
1

Abstract—Our Mutation-based Validation Paradigm (MVP)
is a validation environment for high-level microprocessor imple-
mentations. To be able to efficiently generate test sequences, we
need to enable MVP’s ATPG to learn important details of the cir-
cuit under validation as a means to explore critical new circuit
scenarios. In this paper, we present new profiling mechanisms
that can exist either as a pre-processor that gathers circuit infor-
mation prior to the circuit validation process, or as run-time enti-
ties that allow MVP to learn from its progressive experience.

I. INTRODUCTION

Our Mutation-based Validation Paradigm (MVP)
[1][2][3][4] technology contains the fundamental techniques
for analyzing high-level circuit implementations, and is unique
in the way it exploits these techniques to validate circuit imple-
mentations. MVP’s methods help deliver certainty into a cir-
cuit validation project in two ways: (i) It provides real-time
observability into the validation effort through a concurrent
mutant simulator that quantifies the circuit coverage (certainty
level) at every simulation time-frame, and (ii) it employs deter-
ministic circuit analysis techniques that, together with the
observability provided by its concurrent mutant simulator,
allow MVP’s ATPG effort to consistently explore new corners
in a circuit’s architectural landscape. These contributions
enable MVP to mitigate the risk of validation false-positives
due to unexposed bugs, which is commonly encountered when
random or pseudorandom ATPG fail to travel towards unex-
plored portions of the circuit under validation.

MVP is a circuit validation tool for high-level hardware
descriptions, and its purpose is to provide expert deterministic
validation methods to the average design engineer. MVP pro-
vides a complete and automated strategy for analyzing high-
level hardware descriptions that only leaves the circuit design
engineer to decide what portions of the circuit to validate, and
not how to validate it. These circuit analysis abilities allow
MVP to perform automated white-box circuit validation on
high-level RTL descriptions while providing the simplicity of
black-box validation to its users.

MVP does not require a priori information on the circuit
under validation for it to be effective, but instead gathers this
information real-time. Use of MVP’s fundamental circuit anal-
ysis abilities alone cause it to be burdened by the analysis of
irrelevant HDL code segments, and by the traversal of already-
explored architectural states. We can significantly improve
MVP’s run-time performance by implanting mechanisms that
enable it to learn important details of the circuit under valida-
tion as a means to explore critical new circuit scenarios. These
mechanisms can exist as a pre-processor that gathers circuit

information prior to the circuit validation process, as well as
run-time entities that allow MVP to learn from its experience.

MVP can handle complete implementations because it only
uses high-level information, and only uses the hardware
description language (HDL) information relevant to the set of
constraints when identifying all relevant architectural states. In
this paper, we define a circuit architectural state that satisfies
the set of constraints under consideration as a prospect state
(pState).

Generating input stimuli that satisfy a set of constraints
requires the solver to identify all prospect states for each time
frame, and eliminate the prospect states that can not be used to
satisfy a test sequence. This is a problem for modern supersca-
lar microprocessor implementations because of their inherently
large state space. Therefore to be able to efficiently identify
and analyze the architectural states (prospect states) that can
possibly satisfy the set of constraints, we need to reduce the
search space (via profiling) in the analysis process as early as
possible.

The rest of this paper is organized as follows. Section II pre-
sents several pre-processor profiling techniques used by MVP
and Section III presents the details of MVP’s run-time profiling
techniques. Section IV presents some preliminary experimental
results and Section V concludes the paper.

II. PRE-PROCESSOR CIRCUIT PROFILING

The pre-processor to MVP’s circuit validation process
should be a light-weight task that provides MVP with valuable
insight capable of directing its test pattern generation process
towards a solution. It is because of this low-overhead demand
that the pre-processor should not attempt to solve actual ATPG
constraints, but rather solve early the sub-problems that pro-
vide MVP with the most valuable information. Instead of ana-
lyzing the implications that the circuit has onto each statement
in the hardware description as is done in the real-time circuit
analysis process (implications of the range of values for β and
γ on the assignment to α as shown in Fig. 1a), we can imple-
ment the light-weight circuit profiler for the pre-processor by
having it analyze the implications each statement has onto the
overall circuit (assignment to α in Fig. 1b).

