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Abstract—We present a Mutation-based Validation Paradigm 

(MVP) technology that can handle complete high-level 
microprocessor implementations and is based on explicit design 
error modeling, design error simulation, and model-directed test 
vector generation. We first present a control-based coverage 
measure that is aimed at exposing design errors that incorrectly 
set control signal values. We then describe MVP’s high-level 
concurrent design error simulator that can handle various 
modeled design errors. We then present fundamental techniques 
and data structures for analyzing high-level circuit 
implementations and present various optimizations to speed-up 
the processing of data structures and consequently speed up 
MVP’s overall test generation process. We next introduce a new 
automatic test vector generation technique for high-level 
hardware descriptions that generates a test sequence by 
efficiently solving constraints on multiple finite state machines. 
To speed up the test generation, MVP is empowered by learning 
abilities via profiling various aspects of the test generation 
process. Our experimental results show that MVP’s learning 
abilities and automated test vector generation effectiveness make 
MVP significantly better than random or pseudorandom 
validation techniques. 
 

Index Terms—Simulation-based design verification, 
concurrent design error simulation, high-level deterministic test 
generation, design error modeling. 
 

I. INTRODUCTION 
igital circuit design methodologies have reached a highly 
optimized state, but the circuit validation methods used in 

industry are still subjective to the validation engineer on the 
job. Many circuit validation methods for high-level hardware 
descriptions are available and are in competition with one-
another and most of these methods do not provide a stand-
alone solution. As a result, circuit validation is still an art 
mastered by an engineer through experience and observations, 
as opposed to a systematic technique that can be easily 
disseminated. These validation engineers develop an intuition 
on how to perform circuit validation, and most importantly, on 
how much circuit validation is necessary. It is therefore 
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possible to reduce the time and money required to create 
circuits by reducing the human effort required in circuit 
validation through a systematic and easily-reproducible 
system comprised of software tools and deterministic 
practices, both in software and human effort. 

“Black-box” circuit validation is a strategy that does not 
require the validation system to have prior inside knowledge 
of the circuit under validation. It currently relies on random or 
pseudo-random test patterns to validate the “black box” 
because such a validation system has no way of efficiently 
deciphering how to generate the most effective instruction 
sequence for circuit validation. 

Current industry standard practices rely on random and 
pseudo-random instruction sequence generation techniques 
that bet on the statistical nature of their practices to eventually 
explore a large-enough portion of the circuit. The simplicity in 
these practices allows for a high-frequency of simulations, but 
the ability of the simulator to traverse unexplored architectural 
states quickly diminishes over time. Deterministic practices, 
on the other hand, guarantee continued forward progress for 
effectiveness as they allow the circuit validation engineer to 
attack the problem head-on. 

Unfortunately, current validation systems are neither 
efficient nor effective enough to perform deterministic “black 
box” validation on complete large circuit implementations. 
Therefore, when handling complete large circuits such as 
microprocessors and ASICs, companies rely on “white box” 
circuit validation to attain an increase in circuit coverage and 
validation effectiveness. To achieve this, circuit design teams 
provide inside information to their validation strategy by 
building “self-testing” knowledge into their implementations 
and validation system. 

In this paper, we describe the design and implementation of 
MVP, a mutation-based validation paradigm. MVP is a circuit 
validation tool for high-level hardware descriptions, and its 
purpose is to provide expert deterministic validation methods 
to the average design engineer. MVP provides a complete and 
automated strategy for analyzing high-level hardware 
descriptions that only leaves the circuit design engineer to 
decide what portions of the circuit to validate, and not how to 
validate it. These circuit analysis abilities allow MVP to 
perform automated white-box circuit validation on high-level 
RTL descriptions while providing the simplicity of black-box 
validation to its users. 

MVP does not require a priori information on the circuit 
under validation for it to be effective, but instead gathers this 
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information real-time. This allows semiconductor companies 
to analyze large circuit implementations in their entirety, and 
allows them to analyze these projects even before they are 
ready for circuit synthesis. The generality and completeness in 
MVP’s design allows it to be used for all validation strategies: 
from formal to simulation-based, static assertion-based to 
dynamic assertion-based, deterministic vector generation to 
pseudorandom vector generation, and from a static code-
coverage metric to any functional coverage metric. 

A. Related Work 
We next describe a few good examples of simulation-based 

circuit validation systems aimed at ensuring the correctness of 
complete large circuit implementations. 
SymFony [6]. Many common validation environments that 
employ symbolic automatic test pattern generation methods 
rely on a gate-level implementation that has been previously 
synthesized. Consequently, these symbolic methods are only 
capable of generating a solution to circuits that contain few 
registers. 

SymFony attempts to circumvent this limitation by 
extracting circuit macros from the gate-level implementation, 
which act as reduced problems for the symbolic solver. It 
employs two main algorithms: Forbidden is used to identify 
all reachable states, and Justify is used to generate the 
implications required by the FAN solver. To improve the run-
time performance, a pre-processing phase is used to identify 
(from the synthesized gate-level implementation) F macros 
that will be used by Forbidden and J macros that will be used 
by Justify. At the register-transfer level, SymFony consider 
control macros that are composed of each finite state machine 
(FSM) state register, and data-path macros that are composed 
of data registers/data-manipulating combinational logic. 

SymFony’s automatic test vector generation (ATVG) 
process can be applied to only small and medium circuits 
because the Forbidden pre-processor computes the FSM for 
the complete circuit, and the input/output constraint Binary 
Decision Diagrams (BDDs) are intersected with the complete 
FSM BDDs (next-state and output BDDs) during each 
symbolic solver process. 
Genesys-Pro [7]. Unlike many other verification tools, the 
Genesys-Pro verification tool is capable of performing 
verification on complete processor systems by implementing a 
model-based test pattern generation approach. The approach 
provides the building blocks found in processor 
implementations to simplify the effort of creating a processor 
model. A processor model is composed of a declarative 
description, and testing knowledge for this model. A 
processor model is verified through the use of a test template 
language, such that a test template describes architecture-level 
characteristics that should be tested. This test template is 
converted into a verification program via the model-based test 
pattern generator (implemented by a pseudorandom test 
pattern generator) that uses the model’s included testing 
knowledge. The strength of this technique is that it allows a 
validation engineer to create test templates that are not 

burdened by implementation details. This, of course, requires 
significant human effort into generating this testing 
knowledge that is only advantageous when there is extra 
manpower or when the model belongs to a family of 
processors with long lifetime expectancy. Furthermore, it 
cannot be guaranteed that the modeling engineer has not left 
out important corner cases that are difficult to stimulate. 
μGP [8]. Some validation environments employ an instruction 
library that contains a collection of mini-programs (known as 
program macros) that are capable of exercising interesting 
corners of the processor. These program macros can be 
combined in various sequences to achieve test programs that 
are more effective than purely random test generation 
methods. This approach requires that the simulation method 
connect the processor implementation onto a simulated 
memory unit that contains the test program, as opposed to 
forcing a fixed test sequence into the processor’s primary 
inputs. 

The methods in μGP employ an instruction library, and 
achieve effective test programs via a genetic algorithm. The 
program macros used in μGP are fine-grained such that it does 
not render a sequence of program macros incapable of 
stimulating interesting interactions among the instructions in a 
pipeline. The goal of μGP is therefore to use a genetic 
algorithm to generate a test program (composed of a sequence 
of program macros) that achieves high design coverage. 

