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ABSTRACT

This paper explores the design of efficient test sets and test-pattern generators for on-

line BIST. The target applications are high-performance, scalable datapath circuits for

which fast and complete fault coverage is required. Because of the presence of carry-

lookahead, most existing BIST methods are unsuitable for these applications. High-level

models are used to identify potential test sets for a small version of the circuit to be tested.

Then a regular test set is extracted and a test generator TG is designed to meet the

following goals: scalability, small test set size, full fault coverage, and very low hardware

overhead. TG takes the form of a twisted ring counter with a small decoder array. We

apply our technique to various datapath circuits including a carry-lookahead adder, an

arithmetic-logic unit, and a multiplier-adder.

1. This research was supported by General Motors R&D Center.
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1 INTRODUCTION

The widespread use of core-based designs makes built-in self test (BIST) an increasingly

attractive design option [19]. BIST is a design-for-testability technique that places the testing

functions physically with the circuit under test (CUT). BIST has several advantages over the alter-

native, external testing: (i) the ability to test in-system and at-speed, (ii) reduced test application

time, (iii) less dependence on expensive test equipment, and (iv) the ability to automatically test

devices on-line or in the field. On-line testing is especially important for high-integrity applica-

tions such as automotive systems, in which we are interested.

When BIST is employed, a VLSI system is partitioned into a number of CUTs. Each compo-

nent CUT is logically configured as shown in Figure 1. In normal mode, the CUT receives its

inputs X from other modules and performs the function for which it was designed. In test mode, a

test pattern generator circuit (TG) applies a sequence of test patterns S to the CUT, and the test

responses are evaluated by a response monitor (RM). This paper concentrates on the design of

TG, although we also consider some relevant aspects of RM. In the most common type of BIST,

test responses are compacted in RM to form signatures. The response signatures are compared

with reference signatures generated or stored on-chip, and the error signal indicates any discrep-

ancies detected. We assume this type of response processing in the following discussion.

Four primary parameters must be considered in developing a BIST methodology:

• Fault coverage: the fraction of faults of interest that can be exposed by the test patterns

produced by TG and detected by RM. Most RMs produce the same signature for some
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Figure 1  Generic BIST scheme.
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faulty response sequences as for the correct response, a property called aliasing. This

reduces fault coverage even if the tests produced by TG provide full fault coverage.

Safety-critical applications require very high fault coverage, typically 100% of the

modeled faults.

• Test set size: the number of test patterns produced by the TG. This parameter is linked to

fault coverage: generally, large test sets imply high fault coverage. However, for on-line

testing either at system start-up or periodically during normal operation, test set size must

be kept small to minimize impact on system resources and reduce error latency, that is,

the time elapsing before the effects of a fault are detected.

• Hardware overhead: the extra hardware needed for BIST. In most applications, high

hardware overhead is not acceptable because of its impact on circuit size, packaging,

power consumption, and cost.

• Performance penalty: the impact on performance of the normal circuit function, such as

critical path delays, due to the inclusion of BIST hardware. This type of overhead is

sometimes more important even than hardware overhead.

We have been investigating the design of TGs in the four-dimensional design space defined by

the above parameters with the goals of 100% fault coverage, very small test sets, and low hard-

ware overhead. The specific CUTs we are targeting are high-speed datapath circuits to which most

existing BIST methods are not applicable. Our CUTs are N-input, scalable, combinational circuits

with large values of N (64 or more). They also employ carry lookahead, a very common structure

in high-performance datapaths. It is well known that such circuits have small deterministic test

sets that can be computed fairly easily. For example, it is shown in [13] that the standard n-bit

carry-lookahead adder (CLA) design, which has N = 2n + 1 inputs, has easily-derived and prov-

ably minimal test sets for all stuck-line faults; these test sets contain N + 1 test patterns. Some

low-cost, scalable TG designs for datapath circuits based on C-testability (a constant number of

test patterns independent of N) are known [12] [26], but they do not apply when CLA is used.

In this paper we describe a novel TG design methodology that addresses all the above issues,

and illustrate it with several examples including an adder, an ALU and a multiplier-adder. The

TG’s structure is based on a twisted ring counter, and is tailored to generate a regular, determinis-

tic test set of near-minimum size. Its hardware overhead is low enough to suggest that the TG can

be incorporated into a standard cell or core design, as has been done for RAMs [20], adders [21]
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and multipliers [12]. For a modest increase in hardware overhead and test set size, our method can

also minimize the performance penalty. The proposed approach covers the major types of fast

arithmetic circuits, and appears to be generalizable to other CUT types as well.

The paper is organized as follows. Section 2 reviews previous work on designing test genera-

tors. Section 3 describes the proposed approach to designing scalable test sets and test generators.

In Section 4 we apply our approach to carry-lookahead adders, and apply it to several other exam-

ples in Section 5. We present some conclusions in Section 6.

2 TEST GENERATOR DESIGN

A generic TG structure applicable to most BIST styles is shown in Figure 2 [7]. The sequence

generator SG produces an m-bit-wide sequence of patterns that can be regarded as compressed or

encoded test patterns, and the decoder DC expands or decodes these patterns into N-bit-wide tests,

where N is the number of inputs to the CUT. Generally, , and the SG can be some type of

counter that produces all m-bit patterns.