A. Assignment Statement Profiling
Our previous work discusses how an ATPG constraint is

solved by exploring all relevant assignment statements that can
satisfy its unresolved data implications [3]. Therefore when-
ever attempting to satisfy a constraint (especially when it is
dependent on an enumeration data type), this solver process
will likely be repeated for a great deal of assignment state-
ments that cannot help satisfy the constraint. Much of this

Circuit Profiling Mechanisms for High-Level ATPG
Jorge Campos and Hussain Al-Asaad

Department of Electrical and Computer Engineering
University of California, Davis, CA

E-mail: {jcampos, halasaad} @ece.ucdavis.edu

2

dead-end work can be prevented by using MVP’s statementList
data structure [3], which holds a circuit’s HDL information, to
index each assignment statement with the identifier value
implications that it has onto the hardware description. This
statementList data structure is utilized by MVP to hold the
HDL information of the circuit under validation.

The indexing process is easily implemented by using
MVP’s available resources. Satisfying a constraint requires
MVP to first convert the assignment statement being consid-
ered into a data dependency graph (DDG) and to solve its
implications. Solving this DDG provides every identifier
within every conjunction with the explicit range in values that
satisfies this assignment statement. Therefore to profile this
specific assignment statement, the data implications it imposes
onto the circuit are extracted directly from the identifiers
within the solved DDG.

This indexing pre-processor is effective because many
assignment statements in a hardware description simply trans-
fer a constant value onto an identifier. This is particularly true
for enumeration data types, as they are commonly used to
explicitly control a finite state machine (FSM). This allows
MVP to peek into each statement to expose most data contra-
dictions before committing itself to solving that possible solu-
tion path.
B. Implicit Memory Element Profiling

For complete circuit analysis, MVP must explore all signals
in the hardware description in search for implicit memory ele-
ments. It does this by negating the explicit guards to all assign-
ment statements onto the signal being analyzed, and inserting
them into a single conjunction (unified by Boolean AND oper-
ators). This process exploits MVP’s efficient DDG solver, and
a DDG that does not evaluate to false signifies an implicit
memory element. This process therefore takes all implicit
memory elements, and defines them explicitly by creating an
entry for a corresponding memory-preserving assignment
statement within the statementList data structure such that the
guards to this entry denotes the memory-preserving condition.
C. Basic-Block Guard Profiling

In most cases where a data contradiction is encountered
when solving a constraint, the contradiction arises from the

union of the guards in the multiple prospect code paths. That is,
the guards gathered from satisfying the constraint of a current
unresolved identifier will more than likely conflict with the
guard of a previously resolved identifier in the constraint.
Experiencing an identifier value contradiction within the guard
of a basic block is significantly more costly than experiencing
a contradiction within the statement itself because the aggre-
gated guards leading up to a basic block is larger in most cases
than any of the assignment statements in that basic block, and
this guard is repeatedly utilized by all statements within the
basic block. Therefore the performance of this guard profiling
pre-processor is slower than that of the assignment statement
profiling pre-processor, but the runtime performance advan-
tage it provides is equally as significant.

It is possible to take advantage of the statementList data
structure once again to hold pre-solved identifier values from
the guards to all basic blocks. These solved identifier values
can be used to expose data contradictions between a prospect
code path’s guards and the identifiers within a constraint being
solved, and would prevent the costly dead-end task of convert-
ing a set of guard statements into a corresponding solved DDG
that would evaluate to ‘false’. For those assignment statements
that are reachable, this profiling effort can retain the solved
DDG to optimize all later uses by any assignment statement
within the basic block.