The quality of the test program generated by the validation 
system can only be as good as the set of program macros that 
define it. It is therefore dependent on the validation engineer 
to develop a diverse enough set of program macros such that a 
combination of program macros exists for every corner of the 
design. 

B. Overview of MVP’s Validation Process 
A diagram depicting MVP’s validation process is provided 

in Fig. 1. In the description phase, a microprocessor 
implementation and a collection of abstract design error 
models are created. Given that these implementations are 
inherently C++ code, a standard C++ compiler is used to 
create the runtime Simulation/ATVG system during the 
construction phase. The design error/fault injection 
application programming interface (API) is required to 
implement the runtime simulation environment, and the ATVG 
engine API is required to implement the runtime ATVG 
environment. The target block of a double-lined arrow denotes 
an object produced by the source block of the double-lined 
arrows. 

The simulation/ATVG phase executes the compiled program 
where the microprocessor implementation and a collection of 
user run-time configurations and commands are used as 
inputs. The user specifies what outputs to produce and what 
modeled errors to consider during the simulation and ATVG 
efforts.  

The Simulation/ATVG program creates the output files 
during the reporting phase, including the instruction sequence 
that detects the optimal set of modeled errors, the collection of 
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simulation/ATVG statistical data, and the actual response of 
the microprocessor implementation when the instruction 
sequence is used as an input, as well as a collection of 
responses that correspond to a user-specified set of modeled 
errors. The instruction sequence is fed into the golden model 
(specification) during the validation phase to generate the 
expected response, which is compared with the actual 
response of the implementation. Any detected discrepancy 
needs to be analyzed to determine if it is a result of an actual 
design error, or if it corresponds to an invalid input sequence. 

The rest of this paper is organized as follows. Section II 
discusses a control-based coverage metric that is used by 
MVP. Section III introduces MVP’s concurrent mutation-
based circuit simulation techniques that provide real-time 
coverage analysis. Section IV introduces MVP’s low-level 
mechanisms for performing high-level circuit analysis. 
Section V expands on the mechanisms of Section IV to apply 
them into MVP’s ATVG algorithm. Section VI discusses the 
real-time profiling techniques that allow MVP to learn and 
adapt onto any circuit description. Section VII presents 
experimental results from applying MVP onto an open-source 
Motorola 6800 microprocessor implementation, and Section 
VIII concludes this paper. 

II. A CONTROL-BASED COVERAGE METRIC 
Several coverage metrics have been proposed in the 

literature. An exhaustive coverage metric would attempt to 
apply every possible input vector onto every architectural state 
of the processor. This obviously leads to the state explosion 
problem. Two popular alternatives that reduce this coverage 
space include state coverage (attempting to reach every 
reachable state in the design) and transition coverage 
(attempting to traverse every possible transition among the 
states of the design) [9][10]. Another popular metric is the 
FSM path-coverage metric [9] that encapsulates transition 
coverage, and can potentially be more complex than the 
exhaustive coverage metric. It attempts to exercise every 
possible state sequence that is within a given length. Finally, 
due to the extensive use of modern hardware description 
languages (HDLs), a series of code-based coverage metrics 
appeared including line coverage, transition coverage, and 
path coverage [9][11]. 

It is important to employ a coverage metric that reduces the 
search space from an exhaustive coverage metric without 
notably degrading the quality of the tests that result from it. 
This step is critical to the development of a validation 
paradigm because an inefficient coverage metric will require 
too many test vector generation iterations, and an over-
simplified coverage metric will sacrifice the effectiveness of 
the resulting test sequence. 

A control-based coverage measure is being employed for 
our mutation-based validation paradigm, and the reasoning 
behind it is as follows. A microprocessor’s explicit processor 
state can be defined by combining all the control registers. A 
simple 16-bit processor with a 5-stage pipeline would 
therefore consist of a state register that is at least 64 bits wide; 
this being because each of the last four pipeline stages 
contains a control register that holds the currently residing 
instruction. The state register would be even larger for 
superscalar microprocessor implementations because they 
employ a distributed control methodology through many 
disjoint and cooperating functional and control units. Any 
attempt to even perform a complete state coverage would face 
the wrath of the state explosion problem, so a more effective 
method must be employed. 

Given that modern processor implementations are modular 
in nature, we assume that modules are validated against their 
description before the microprocessor is validated as a whole. 
Consequently, the microprocessor-wide validation problem is 
reduced to one of validating the control signals that merge 
these units together. A study on bug occurrences in pipelined 
and superscalar microprocessor implementations [12] shows 
that over two-thirds of design errors are related to the control 
logic. 

At this point, it is obvious that the coverage metric becomes 
one that ensures every possible value for each control signal is 
exercised for every possible processor state. This may seem 
like an even harder coverage metric to employ than the state 
coverage metric, but it can actually reduce the state space by 
ignoring redundant and irrelevant processor states. 
Error Modeling (Mutants). It is obvious that an error results 
in the generation of an erroneous value under a specific state 
of the system. So, circuit design errors and physical faults are 
governed by the rules of cause-and-effect. We can harness this 
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cause-and-effect characteristic to define the mutant construct. 
Similar to some fault injection campaigns [13][14], we are 
defining an error model by three basic characteristics: (i) the 
activation criteria, (ii) the consequence of activation, and (iii) 
error injection. Furthermore, let us define mutants as the many 
instantiations of an error model that span a given design 
space. Numerous mutants are to be simulated concurrently; 
therefore each mutant must have a unique identification 
number. 

A mutant’s activation criteria specify a set of signals and the 
conditions that they must satisfy before the mutant is 
activated. Once the activation criteria of a mutant are met, its 
code segment is executed as the consequence of activation to 
generate a set of mutations for a corresponding set of injection 
points. The mutant values are injected into the specified 
signals within the circuit during error injection, which follows 
immediately thereafter. 

Given that a design error on an implementation of a modular 
component will appear on every instantiation of that 
component, all design error models have to obey the 
hierarchical error model [15] where every instantiation of a 
modular component will have the same set of design errors 
with corresponding identification numbers. This is important 
because it allows a design error to simultaneously appear at 
multiple instantiations of a component if necessary, and it 
correctly models aliasing in the case where these mutant 
values mask each other’s propagation across the circuit. 
The Mutation Control Error Model. Given the objective to 
stimulate every control signal under every processor state, we 
employ a modified version of the mutation control error 
(MCE) model [16] as the preliminary error model for our 
validation environment. 

Our modified model accommodates for micro-architecture-
based (FSM-based) processor implementations and is defined 
as the quadruplet (s, c, vc, ve) [1] such that the explicit 
processor state s and a correct value vc of the control signal c 
act as the activation criteria, signal c is mutated from vc to an 
erroneous value ve as a consequence, and injected back into 
signal c. This modification is possible because the arrival of 
an instruction i into a processor cycle c of a structural 
microprocessor implementation can be interpreted as a 
processor state. 
Implementing the Control-Based Coverage Metric. It is 
possible to automate the generation of mutants that span the 
control-based coverage measure. In fact, performing 
automated generation of these mutants is expected to be most 
influential for superscalar microprocessor implementations 
because of their inherent complexity. If one were to analyze 
the data dependency of a control signal onto the set of 
registers and primary inputs, one would see that each control 
signal is dependent on only a subset of the control registers. It 
is therefore possible to prune the state space without 
consequences as follows: For each control signal c, first 
identify the set of control registers that affect the value of that 
control signal and denote this set as state-space s. Then for 
every correct value vc of control signal c under every possible 

value of s, generate a set of mutants that modifies c from vc to 
all erroneous values ve (such that vc ≠ ve) and inject their 
corresponding ve back into c. 

