L. Entrena,
and C. Lopez, “New techniques for speeding-up fault-injection
campaigns,” Proc. Design Automation and Test in Europe, 2002, pp.
847-852.

[15] L.-C. Wang, M.S. Abadir, and J. Zeng, “On logic and transistor level
design error detection of various validation approaches for PowerPC
microprocessor arrays,” Proc. VLSI Test Symposium, 1998, pp. 260-265.

[16] H. Al-Asaad, Lifetime Validation of Digital Systems via Fault Modeling
and Test Generation, Ph.D. Dissertation, University of Michigan, Ann
Arbor, September 1998.

[17] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test data
selection: Help for the practicing programmer”, IEEE Computer, Vol.
11, pp. 34-41, April 1978.

[18] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient computation
of observability-based code coverage metrics for functional
verification”, Proc. Design Automation Conference, 1998, pp. 152-157.

[19] F. Dominique, B. Paul, and S. Jean-Francois, “Behavioral fault
simulation: Implementation and experiments results”, Proc. IEEE
International Workshop on Electronic Design, Test and Applications,
2002, pp. 81-85.

[20] http://www.opencores.org/projects.cgi/web/system68/overview.
[21] P.A. Wilsey, D.E. Martin, and K. Subramani,

“SAVANT/TyVIS/WARPED: Components for the analysis and
simulation of VHDL,” VHDL Users' Group Spring Conference, 1998,
pp. 195-201.

[22] IEEE Standard VHDL Language Reference Manual, New York, NY,
1993.

Jorge Campos (S'00–M'07) received the B.S. degree
in computer engineering in 2002, the M.S. and Ph.D.
degrees in electrical and computer engineering in
2005 and 2007, respectively, all from the University
of California, Davis, CA.

He is currently a Patent Engineer with the Park
Vaughan & Fleming patent law firm in Davis, CA.
He specializes in preparing and prosecuting patent
applications on computer hardware and software
technologies. His current research interests include

design verification, fault tolerant computing, digital integrated circuits, and
high-performance computing.

Hussain Al-Asaad (S'92–M'99–SM'05) received the
B.E. degree (with distinction) in computer and
communications engineering from the American
University of Beirut, Lebanon, in 1990, the M.S.
degree in computer engineering from Northeastern
University, Boston, in 1993, and the Ph.D. degree in
computer science and engineering from the
University of Michigan, Ann Arbor, in 1998.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,

University of California, Davis, CA. His current research interests include
design verification, testing, and fault tolerant computing. He has published
over 35 papers in archival journals and refereed conference/workshop
proceedings.

Prof. Al-Asaad is a member of Sigma Xi. He is a recipient of the National
Science Foundation CAREER Award. He has served on the program
committees of several conferences/workshops including the IEEE
International High Level Design Validation and Test Workshop, and the IEEE
International Workshop on Microprocessor Test and Verification.