This process of indexing all leaf statementList nodes with
the solved identifier values to its guards can be performed as a
pre-processor or at run-time. Given that MVP already analyzes
all identifiers to expose implicit memory elements, which
requires it to evaluate the guards to all statements, it is natural
to implement this basic block guard profiler as a part of the
pre-processor. For any given statementList node, the set of
guards are obtained by appending its guard to those of all its
ancestor nodes [3]. We can take advantage of the fact that the
guards are distributed throughout the statementList tree (Fig. 2)
by gathering the list of solved identifier values at each node,
and recursively providing a copy of this list to all its children
so it may append onto it.

This recursive process to obtaining guard information pro-
vides us with two key advantages. The data-sharing nature of
this recursive algorithm allows it, as a pre-processor that starts
at the root statementList node, to reduce the amount of redun-
dant work that would be performed if it were to be executed at
run-time starting at a leaf node. The second advantage is that it
can identify all unreachable basic blocks within the hardware

Fig. 1. (a) Run-time and (b) pre-processor circuit profiling.

(a)

(b)
Fig. 2. Basic-block guard profiling.

StatementList node
Condition-1 Condition-2

Block-1 Block-3Block-2 Block-4

3

description without having to analyze all basic blocks. As
shown in Fig. 2, an identifier value contradiction exposed
within the guard of an internal statementList node will auto-
matically denote all its children statements as unreachable as
well.

Unreachable code blocks commonly exist within CASE
statements. The “when others” clause of a CASE statement is
commonly utilized as a safe-guard that ensures an internal sig-
nal to the circuit is not created as an implicit memory element
as a result of unhandled guard cases. However, when all possi-
ble cases have been handled explicitly, then the “when others”
clause will create an unreachable block of code that will never
be executed. Unfortunately for MVP, it attempts to satisfy a
constraint by starting at all relevant assignment statements.
MVP must therefore be aware of which HDL code blocks are
irrelevant as a means of reducing the ATPG search space.

III. RUNTIME CIRCUIT PROFILING

MVP’s run-time circuit validation process should be a com-
plete task focused on exploring uncharted territory within the
processor. In an ideal problem, it would be possible to travel
throughout a hardware description’s architectural state space
without retracing one’s steps. Unfortunately, 100% FSM cov-
erage commonly requires a significant amount of redundant
state exploration. Therefore as MVP gets further into its vali-
dation process, it will be forced to retrace more of the previ-
ously-explored state space in order to reach the target
architectural state that defines the ATPG goal. Also, there are
many architectural states that have a high occurrence fre-
quency as they are a precursor to a wide range of other archi-
tectural states, thus retaining some of their pre-solved
information can optimize MVP’s performance in the long run.
This section focuses on the run-time circuit profiling efforts
that can allow MVP to breeze through the already-explored
state space when attempting to satisfy a unique ATPG goal.

A. Finite State Machine Profiling
An FSM is usually described by y = δ(s, x), where a target

state y can be reached from state s when the FSM’s inputs are x
[5]. When the target state y can be reached by multiple states
s1…sn, we can use a weight scheme such that the state s with
the lowest weight provides MVP with two advantages:

• When the pStates have never been explored (thus they are
un-indexed), it will allow MVP to choose the state s with
the least number of constraints that will need to be satisfied
at the subsequent ATPG iteration. If the reset state is among
the set, it will be characterized by the lack of constraints
that need a subsequent ATPG iteration, therefore resulting
in a weight of zero.

• When any of the pStates has been previously explored, its
weight will be lower than all unexplored pStates, and will
provide MVP with guidance towards the reset state as all
subsequent pStates will continue to have lower weights.

To implement this weight-assigning process, we simply
need to implement our ATPG solver as shown in Fig. 3. Line 5
selects the optimal candidate for the next ATPG iteration by
selecting the pState with the lowest weight. If the selected
pState has a weight of zero, the previous recursive call to the
multiFSM_solve algorithm has its length value l updated to

zero on line 7, and it is returned SUCCESS signifying that the
reset state has been reached on line 8. The previous recursive
call to the multiFSM_solve function will then be in charge of
updating the weight values on line 11, incrementing the weight
for its previous recursive call on line 12, and then commencing
as usual.