This error modeling technique follows closely from the 
modified MCE model, but it is more effective because it only 
generates useful mutants for every control signal by first 
identifying the relevant control registers. The set of relevant 
control registers for a particular control signal can be found 
easily by analyzing that control signal’s set of prospect states. 
A prospect state (pState) is introduced and defined in Section 
IV and can be generated as discussed there. Each pState for a 
given signal defines a possible data dependency that satisfies 
the signal constraint, and the set of control requirements that 
allow for that data dependency to be satisfied. All pStates 
generated from the control signal must have its solution space 
searched for relevant control registers. 

III. CONCURRENT MUTANT SIMULATION 
Significant work has been performed on mutation-based 

analysis and verification, especially in the software 
verification arena. A lot of the foundation of mutation-based 
hardware verification is an adaptation from the software area. 
However, when it comes to hardware, building the fault 
dictionary and injection of the faults requires special attention. 
The fault injection needs to be dynamic in nature for certain 
types of faults. In this section, we describe a concurrent 
mutant simulator that is characterized by a dynamic injection 
of modeled design errors (mutants) where only the design 
errors that are activated are injected back into the circuit. 

Error modeling for circuit validation is used to create an 
artificial collection of simple modeled design errors (mutants) 
that span throughout the corner cases of an implementation. 
As a consequence to the coupling effect between simple and 
complex design errors [17], a test sequence that is capable of 
detecting these known simple modeled errors is implicitly 
capable of detecting actual complex design errors as well. 
Therefore, one application for a concurrent mutant simulator 
is to grade a test sequence’s ability to traverse the design 
space by concurrently and efficiently applying it to the 
complete set of mutants and reporting its coverage. A more 
important application of mutation-based circuit simulation is 
that it can be used as a part of the mutation-based testing 
engine as we have done in our MVP. 

A. Limitations of Modern Error Injection Campaigns 
Analysis of controllability and observability measures 

through concurrent simulation methods has been previously 
investigated via a tag simulation calculus [18]. Under this 
simulation method, a single tag is propagated throughout the 
simulation to designate a possible change in a signal value due 
to an error. This method, however, results in an estimation of 
observability given that mutations on a signal are represented 
by a tag that only represents a positive or negative polarity. 
Furthermore, this method requires the modification of the 
hardware description when condition statements are involved 
in order to compute the effects of the fault model when it 
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causes the wrong path to be taken. 
The methods in [19] are an improvement as behavioral fault 

simulations are implemented with fault lists, such that Petri 
Nets are used to propagate the fault lists in their event-
triggered simulation environment. They fell short of creating a 
concurrent fault simulation environment because they use an 
initial fault free simulation phase to guide the subsequent 
simulation with fault-list propagation phase. This prevents the 
simulator from being used alongside the automatic test pattern 
generator in a fine-grained fashion, therefore preventing the 
possibility of a closed-loop validation strategy. 

Other related papers discuss methods of generating 
mutations of a hardware description as a means to find a test 
pattern that can distinguish a program from its faulty versions 
[13][14]. These techniques, however, generate a collection of 
mutant implementations by modifying the original 
implementation. This results in a collection of separate 
implementations that require independent simulations. 

B. The Concurrent Approach 
The initial step in developing the high-level concurrent error 

simulator consists of determining how a signal should 
maintain its fault list, and how the basic signal operations 
should be performed on the complete fault lists. To 
accomplish this, a signal is first defined as an object that 
consists of a fault-free value and a list of mutant values, where 
each mutant m in the signal S is obtained as a result of the 
corresponding parent error model. Let us denote the parent 
construct of a mutant value m by π(m). It is common that 
aliasing occurs between the fault-free value and one or more 
mutant values, in which case it is advantageous to collapse the 
error lists as a means to minimize the memory demand and the 
number of operations required by each list. 

The simulator takes as input a collection of mutants E, 
which are used to generate and insert a mutant into a specific 
fault site when appropriate. Let ai be the set of fault values in 
signal A, such that ai=0 denotes the fault-free value and ai≠0 
denotes the mutant value associated with the mutant construct 
π(ai) that has an ID value i. Given that the fault list-enabled 
signals implement fault collapsing, an arbitrary mutant value 
ai will only exist in signal A when all of the following 
conditions are met: 

• The mutant construct π(ai)∈E has been activated. 
• The corresponding error has been injected or propagated 

into signal A, thus producing the mutant value ai. 
• The corresponding mutant value ai is not aliased by the 

fault-free value a0 (ai ≠ a0). 
Based on the above definition of a signal’s fault list, we 

developed MVP’s concurrent mutant simulator that allows us 
to propagate fault lists across operations in high-level 
hardware descriptions. The simulator devises a novel method 
to implement conditional execution on signals containing a 
fault list. The problem of executing a statement based on a 
fault list-enabled condition is that the condition will be met by 
some of the mutants and not by others. As a result, the fault 
list of the signals in the condition statement must be split into 

two partitions: the set of mutants that meet the condition, and 
the set of mutants that do not. The complete details of the 
simulator and its implementation are described in [1]. 

C. Integrating Mutant Value Generation into the 
Simulation Environment 
The core concurrent mutant simulator does not produce 

mutant values; its purpose is simply to propagate them. The 
mutant values are generated by separate engine(s) that we 
denote as mutant value generator(s). As a result, we can have 
a simulation environment that is adaptable to any design-
based/fault-based error model by creating the appropriate 
mutant value generator(s) that are in charge of inserting the 
appropriate mutant values into the appropriate signal(s) under 
the appropriate condition(s). 

A mutant generator is a unit within a simulation 
environment in charge of activating any of its mutants when 
the proper activation criteria are met, at which point it 
generates the corresponding mutant value and injects it into 
the circuit. Therefore for each mutant generator, the collection 
of signals in the circuit that act as activation criteria to any of 
its mutants needs to propagate any change in value to this 
mutant generator. Also, whenever an activation criterion 
propagates into a mutant generator, the mutant generator 
needs to search through its set of mutants and identify every 
mutant that needs to be activated. When developing a mutant 
value generator, the effects of propagation complexity (the 
number of extra mutant signal propagations per simulation 
iteration such that a mutant value generator is the target) and 
activation complexity (the number of mutants that need to be 
considered for activation upon the propagation of a signal into 
a mutant value generator) need to be taken into consideration. 

There are three implementation alternatives for the 
distribution of mutant constructs among mutant value 
generators: (i) a centralized mutant generator where only one 
unit in the simulation environment is in charge of generating 
mutant values (low propagation complexity and high 
activation complexity), (ii) distributed mutant generators 
where one mutant value generator is assigned to each mutant 
construct (high propagation complexity and low activation 
complexity), and (iii) hybrid (clustered) mutant generators 
where mutant constructs are “clustered” into groups that have 
common activation criteria, therefore maintaining the 
propagation complexity and activation complexity per mutant 
value generator at feasible levels. 

In a validation system where multiple error models are being 
used, the hybrid mutant generation technique gives us the 
flexibility of keeping mutants of disjoint activation criteria in 
separate clusters and allows us to optimize the search 
algorithm of each mutant value generator by introducing a 
“clustering and partitioning” technique. The technique reduces 
the search space per mutant generator by selecting the signal 
that acts as the most common activation criteria in that cluster 
and designating this signal as the partitioning point. A detailed 
description of our “clustering and partitioning” technique can 
be found in [2]. 
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D. Concurrent Simulation Results 
We have used the modified MCE model in conjunction with 

an automatic mutant generator for the micro-architectural 
implementation of the Motorola 6800 microprocessor by John 
E. Kent [20]. The exhaustive set of MCEs for this 
implementation consists of 300,092 mutants, and they have 
been simulated using a random test sequence. The simulation 
results demonstrate that there is a significant correlation 
between the number of mutants that are detected and the 
number of mutants that are active per simulation iteration 
(Fig. 2); therefore establishing that it is fruitful to focus our 
ATVG efforts on maintaining the number of active mutants at 
its highest possible value.  

Fig. 2 also brings to our attention the difficulty in generating 
tests to detect mutants given that a random test sequence 
activated a mere peak of 525 mutants out of a collection of 
300,092 (less than 0.2%) mutants. The low activation rate for 
mutants and the strong correlation between the active and the 
detected mutant counts serve to encourage the implementation 
of a concurrent mutant simulator for our MVP validation 
technique because an exhaustive set of mutants can be 
simulated with an acceptable performance cost and significant 
observability rewards. 

IV. HIGH-LEVEL CIRCUIT ANALYSIS 
 Once a set of mutants have been generated, they are 

efficiently simulated on the hardware description under 
validation to utilize the test sequence and track its effect. 
Now, to promote an effective validation paradigm, we need to 
devise a systematic test pattern generation strategy that can 
satisfy the simultaneous constraints specified by any mutant. 
To do this, we first need to convert the set of simultaneous 
constraints into a solution space. This solution space must list 
all target architectural states that can satisfy all simultaneous 
constraints, and any of these target architectural states can be 
used as the starting point when generating a test sequence. 

It is important to take the time to identify the complete set of 
few target architectural states because doing so prunes out the 
many irrelevant architectural states. Given that only one of 

these target architectural states is necessary, let us denote each 
target architectural state in the solution space as a prospect 
state (pState). Also, let us define each pState by: (i) the 
simultaneous constraints to be satisfied, and (ii) the data and 
control dependencies among the constraints’ identifiers in the 
circuit under validation. Each of the above components of a 
pState is implemented using a type of constraint dependency 
graph (CDG) that we describe next. 

A. Constraint Dependency Graphs (CDGs) 
The CDG is a structure that can represent possible solutions 

by using range information akin to fuzzy logic. Fig. 3(a) 
depicts an example CDG produced by the “when others” 
block of a case statement for signal A, such that the guards for 
the case statement’s two explicit cases are: (i) “when 1” and 
(ii) “when 3”. In solving CDGs, we would prefer to avoid 
operators that impose solutions with multiple disjoint ranges 
in values. An example of such an operator is the inequality 
operator. A statement A/=B returns a true Boolean value if 
A<B or A>B, therefore splitting the solution space into two 
explicit value ranges. Let us define such operators as 
“disjoining” operators. Instead of solving a CDG by 
transferring multiple value ranges across CDG operators as a 
result of disjoining operators, we can restructure a CDG into 
an equivalent graph that does not contain these disjoining 
operators. 

In our restructured CDG representation, there is only one 
disjoining operator that we allow to remain in our CDG 
structure as it binds all disjoint range of values into a set. We 
use the Boolean OR operator to reference the CDG structures 
that define a specific explicit value range, and a set of these 
CDG structures is linked by a chain of Boolean OR operators. 
As a result, we get a CDG structure in the form of a 
disjunction of conjunctions, such that each conjunction 
defines a specific explicit range in values for its identifiers. 
More specifically, all nodes in a conjunction share the range 
in values for the variables and signals they refer to. The nodes 
in our restructured CDG follow a hierarchy in the following 
order: OR operators, AND operators, relational operators, 
computational operators, and literals/identifiers. The Boolean 
OR and Boolean AND operators are propagated towards the 
first and second layers in the CDG, respectively, via 
DeMorgan’s Theorem. 

MVP’s pStates are generated and solved throughout the 
ATVG process to justify a set of constraints, making the 
algorithms that restructure and solve the CDGs to be MVP’s 
limiting factor. Therefore optimizing the worst-case scenario 
for the algorithm that restructures and solves a CDG will have 
a significant impact on MVP’s overall performance. Case 
statements (commonly used in hardware descriptions) can be 
significantly large, especially when they are used to describe 
the functionality of an FSM. These large case statements will 
be the limiting factor for MVP’s performance because we 
need to analyze the assignment statements and control 
requirements for every block in the case statement. 
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If a case statement contains a “when others” block, its 
control requirements (guard) will be the conjunction of the 
negated guards of all explicit cases. This block’s control 
requirements will therefore be a conjunction of disjoining 
operators, where a disjoining operator is an operator that 
imposes a disjoint range of values onto any identifier operand. 
Our goal is to convert this graph into a disjunction of 
conjunctions such that each conjunction defines a contiguous 
range of values for all discrete identifiers within it, therefore 
we must restructure the CDG into an equivalent graph that is 
free of disjoining operators. 

Restructuring the graph into our desired form forces us to 
recursively replace each sub-tree rooted at a disjoining 
operator with an equivalent tree that is free of disjoining 
operators, but is bigger in size. An inequality operator is 
replaced by a disjunction of relational operators, which 
unfortunately is a complete tree with twice the number of leaf 
nodes than the original. The size complexity is exacerbated by 
the modified graph’s conjunction of disjunctions structure. 
Performing a brute-force restructuring process to convert this 
graph into a disjunction of conjunctions through the use of 
DeMorgan’s Theorem produces a graph that is exponential in 
size in terms of the number of disjoining operators. This size 
complexity quickly becomes a burden because restructuring 
requires an exponential runtime complexity, and soon 
thereafter becomes a limitation because it may easily consume 
all available memory. Fig. 3(b) shows the restructured CDG 
(with no optimization) using the method described above.  

By analyzing the restructured graph of Fig. 3(b), we can 
notice the presence of sub-trees that can be removed early in 
the restructuring process because they evaluate to false. We 
consider these sub-trees as unconditionally false and we can 
identify them by attempting to force a Boolean true value onto 
any Boolean operator or relational operator. A sub-tree will 
only be able to satisfy the true value if the range of values 
imposed onto all identifiers at that sub-tree intersects with the 
range of values imposed on corresponding identifiers at all 
other sub-trees of the same conjunction.  