The goal of exploring an FSM is to generate a test sequence
that maps the hardware description’s architectural state from its
reset state onto any architectural state that satisfies the given
set of constraints. This process begins at the target architectural
state, and continues to traverse the circuit backwards in time
until the reset state is reached. To optimize this ATPG effort,
we need to enable MVP to intelligently navigate through a cir-
cuit’s FSM.

A hardware description is characterized by the inter-depen-
dent FSMs from all of its internal registers, thus developing a
macroscopic understanding on the overall FSM will require us
to understand all possible state combinations (the cross prod-
uct) from all these smaller inter-dependent FSMs. We can
therefore simplify the FSM profiling task by placing our focus
at the individual FSMs for each register as they make up the
building blocks for the overall FSM.

Our objective in performing FSM profiling on the overall
circuit is to achieve the profiling tasks on the individual FSMs,
and employ a mechanism that translates this low-level FSM
profiling information into a circuit-wide FSM profiler. The
concept is simple enough, but the implementation is tricky
because MVP does not manage these FSMs explicitly. It would
be possible to provide MVP with the mechanisms that allow it
to build and analyze these interacting FSMs explicitly, but that
would only require it to perform another level of computations
that should not be necessary. MVP’s strength is in its ability to
analyze the circuit under validation by focusing on the source
code, and it is possible to exploit MVP’s source code database
of the circuit under validation to achieve similar profiling
results.

Let us take a moment to translate these FSM profiling goals
into MVP’s language. The low-level FSM profiling is meant to
account for the many inter-dependent FSMs, and so it must
therefore analyze the FSM associated with each identifier that
represents an internal register. MVP currently uses a construct
entitled as an identifierSet, whose purpose is to keep track of
every HDL location that each identifier is assigned a value

multiFSM_solve(testSequence TS, pStateSet Y, int l)
1. If (l = 0) return FAIL
2. If (Y = reset state)
3. return SUCCESS
4. P solve(Y) //Generates set of solutions
5. For each t ∈ P, s.t. t has the lowest weight in P
6. If (weight(t) = 0)
7. l 0
8. return SUCCESS
9. S get_previous_timeFrame(t)
10. If (multiFSM_solve(TS, S, l – 1) = SUCCESS)
11. assign_weight(S, l)
12. l l + 1
13. TS TS + getPrimaryInputs(S)
14. return SUCCESS
15. return FAIL

 ←

 ←

 ←

 ←
 ←

Fig. 3. MVP’s optimized ATPG algorithm.

4

onto. Initially, the objective of this construct was to optimize
the algorithm that generates all possible pStates from a given
identifier constraint by having the sources to all possible solu-
tions be readily available in one data structure. Therefore, we
can also use all entries corresponding to a constraint’s identi-
fier to provide us with the FSM profiling information we need.
We can exploit the fact that MVP accesses this identifierSet
data structure each time it attempts to use a code path as a solu-
tion by also having MVP leave behind real-time low-level cir-
cuit profiling information whenever it successfully utilizes this
data source to satisfy a constraint.

The aforementioned global FSM profiling effort is meant to
interpret the low-level FSM profiling information and identify
the shortest FSM path that can reach the circuit’s reset state.
We know the low-level profiling effort should be performed
when MVP attempts to use a line of HDL source code for satis-
fying a circuit constraint, therefore we should take a step back
and identify which MVP construct is analyzing these lines of
code and could stand to benefit from the low-level profiling
efforts. Looking at Fig. 3, we can see that the resulting test
sequence is generated by instantiating pStates as the mecha-
nisms that carry the potential solutions as they are being gener-
ated, and thus the pState construct should be used to manage
the global FSM profiling effort.