In addition to the above, we can notice the presence of sub-
trees that can be removed early in the restructuring process 
because they evaluate to true. These sub-trees occur when a 

comparison on an identifier does not reduce the range of 
values imposed on that identifier; therefore we consider these 
sub-trees as unconditionally true. Applying the above 
optimizations to the CDG of Fig. 3(b) produces the CDG 
shown in Fig. 3(c). 

The optimization presented above effectively reduces the 
size complexity and runtime complexity of the restructure 
process. More details about this optimization method are 
presented in [4]. 

B. Generating a Prospect Code Path 
 As previously mentioned, an activation criteria denotes a 

collection of signal instantiations and a corresponding set of 
values that these signals are required to satisfy. These 
activation criteria are used as the initial set of ATVG goals. 
Before attempting to identify the sets of implications that 
satisfy the ATVG goals, we can reduce the search space by 
first identifying, for each ATVG goal, the basic blocks of 
HDL code that can assign the required value onto the required 
signal. For each of these identified basic blocks, we need to 
extract the guards (conditions from condition statements) that 
allow this block to be reached and combine the identified 
guard constraints to form the set of control requirements. Let 
us therefore define a prospect code path as one of the many 
assignment statements that may be able to satisfy an ATVG 
goal’s constraint, such that the assignment statement can be 
reached when the identified control requirements are satisfied. 
A prospect code path for an ATVG goal will therefore 
contain: (i) the constraint to be satisfied, and (ii) the 
assignment statement and control requirements that allow this 
constraint to be satisfied. It is important to mention that 
generating a prospect code path for an ATVG goal is 
performed independently of all other prospect code path 
generations for other goals, and it only need consider the 
scope of the module in which the ATVG goal exists. 

To implement the environment that extracts the prospect 
code paths for a given module, a statement tree is created such 
that it preserves the structural integrity of all statements in the 
module and is able to provide an absolute path and control 
requirements to a given statement. The tree is implemented by 
a collection of StatementList nodes that contains a series of 
statements, and the control requirements that allow these 

(b) (c)(a)  
Fig. 3.  (a) A sample CDG and its corresponding restructured CDG with (b) no optimization and (c) complete optimization. 
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statements to be reached. The root level only contains the 
concurrent items in the module and thus does not impose any 
control requirements. Any of these concurrent items can be a 
statement outside of process declarations, or they can be a 
process declaration. All other levels contain sequential items. 
An HDL process is created into a sequential node by inserting 
all statements in the order in which they appear, such that a 
child StatementList node is created for any nested condition 
statements and a link to it is inserted in its place. Conditional 
assignment statements that exist outside of a process can 
themselves be converted into a process for their 
implementation [21][22], which allows us to extract the 
prospect code path for such a statement just as we would for 
an assignment statement in a process. 

There may be numerous assignment statements capable of 
satisfying any given constraint, so a new prospect code path 
needs to be generated for each of these alternatives. A process 
is spawned to convert a constraint into a set of prospect code 
paths as follows: If the statement references a non-shared 
variable, then the scope of this variable is expanded by 
inserting the previous assignment statement to that variable 
within the current code path. Shared variables are not 
supported because of their nondeterministic behavior when 
multiple processes modify the same shared variable at the 
same simulation iteration [22]. 

The program segment of Fig. 4(a) is from the Motorola 6800 
microprocessor implementation from John E. Kent; it is a 
process whose purpose is to update the value to the program 
counter (pc) register. This is the only location in the 
microprocessor implementation where the pc register is 
written to, and generating the initial CDG for the signal pc 
gives us Fig. 4(b). Notice that temppc and tempof are both 
variables, and the assignment statement to signal pc lies at the 
end of the process. Therefore when generating the CDGs for 
an ATVG goal on signal pc, any assignment to temppc and 
any assignment to tempof earlier in the process may be used as 
long as their control requirements do not conflict. The 
complete set of prospect code paths for an assignment to 
signal pc is generated and the resulting eight CDGs are shown 
in Fig. 4(c). 

Any of the prospect code paths deduced from these eight 
CDGs may be used to satisfy the ATVG goal on signal pc, 
and obviously some choices are better than others. By 
inspection we see that CDGs (5) and (6) may be used in 
sequence to effectively satisfy a constraint on signal pc, 
primarily because they have access to primary input signals. 

C. Generating Prospect States 
At this point, we have for each constraint a collection of 

prospect code paths that are capable of performing the desired 
signal assignment. For each of these code paths, we have a 

pc_mux: process(clk, pc_ctrl, pc ,out_alu, data_in, ea)
variable tempof: std_logic_vector(15 downto 0);
variable temppc: std_logic_vector(15 downto 0);
begin

case pc_ctrl is
when add_ea_pc =>

if ea(7) = ‘0’ then tempof := “00000000” & ea(7 downto 0);
else tempof := “11111111” & ea(7 downto 0);
end if;

when inc_pc =>
tempof := “0000000000000001”;

when others=>
tempof := “0000000000000000”;

end case;
case pc_ctrl is
when reset_pc =>

temppc := “1111111111111110”;
when load_ea_pc =>

temppc := ea;
when pull_lo_pc =>

temppc(7 downto 0) := data_in;
temppc(15 downto 8) := pc(15 downto 8);

when pull_hi_pc =>
temppc(7 downto 0) := pc(7 downto 0);
temppc(15 downto 8) := data_in;

when others =>
temppc := pc;

end case;
if clk'event and clk = '1' then

pc <= temppc + tempof;
end if;

end process;

temppc tempof
+

pc

Control requirements
clk’event && clk = 1

+

pc

Control requirements
clk’event && clk = 1 &&

0x“FFFE” 0x“0000”

pc_ctrl = reset_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = load_ea_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = inc_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = latch_pc

+

pc

ea 0x“0000”

+

pc

pc 0x“0001”

+

pc

pc 0x“0000”

(1) (2)

(3) (4)

+

pc

0x“0000”&

pc (15:8) data_in

+

pc

0x“0000”&

data_in pc (7:0)

+

pc

&pc

0x“00” ea (7:0)

+

pc

&pc

0x“FF” ea (7:0)

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_lo_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_hi_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

ea (7) = ‘0’ ea (7) != ‘0’

(5) (6)

(7) (8)

(a)

(b) (c)
 

Fig. 4.   (a) An example process implementation which uses signals and variables and its corresponding (b) incomplete CDG for the signal pc and (c) possible 
CDGs for an ATVG goal on the signal pc. 
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collection of control constraints that need to be satisfied in 
order for the corresponding assignment statement to be 
reached. It is possible to narrow down the search space into a 
collection of the target architectural states that can satisfy a set 
of constraints across module boundaries. For the remainder of 
this paper, we will refer to each of these prospect architectural 
states as pStates. 

Mutants will commonly have multiple constraints as their 
activation criteria that must be satisfied simultaneously. The 
set of constraints can originate from distinct module 
instantiations within the circuit implementation, but each of 
the prospect code paths has a scope that does not reach past its 
module instantiation. Therefore, each pState serves as a 
specific focal point for the constraint solver such that every 
constraint’s possible solution space is directly specified by a 
unified CDG. Since each module instantiation contains a 
statement tree and contains references to all its embedded 
modules, then the collection of pStates can be generated as 
follows: Each module instantiation is responsible for creating 
a prospect code path for every constraint that resides inside 
itself. It is also responsible for generating the complete set of 
pStates from the set of prospect code paths that reside inside 
itself; these pStates have a domain that does not surpass its 
module’s scope. 

Each module instantiation uses the pStates it receives from 
its children to generate the pStates at its level of scope. When 
a module instantiation receives a pState from any of its 
children, it will first replace the child module’s primary inputs 
with the corresponding local signals as specified by the port 
map. Then it will create a cross-product of the pStates from its 
child with its own (if any exist) into an expanded set of 
pStates. It does this by merging the data dependencies and 
control requirements from all its local pStates with those of its 
entire child’s pStates to generate all acceptable merges. Once 
it merges its local pStates with those of all its children, each of 
these pStates encompasses all constraints that lie at or below 
this point in the module hierarchy. The pState framework 
allows us to apply the CDG solver and the circuit’s HDL 
knowledge onto a given constraint to handle one time frame in 
the ATVG problem. 

V. HIGH-LEVEL ATVG 
It was the efficiency and effectiveness of our simulation 

strategy that inspired the development of MVP’s efficient and 
effective constraint solver. Section IV introduced the 
deterministic circuit analysis methods that make up this 
constraint solver, and it is the purpose of this section to exploit 
MVP’s simulation and circuit analysis abilities to generate a 
test sequence that exposes an optimal set of mutants after 
every ATVG iteration. 

A. Identifying the Most Effective ATVG Goals 
We can take advantage of the outcome of the “clustering-

and-partitioning” technique introduced in Section III and [2] 
to produce an ATVG algorithm (Fig. 5) that gives priority to 
the activation of the partition with the highest density of 

undetected mutants (deterministic-activation) and only 
performs deterministic-propagation (to any pre-designated 
observation point) in the case where probabilistic-propagation 
is insufficiently effective. Line 1 of the algorithm sorts the list 
of partitions into the order of descending member size to 
ensure that any unsuccessful attempt to generate a test for a 
partition P is followed by an attempt on the next best partition 
during the subsequent iteration of the while loop. Line 6 
attempts to generate a test sequence that activates an inactive 
mutant in P, and any failed attempt results in the removal of 
that mutant from P (fault dropping). These dropped mutants 
are marked as unexcitable. Line 10 handles the case where the 
activation criteria for the partition P are already met, which is 
expected to happen whenever probabilistic propagation on the 
set of active mutants from P is insufficiently effective. 
Therefore line 10 is used to generate a test sequence that 
propagates an active mutant in P to a primary output, and any 
failed attempt results in the removal of that mutant from P. 
These dropped design errors are marked as undetectable. 

At the start of the ATVG effort, it is expected that 
deterministic activation on the dominant partition will be 
effective in causing the detection of enough mutants from this 
partition so as to demote it from its dominant status. The 
probabilistic-propagation technique will continue to be 
effective for as long as there are enough mutants with simple 
propagation requirements. Whenever the ATVG algorithm 
encounters a partition that has an insufficient number of 
mutants with simple propagation requirements, the 
deterministic activation iteration can be followed by 
deterministic propagation iteration on the same dominant 
partition. 

B. FSM Analysis for Test Sequence Generation 
We can argue that a control signal is only dependent on a 

Precondition: Lp = list of all partitions from every cluster

ATVG-ITERATION(Lp)
1. Sort Lp into descending order of member size
2. P  first partition in Lp
3. SUCCESS false
4. while P exists and SUCCESS = false
5. if activation criteria for P is not met
6. then TP generate activation pattern(s) for any

inactive error in P while dropping
errors from unsuccessful ATVG attempts

7. if activation is successful
8. then SUCCESS  true
9. else P next partition in Lp
10. else TP generate propagation pattern(s) for any

active design error in P while dropping
errors from unsuccessful ATVG attempts

11. if propagation is successful
12. then SUCCESS  true
13. else P  next partition in Lp
14. if SUCCESS
15. then return TP
16. else fail

←
←

←

←
←

←

←
←

 
Fig. 5.  Algorithm for each ATVG iteration. 
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subset of a design’s internal registers. This encourages us to 
decompose an RTL implementation into a set of interacting 
FSMs, such that one FSM is generated per internal register. 
Given a set of simultaneous constraints, we can identify – 
using a corresponding pState – the set of registers (and their 
corresponding target values) that help satisfy these constraints. 
Thus the final step in ATVG requires us to trace the target 
values for these registers to their current simulation values by 
analyzing their corresponding FSMs. 

Analyzing the solution space for multiple simultaneous 
FSMs at a time interval is similar to the problem of analyzing 
the solution space for multiple simultaneous constraints, such 
that contradictions cannot exist in the control values of the 
solution space. For multiple simultaneous FSMs, the control 
values that define the state transition of one FSM cannot 
contradict the control values that define the state transition for 
any other FSM in the same time frame. Even though this inter-
dependency between FSMs does complicate the ATVG 
problem, we can exploit it to identify contradictions early in 
the search process, similar to the generation of a pState. 

Finite state machines are often described as a directed graph, 
such that each state transition can be represented by a function 
y = δ(s, x) [6]. In this function, y represents the next state, s 
represents the current state, and x represents the input to the 
FSM. By using pStates, we are converting a set of 
simultaneous constraints to a target state y’, and we are 
identifying the internal register values s and primary input 
values x that allow y’ to be reached. This allows us to generate 
a test sequence by stepping backwards in time starting at y’. 
All FSM graph edges have equal weight, thus we are limited 
to employing either a depth-first-search (DFS) or a breadth-
first-search algorithm when generating a test sequence. A 
breadth-first-search algorithm guarantee finding the shortest 
test sequence, but it will require a significant amount of extra 
memory to store all pending paths being searched. Therefore, 
our FSM search algorithm is best implemented using DFS, 
such that we specify a maximum path length l to eliminate 
lengthy solutions and limit the search space. 

Concerning multiple simultaneous FSMs, we can adapt the 
DFS algorithm as shown in Fig. 6. In this algorithm, TS holds 
the test sequence that will be returned, Y holds the constraints 
to be satisfied (target state), S returns the control requirements 
that satisfy the constraints to Y (previous state to Y), and l is 
the size limit to the instruction sequence. This multi-FSM 
DFS algorithm gives us the advantage of only searching the 
relevant portion of a microprocessor’s FSM, as it allows us to 
generate a test sequence using a subset of the 
microprocessor’s registers. 

To illustrate the operation of the multi-FSM DFS algorithm 
across multiple time frames, an example scenario is shown in 
Fig. 7. In this example, we begin from the right with two 
signal constraints {Sigα = yα, Sigβ = yβ} whose data 
dependency is mapped to three registers {R1 = y1, R2 = y2, R3 = 
y3} by a specific pState. From here on, the multi-FSM DFS 
algorithm identifies for each register an incoming transition 
that is compatible with all other registers’ incoming 

transitions, such that all transition information (δ(s, x) in Fig. 
7) is combined to define the control space (S in Fig. 6) for that 
specific time frame. This control space consists of a set of 
register values and primary input values, thus it defines the 
state space for the previous time frame. At some intermediate 
time frames, this control space will introduce a dependency on 
a new register (i.e. introduction of R4 @ t=2, R5 @ t=1 in Fig. 
7) whose FSM will also need to be analyzed. Similarly at 
some other time frames, this control space will no longer 
denote a dependency on a specific register (i.e. absence of R3 
@ t=0 in Fig. 7); this can happen at time frames when a data 
register is assigned the required data value. Once the reset 
state is reached, the recursive multi-FSM DFS algorithm 
reports the primary input values in chronological order as it 
returns; reporting a test sequence {X0, X1, X2, X3} in the case 
of Fig. 7. 