The low-level FSM profiling effort is focused on depositing
information onto each statement in the hardware description to
record its scope and the success it provides. Conversely, the
global FSM profiling effort is focused on unifying the informa-
tion gathered from all statement sources that represent a given
solution as a means to avoid costly or irrelevant scenarios. The
remainder of this section revolves around these concepts.
FSM Weight Indexing. MVP’s ATPG algorithm is able to
independently find the reset state through exploration of an
FSM, but this alone requires much backtracking. We can there-
fore exploit its ability to find and detect the reset state by
appending the explored states in each FSM (the explored
assignment statements for the identifier behind the FSM’s reg-
ister) with a weight value equal to its distance from the reset
state. If MVP is instructed to generate a test sequence with a
length of at most l, then we can assign each state an initial
weight >> l.

Unfortunately, the task of assigning weight values to a pro-
cessor’s architectural states is not so straightforward. This is
because each pState is influenced by multiple implicit FSMs,
and is pieced together by several concurrent assignment state-
ments that successfully satisfy all simultaneous constraints.
MVP, therefore, is not assigning weight values to explicit
architectural states, but rather is assigning weights to the
assignment statements that were used to piece them together.

MVP can perform its run-time weight-assigning process
following every ATPG iteration to update each assignment
statement’s resulting distance to its FSM’s reset state. Any
given assignment statement may impact several distinct archi-
tectural states, and thus its weight value may have multiple
sources. For the sake of allowing MVP to move towards an
optimal solution while keeping the ATPG implementation sim-
ple, we will allow each assignment statement to store the low-
est weight value it is assigned. Using a given assignment
statement’s lowest assigned weight value, say w, is reasonable
because that statement has the potential of providing an

instruction sequence of size w again in the future. Therefore
giving preference to this assignment statement over other alter-
nate assignment statements of higher weight when solving a
constraint allows MVP to choose the ATPG path with the high-
est probability of producing the shortest path to the reset state.
Prospect State Weight Estimation. MVP’s ATPG algorithm
analyzes multiple pStates at every time frame, from which it
must choose one to attempt and reach the reset state. Therefore
providing MVP with a weighing scheme for its pStates can
help it easily identify the most effective solution path. The
motivation for extracting a weight value from a pState is two-
fold, as mentioned at the start of this section. In choosing the
ideal pState, MVP must first favor those solutions to which a
path to the reset state has already been identified; otherwise it
must favor the pStates with the least number of constraints to
justify. These two objectives must be handled inherently by a
single weighing scheme.

However, finding a balance between these two objectives is
not trivial because the first requires that the pState have been
solved in order to extract an accurate weight from the utilized
HDL statement sources, and the second requires the pState to
not have been solved. Using our FSM weight indexing scheme
where we index each RTL assignment statement with its
known distance to the reset state, we can attain a weight value
to a solved pState because it will then have assignment state-
ments associated to it that were used to satisfy its constraints.
Thus for the first case, if a pState has not been solved, then it
will not have these HDL statement sources that are necessary
to estimate its distance to the reset state. Conversely for the
second case, the number of constraints to resolve in a pState
obviously can only be evaluated before these constraints are
resolved.

In identifying a pState’s weight, MVP must use a unifying
scheme that satisfies both of the preceding objectives. MVP
will first have to solve the pState, and then adapt its weight-
assigning scheme to handle the second case which favors the
pState with the least number of ATPG constraints. It can do this
adaptation by counting the number of constraints that will
propagate onto the following ATPG iteration. And to estimate
the weight that gives preference to those previously-solved
pStates closest to the reset state, we can multiply this number
of constraints that need to be resolved in the next ATPG itera-
tion by the average weight of the assignment statements associ-
ated to the solved constraints. A pState whose constraints were
solved in a previous ATPG problem will have assignment
statements associated to it whose weight is lower than the max-
imum weight, and thus its average weight will naturally be
lower than the maximum weight.
Modified ATPG Algorithm. MVP’s pState-weighing scheme
requires us to modify MVP’s ATPG algorithm as depicted in
Fig. 4. The get_previous_timeFrame() algorithm extracts, from
a pState y, all the pStates s that can transition into it. It requires
y to have been solved (have all its constraints satisfied), and it
returns a set of pStates s that have not been solved. Thus, the
objective of this modification is to ensure that MVP’s ATPG
algorithm calls the weight estimation procedure on solved
pStates only, as well as perform weight indexing using these
solved pStates.