C. Test Generation Using Prospect States 
If we carefully analyze the multiFSM_DFS algorithm of Fig. 

6, we can see that lines 3-10 simply map a constraint set Y to 
any constraint set S, such that satisfying S results in Y as the 
next state; notice this is the inherent purpose of a pState. 
Knowing this, we can easily modify the multiFSM_DFS 
algorithm to use pStates when generating an instruction 
sequence. Doing this gives us the algorithm in Fig. 8, which is 
easier to understand, and its implementation works well with 
the definition and implementation of a pState. In line 4, we 
convert a set of constraints (target state) into a pState; this 
pState has a defined set of data dependencies, and needs to 
have its control requirements identified and solved. Line 4 
solves this pState as discussed in Section IV, and stores all 
possible solutions into the set P. We only need to use one 
solution in P, therefore the FOR loop starting at line 5 
continues to iterate until a solution is found or all entries in P 
have been explored. To explore the previous time frame, the 
control requirements from the current pState t are passed as 
the constraints to the next recursive call to the multiFSM_DFS 
algorithm. Finally, the recursive multi-FSM DFS algorithm 
reports the test sequence in chronological order; this happens 

multiFSM_DFS(testSequence TS, constraintSet S,
constraintSet Y, int l)

1. If (l = 0) return FAIL
2. If (Y ≠ Ø)
3. let  v ∈ Y
4. U  getAllIncomingTransitions(v)
5. For each t ∈ U
6. If (S = Ø) T t
7. Else T S t
8. If (T ≠ Ø && multiFSM_DFS(TS, T, Y– v, l)

= SUCCESS)
9. TS TS + getPrimaryInputs(S)
10. return SUCCESS
11. Else
12. TS TS + getPrimaryInputs(S)
13. return SUCCESS
14. return FAIL

←

←
← ∩

←

←

 
Fig. 6.  Multi-FSM DFS algorithm for each ATVG iteration. 
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in lines 8 and 9 of Fig. 8. 

VI. REAL-TIME CIRCUIT PROFILING 
The methods presented in Section V provide for an effective 

test pattern generator that is capable of exposing complex 
circuit design errors. Unfortunately, these methods used alone 
are burdened by the analysis of irrelevant HDL code 
segments, and by the traversal of already-explored 
architectural states. We can significantly improve MVP’s run-
time performance by implanting mechanisms that enable it to 
learn important details of the circuit under validation as a 
means to avoid irrelevant circuit scenarios. These mechanisms 
[5] can exist as a pre-processor that gathers circuit information 
prior to the circuit validation process, and can exist as run-
time entities that allow MVP to learn from its experience. 

A. Pre-processor Circuit Profiling 
The pre-processor to MVP’s circuit validation process 

should be a light-weight task that provides MVP with valuable 
insight capable of directing its test pattern generation process 
towards a solution. The pre-processor should not attempt to 
solve actual constraints, but rather solve early the sub-
problems that provide MVP with the most valuable 
information. Instead of analyzing the implications that the 

circuit has onto each statement in the HDL as is done in the 
real-time circuit analysis process, the pre-processor should 
analyze the implications each statement has onto the overall 
circuit. 

Pre-processor circuit profiling concentrates on the following 
categories: 

• Assignment statement profiling: Solving a constraint 
involves exploring all relevant assignment statements 
that can satisfy its unresolved data implications. Doing 
this requires a significant amount of work that is often 
repeated for a great deal of assignment statements that 
cannot help satisfy the constraint. Much of this dead-end 
work can be prevented by indexing each assignment 
statement with the identifier value implications that it has 
onto the hardware description. 

• Implicit memory profiling: MVP explores all signals in 
the hardware description in search for implicit memory 
elements. It does this by negating the explicit guards to 
all assignment statements onto the signal being analyzed, 
and inserting them into a single conjunction (unified by 
Boolean AND operators). This process exploits MVP’s 
efficient CDG solver, and a CDG that does not evaluate 
to false signifies an implicit memory element. 

• Basic-block guard profiling: In most cases where a data 
contradiction is encountered when solving a constraint, 
the contradiction arises from the union of the guards in 
the multiple prospect code paths. Experiencing an 
identifier value contradiction within the guard of a basic 
block is significantly more costly than experiencing a 
contradiction within the statement itself because the 
aggregated guards leading up to a basic block is larger in 
most cases.  Therefore, having pre-computed knowledge 
as to the constraints imposed by the guard of a statement 
can help reduce the number of pStates that are generated 
and computed. 

 
Fig. 7.  Multiple-timeframe example for multi-FSM DFS algorithm. 

multiFSM_DFS(testSequence TS, pStateSet Y, int l)
1. If (l = 0) return FAIL
2. If (Y = reset state)
3. return SUCCESS
4. P solve(Y) //Generates set of solutions
5. For each t ∈ P
6. S  get_previous_timeFrame(t)
7. If (multiFSM_DFS(TS, S, l-1) = SUCCESS)
8. TS TS + getPrimaryInputs(S)
9. return SUCCESS
10. return FAIL

←

←

←

 
Fig. 8.  Using prospect states during ATVG. 
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B. Runtime Circuit Profiling 
MVP’s run-time circuit validation process should be a 

complete task focused on exploring uncharted territory within 
the processor. Complete FSM coverage commonly requires a 
significant amount of redundant state exploration. Therefore 
as MVP gets further into its validation process, it will be 
forced to retrace more of the previously-explored state space. 
Also, there are many architectural states that have a high 
occurrence frequency as they are a precursor to a wide range 
of other architectural states, thus retaining some of their pre-
solved information can optimize MVP’s performance in the 
long run. 
Finite State Machine Profiling. When a specific target state 
can be reached by multiple states, we can use a weight scheme 
such that the state s with the lowest weight provides MVP 
with two advantages:  

• When the pStates have never been explored (thus they 
are un-indexed), it will allow MVP to choose the state s 
with the least number of constraints that will need to be 
satisfied at the subsequent ATVG iteration. 

• When any of the pStates has been previously explored, 
its weight will be lower than all unexplored pStates, and 
will provide MVP with guidance towards the reset state. 

The aforementioned global FSM profiling effort is meant to 
interpret the low-level FSM profiling information and identify 
the shortest FSM path that can reach the circuit’s reset state. A 
low-level FSM profiling effort is often focused on  depositing 
information onto each statement in the hardware  description 
during runtime to record its scope (range in values) and  the 
success it provides (proximity to FSM reset state). 
Conversely, the global FSM profiling effort is focused on 
unifying the information gathered from all statement sources 
that represent a given solution as a means to avoid costly or 
irrelevant scenarios. 
Explored State-Space Tracking. Preventing the ATVG 
algorithm from revisiting a pState that is visited earlier in the 
same test sequence will avoid analyzing FSM loops. 
Furthermore, preventing the ATVG algorithm from revisiting 
a pState that was visited by a previous test sequence branch 
that failed to generate a result will prevent analyzing 
unsuccessful paths more than once. 

VII. EXPERIMENTAL RESULTS 
Results on MVP’s effectiveness have been generated by 

following the key steps in a validation paradigm: coverage 
metric definition, error modeling, circuit simulation, and 
ATVG. The strategy for each of these steps has been covered 
by this paper in that order, and the results are provided in this 
section. All tests have been performed on a Dual 2.5GHz G5 
workstation under OS X Tiger using gcc 4.0. MVP has been 
implemented as a library using GNU’s autotools (autoconf, 
automake, libtool) in 20K physical lines of C++ code. 

The collection of MCEs for the Motorola 6800 
implementation [20] are generated to bind all possible 
combinations between the explicit state signal to all other 

control signals. The set of control signals also includes the 
next_state signal, which allows us to stimulate the data paths 
as well as the FSM transitions. Having a combination of 
values between a control signal and the explicit state as 
ATVG constraints allows us to stimulate every combination of 
the control signal’s set of resulting data paths at every explicit 
microarchitectural state. Furthermore, having a combination 
of values between the state signal and the next_state signal 
allows us to stimulate every transition in the 
microarchitectural FSM. 

The brute force approach of implementing the control-based 
coverage metric has resulted in a collection of 300,092 
mutants. The activation criteria of each mutant is designated 
by (i) an activation criterion (described by a signal/value pair) 
for the explicit “state” signal, (ii) an activation criterion for 
one of the explicit control signals, and (iii) an error injection 
for the control signal that mutates it to a value other than it’s 
activation criterion. From this exhaustive collection, MVP was 
able to easily identify that 287,565 mutants in the collection 
are irrelevant because the corresponding constraints are not 
supported by the M6800 implementation. These irrelevant 
mutants weren’t a burden to MVP’s runtime performance 
because they were each identified and removed in under 0.01 
seconds. 

MVP’s true effectiveness is due to its ability to continuously 
traverse the unexplored portions of a circuit’s architectural 
state-space. By applying a given set of mutants onto MVP’s 
concurrent mutant simulator, we can directly compare the 
effectiveness in MVP’s approach to the random methods 
commonly used to expose circuit design errors. Fig. 9 presents 
MVP’s effectiveness at stimulating mutant peaks, resulting in 
a continuous mutant detection rate. After input vector 700, 
MVP has already stimulated every mutant by activating (or 
removing) it and is now making a second pass to attempt in 
exposing mutants in the remaining partitions. 

Fig. 10 shows an effectiveness comparison between MVP’s 
ATVG results and random ATVG results. From this figure, 
we can see that random ATVG is initially more effective than 
MVP’s deterministic ATVG. The reason for this initial lead 
for random ATVG is because every input sequence generated 
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by MVP begins at the circuit’s reset state. As a result, the 
initial input vectors in a sequence from MVP traverse already-
explored architectural states. Each of these input sequences 
has an average length of 15 vectors, resulting in a constant 
toggling of the reset signal. It is for this reason that the active 
mutant count of Fig. 9 (MVP’s ATVG input stimuli) is so low 
in comparison to the active mutant count of Fig. 10 (random 
ATVG input stimuli). 

MVP’s use of the reset state as the common input sequence 
starting point provides us with two advantages: (i) the ATVG 
unit is able to perform real-time profiling such that each HDL 
line of code can hold its weight with respect to its known 
shortest distance to the reset state, and (ii) any given input 
sequence that exposes an actual circuit design error is self-
sustained and can be utilized independently, as it begins with 
the circuit’s reset state and ends when the circuit design error 
is exposed. 

Now, if we look past input vector number 200 of the 
simulations in Fig. 10, we can see that MVP’s deterministic 
ATVG is significantly more consistent and effective than a 
random ATVG approach. The results from the random ATVG 
simulation soon transforms into a linear trend that relies on 
sudden bursts of productivity, which only happens when the 
random input vectors happen to stimulate an unexplored 
portion of the state-space. These sudden bursts of productivity 
cannot be predicted, and are commonly a source of false-
positives in circuit verification because of the inflection points 
that it introduces. MVP’s deterministic ATVG, however, has 
consistent bursts of productivity due to MVP’s closed-loop 
verification strategy between circuit simulation and automated 
ATVG. 

The simulation results of Fig. 11 are provided to 
demonstrate MVP’s effectiveness to navigate through a circuit 
implementation despite its dependency on the reset state. It 
compares MVP’s detection rate (from Fig. 9) with the 
detection rate of a random ATVG effort where the reset signal 
is toggled at roughly the same rate as MVP’s simulation run 
(every ~15 vectors). What Fig. 11 shows is that the random 
ATVG effort is initially decent as expected, but quickly has 
trouble in traversing a unique path in the circuit’s state space 

following every toggle of the reset signal. 
Without the use of its runtime profiling techniques, MVP 

was not effective at generating a meaningful input sequence 
because the runtime for each justification ATVG iteration 
exceeded 25,000 time frames. Therefore the purpose of 
MVP’s pState weighing scheme is to help it forecast the 
easiest path to the circuit’s reset state by selecting the pState 
with the least number of simultaneous constraints. This 
optimization alone has allowed MVP to achieve a feasible 
runtime by allowing it to satisfy all ATVG problems at fewer 
than 1000 time frames during FSM analysis. Fig. 12 is a 
testament to the significant contribution provided by MVP’s 
weight estimation scheme, as it shows how manageable FSM 
traversal can be. 

If we compare the number of time frames analyzed per 
ATVG iteration between the two graphs of Fig. 12, we can see 
that MVP’s effectiveness in reaching the reset state is highly 
optimized by incorporating FSM weight indexing. By using 
weight indexing, the typical FSM search space was reduced 
from over 300 time frames down to approximately 100 time 
frames per justification ATVG iteration. There are still 
occasional justification problems that are difficult to solve as 
shown by the large bars around vectors 600 and 1000, but 
they do not dominate the problem space and their solutions 
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contribute to MVP’s FSM learning process. 

VIII. CONCLUSIONS 
We have presented a Mutation-based Validation Paradigm 

(MVP) technology that automates the design-to-verification 
process and contains fundamental techniques for analyzing 
high-level circuit implementations. MVP is unique in the way 
it exploits these techniques to validate circuit 
implementations. MVP’s methods help deliver certainty into a 
circuit verification project in two ways: (i) it provides real-
time observability into the validation effort through a 
concurrent mutant simulator that quantifies the circuit 
coverage (certainty level) at every simulation time-frame, and 
(ii) it employs deterministic circuit analysis techniques that, 
together with the observability provided by its concurrent 
mutant simulator, allow it’s ATVG effort to consistently 
explore new corners in a circuit’s architectural landscape. 
These contributions enable MVP to mitigate the risk of 
verification false-positives due to unexposed bugs, which is 
commonly encountered when random or pseudorandom 
ATVG fail to travel towards unexplored portions of the circuit 
under validation. Furthermore, the smooth slope of MVP’s 
mutant detection rate allows a verification engineer to predict 
when enough circuit verification has been performed, given 
that further input vectors cannot promise much observability. 
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