The most significant change that allows us to satisfy these
objectives is that the algorithm now expects the alternate

5

ATPG objectives Y to be a previously solved set of pStates.
Having Y be a solved set of pStates allows MVP to immedi-
ately use its weight estimation methods for identifying the
ATPG goal in Y that is estimated to be closest to the circuit’s
reset state. Afterwards, this modification converts the chosen
path in Y into the alternate sets of constraints P that define the
preceding architectural states. If the pState set in P contains the
reset state, then the ATPG iteration is complete. Otherwise the
set in P is solved to define the set of previous time frames S
that can transition into Y, and to define the inputs that allow this
transition to take place. The preceding pStates in S are them-
selves justified towards the reset state by invoking a recursive
call to the ATPG algorithm.
B. Explored State-Space Tracking

The ATPG algorithm in Fig. 4 will commonly receive, from
line 3, pStates that have been traversed by a previous recursive
call within the same ATPG iteration. When this happens, those
pStates should be ignored because re-analyzing them will not
help the ATPG algorithm get any closer towards a solution.
Ignoring the visited pStates is both an up-stream and down-
stream process. Preventing the ATPG algorithm from revisiting
a pState that is visited earlier in the same test sequence will
prevent the ATPG algorithm from analyzing FSM loops. Fur-
thermore, preventing the ATPG algorithm from revisiting a
pState that was visited by a previous test sequence branch that
failed to generate a result will prevent the ATPG algorithm
from analyzing unsuccessful paths more than once.

This explored state-space tracking effort is implemented on
lines 5, 6, and 8 of Fig. 4. Line 5 checks if the current pState t
to be analyzed has been previously visited by that same ATPG
iteration. If it has been previously visited, then line 6 deletes it
and allows the subsequent iteration of the FOR loop on line 4
to analyze the next pState in the solution set P. If it has not been

previously visited, then line 8 allows the ATPG algorithm to
store p’ into the visited set VS and proceed as usual.

We can identify if a pState p’ has been previously visited by
identifying if p’ is masked by the set of visited pStates in VS. A
pState is defined by a set of internal and input identifiers, and
their corresponding range in values. For the purpose of obtain-
ing a clear perspective on when one pState masks another, let
us realize that an identifier missing from a pState signifies that
the corresponding identifier has a complete range in values. In
terms of identifiers, an identifier with a range in values v is
masked by a corresponding identifier instantiation with a range
in values v’ if and only if (IFF) the range in values for v are
encapsulated by the range in values for v’ (v ∈ v’). We can
therefore identify if a pState t’ is masked by a pState t IFF the
set of identifiers referenced by pState t is a subset of the identi-
fiers referenced by t’, and IFF the range in values of the identi-
fiers in t encapsulate the range in values of the corresponding
identifiers in t’.

IV. EXPERIMENTAL RESULTS

Results on MVP’s effectiveness have been generated by fol-
lowing the key steps in a validation paradigm: coverage metric
definition, error modeling, circuit simulation, and ATPG. All
experiments have been performed on a Dual 2.5GHz G5 work-
station under OS X Tiger using gcc 4.0. MVP has been imple-
mented as a library using GNU’s autotools (autoconf,
automake, libtool) in 20K physical lines of C++ code.

The Motorola 68K implementation [6] analyzed for this
paper is microarchitectural by nature. The collection of muta-
tion control errors (MCEs) [1][2] are generated to bind all pos-
sible combinations between the explicit state signal to all other
control signals. The set of control signals also includes the
next_state signal, which allows us to stimulate the data paths as
well as the FSM transitions. Having a combination of values
between a control signal (imagine an input to a multiplexer)
and the explicit state as ATPG constraints allows us to stimu-
late every combination of the control signal’s set of resulting
data paths at every explicit microarchitectural state. Further-
more, having a combination of values between the state signal
and the next_state signal allows us to stimulate every transition
in the microarchitectural FSM.

The Motorola 68K explicit FSM allows us to easily under-
stand MVP’s effectiveness in deciphering a circuit’s state
machine by observing the shortcuts it exploits when satisfying
a set of constraints. Each of MVP’s ATPG iterations generates
a test sequence that maps any target architectural state to the
reset state. However if the reset state has not been identified,
the search process is blind. After even one successful ATPG
iteration, MVP’s effectiveness in reaching the reset state is
highly optimized by its run-time circuit profiling methods. We
can quantify MVP’s effectiveness in learning a circuit’s FSM
by counting the amount of backtracking experienced by each
ATPG iteration. Fig. 5 quantifies how suddenly the backtrack-
ing is reduced by MVP’s run-time circuit profiling methods
after every successful ATPG iteration.

MVP’s true effectiveness is due to its ability to continuously
traverse unexplored portions of a circuit’s architectural state-
space. The circuit design industry currently employs random
and pseudo-random ATPG when exploring large circuit imple-

Precondition: pStates in Y have been pre-solved

multiFSM_solve(testSequence X, pStateSet VS, pStateSet Y, int l)
1. If (l = 0) return FAIL
2. For each p ∈ Y, s.t. p has the lowest weight in Y
3. P get_previous_timeFrame(p)
4. For each p’ ∈ P
5. If (p’ is masked by some state in VS)
6. delete p’
7. else
8. VS VS + p’ // Store copy of p’ into visited set VS
9. If (weight(p’) = 0) // Reset state has been found
10. l 0
11. Y {p} // Remove unexplored pStates in Y
12. X getPrimaryInputs(p’)
13. return SUCCESS
14. S solve(p’) // Attain incoming pStates S from

// target pState Y
15. If (multiFSM_solve(TS, VS, S, l – 1) = SUCCESS)
16. weight(p) l
17. Y {p} // Remove unexplored pStates in Y
18. l l+1
19. X X + getPrimaryInputs(S)
20. return SUCCESS
21. return FAIL // No ATPG goals (Y is empty) or

// no solution exists

 ←

 ←

 ←
 ←
 ←

 ←

 ←
 ←

 ←
 ←

Fig. 4. MVP’s modified ATPG algorithm.

6

mentations. This provides them with a high rate of simulation
iterations, but they gamble on their random approach to even-
tually reach a high coverage of their circuit’s state-space. By
applying a given set of mutants onto MVP’s concurrent mutant
simulator, we can directly compare the effectiveness in MVP’s
approach to the random methods commonly used to expose cir-
cuit design errors. Fig. 6 presents the effectiveness provided by
MVP in comparison to random ATPG.

If we look closely at the start of the simulation in Fig. 6, we
can see that random ATPG is initially more effective than
MVP’s deterministic ATPG. The reason for this is because
every test sequence generated by MVP begins at the circuit’s
reset state. As a result, the initial test vectors in each of MVP’s
ATPG traverse already-explored architectural states. This is
acceptable because using the reset state as the common test
sequence starting point provides us with two advantages: (i)
The ATPG unit is able to perform real-time profiling such that
each HDL line of code can hold its weight with respect to its
known shortest distance to the reset state, and (ii) any given
test sequence that exposes an actual circuit design error is self-
sustained and can be utilized independently, as it begins with
the circuit’s reset state and ends when the circuit design error is
exposed.

By looking closely towards the end of simulation in Fig. 6,
we can see that MVP’s deterministic ATPG is significantly
more consistent and effective than a random or pseudo-random
ATPG approach. The simulation results from the random
ATPG soon levels off, and has eventual bursts of effectiveness
whenever the random test vectors happen to reach an unex-
plored portion of the architectural state-space. These sudden
burst of productivity cannot be predicted, and are commonly a

source of false-positives in circuit validation. MVP’s determin-
istic ATPG, however, exploits MVP’s simulation statistics to
determine the ATPG goals that can allow it to continuously
reach unexplored portions of the state-space. Therefore MVP,
unlike random and pseudo-random ATPG, has consistent bursts
of productivity due to MVP’s closed-loop strategy between cir-
cuit simulation and automated test pattern generation.

V. CONCLUSIONS

We have presented circuit profiling mechanisms that allow
our mutation-based validation system to learn as it generates
test sequences. These mechanisms are either a pre-processor
that gathers circuit information prior to the validation process
or a run-time entity that progressively gathers circuit informa-
tion during the validation process. Our preliminary experi-
ments show that MVP’s effectiveness in reaching the reset
state is highly optimized by its circuit profiling methods.
Moreover, the experiments show that the backtracking in
MVP’s ATPG is reduced by using run-time circuit profiling
methods after every successful ATPG iteration.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0092867.

REFERENCES

[1] J. Campos and H. Al-Asaad, “Concurrent design error simulation for
high-level microprocessor implementations”, Proc. AUTOTESTCON,
2004, pp. 382-388.

[2] J. Campos and H. Al-Asaad, “Mutation-based validation of high-level
microprocessor implementations”, Proc. International High-Level
Design Validation and Test Workshop, 2004, pp. 81-86.

[3] J. Campos and H. Al-Asaad, “MVP: A mutation-based validation para-
digm”, Proc. International High-Level Design Validation and Test Work-
shop, 2005, pp. 27-34.

[4] J. Campos and H. Al-Asaad, “Search-space optimizations for high-level
ATPG”, Proc. International Microprocessor Test and Verification Work-
shop, 2005, pp. 84-89.

[5] F. Corno et al., “SymFony: A hybrid topological-symbolic ATPG exploit-
ing RT-level information”, IEEE Transactions on Computer-Aided
Design, Vol. 18, pp.191-202, February 1999.

[6] http://www.opencores.org/projects.cgi/web/system68/overview.
[7] I. Ghosh and M. Fujita, “Automatic test pattern generation for functional

register-transfer level circuits using assignment decision diagrams”, IEEE
Transactions on Computer-Aided Design, Vol. 20, pp. 402-415, March
2001.

[8] J. Shen and J.A. Abraham, “An RTL abstraction technique for processor
microarchitecture validation and test generation”, Journal of Electronic
Testing: Theory and Applications, Vol. 16, pp. 67-81, February-April
2000.

[9] L.-C. Wang and M.S. Abadir, “On efficiently producing quality tests for
custom circuits in PowerPCTM microprocessors”, Journal of Electronic
Testing: Theory and Applications, Vol. 16, pp. 121-130, February-April,
2000.

[10] F. Corno et al., “Automatic test program generation from RT-level micro-
processor descriptions”, Proc. International Symposium on Quality Elec-
tronic Design, 2002, pp. 120-125.

[11] M. N. Velev, “Collection of high-level microprocessor bugs from formal
verification of pipelined and superscalar designs”, Proc. International
Test Conference, 2003, pp. 138-147.

[12] C.-C. Yen, J.-Y. Jou, and K.-C. Chen, “A divide-and-conquer-based algo-
rithm for automatic simulation vector generation”, IEEE Design and Test
of Computers, Vol. 21, pp. 111-120, March-April 2004.

[13] D. Moundanos, J. A. Abraham, and Y. V. Hoskote, “Abstraction tech-
niques for validation coverage analysis and test generation”, IEEE Trans-
actions on Computers, Vol. 47, pp.2-14, January 1998.

Fig. 5. MVP’s FSM-learning effectiveness.

Test Vector #

AT
PG

 B
ac

kt
ra

ck
in

g
C

ou
nt

Test Sequence Length

M
C

E
C

ov
er

ag
e MVP ATPG

RANDOM ATPG

Fig. 6. MVP’s ATPG effectiveness.