The most common TG design is a counter-like circuit that generates pseudorandom sequences,

typically a maximal-length linear feedback shift register (LFSR) [6], a cellular automaton [5], or

occasionally, a nonlinear feedback shift register [9]. These designs basically consist of a sequence

generator only, and have m = N. The resulting TGs are extremely compact, but they must often

generate excessively long test sequence to achieve acceptable fault coverage. Some CUTs, includ-

ing the datapath circuits of interest, contain hard-to-detect faults that are detected by only a few

test patterns Thard. An N-bit LSFR can generate a sequence S that eventually includes 2N – 1 pat-

terns (essentially all possibilities), however the probability that the tests in Thard will appear early

in S is low. Two general approaches are known to make S reasonably short. Test points can be

Figure 2  Basic structure of a test generation circuit.
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inserted in the CUT to improve controllability and observability; this, however, can result in a per-

formance loss. Alternatively, some determinism can be introduced into S, for example, by insert-

ing “seed” tests for the hard faults. Such methods aim to preserve the cost advantages of LFSRs

while making S much shorter. However, these objectives are difficult to satisfy simultaneously. It

can also be argued that pseudorandom approaches represent “overkill” for datapath CUTs, which,

like RAMs [20], seem much better suited to directed deterministic approaches.

Weighted random testing adds logic to a basic LFSR to bias the pseudorandom sequence it

generates so that patterns from the desired test set T appear near the start of S [6]. In a related

method proposed by Dufaza and Cambon [11], an LFSR is designed so that T appears as a square

block at the beginning of S. A test set must usually be partitioned into many square blocks, and the

feedback function of the LFSR must be modified after the generation of each block, making this

method complex and costly. The approach of Hellebrand et al. [14] [15] modifies the seeds used

by the LFSR, as well as its feedback function. In other work, Touba and McCluskey [25] describe

mapping circuits that transform pseudorandom patterns to make them cover hard faults.

Another large group of TG design methods, loosely called deterministic or nonrandom,

attempt to embed a complete test T of size P in a generated sequence S. A straightforward way to

do this is to store T in a ROM and address each stored test pattern using a counter. SG is then a

-bit address counter and the ROM serves as DC. Unfortunately, ROMs tend to be too

expensive for storing entire test sequences. Alternatively, a -state finite state machine

(FSM) that directly generates T can be synthesized. However, the relatively large values of P and

N, and the irregular structure of T, are usually more than current FSM synthesis programs can

handle.

Several methods have been proposed that, like a ROM-based TG, use a simple counter for SG

and design a low-cost combinational circuit for DC to convert the counter’s output patterns into

the members of T [3] [10]. Chen and Gupta [8] describe a test-width compression technique that

leads to a DC that is primarily a wiring network. Chakrabarty et al. [7] explore the limits of test-

pattern encoding, and develop a method for embedding T into test sequences of reasonable length.

Some TG design methods strive for balance between the straightforward generation of T using

a ROM or FSM, and the hardware efficiency of an LFSR or counter. Perhaps the most straightfor-

Plog

Plog
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ward way to do this was suggested by Agarwal and Cerny [1]. Their scheme directly combines the

ROM and the pseudorandom methods. The ROM provides a small number of test patterns for

hard-to-detect faults and the LFSR provides the rest of T.

None of the BIST methods discussed above explicitly addresses the scalability of the TG as the

CUT is scaled. Scalable TGs based on C-testability have been described for iterative (bit-sliced)

array circuits, such as ripple-carry adders [21] and array multipliers [12]. However, no technique

has been proposed to design deterministic TGs that can be systematically rescaled as the size of a

non-bit-sliced circuit, such as a CLA, is changed.

This paper introduces a class of TGs where SG is a compact (n + 1)-bit twisted ring counter

and DC is CUT-specific. The output of SG can be efficiently decoded to produce a carefully

crafted test sequence S that contains a complete test set for the CUT. As we will see, both SG and

DC have a simple, scalable structure of the bit-sliced type. S is constructed heuristically to match

a DC design of the desired type, so we can view this process as a kind of “co-design” of tests and

their test generation hardware.

3 BASIC METHOD

We first examine the scalability of the target datapath circuits and their test sets. A circuit or

module M(n) with the structure shown in Figure 3 is loosely defined as scalable if its output func-

tion Z(n) is independent of the number n of its input data buses. Each such bus is w bits wide, and

D0
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Dn–1

w

w

w

w

K
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Figure 3  General scalable circuit.
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there may also be a v-bit control bus, where w and v are constants independent of n. Bit-sliced

arrays are special cases of scalable circuits in which each w-bit input data bus corresponds to a

slice or stage. Most datapath circuits compute a function Z(A(n), B(n)), where A(n) = An–1…A1A0

and B(n) = Bn–1…B1B0, and are scalable in the preceding sense. They can be expressed in a recur-

sive form such as

Z(A(n+1), B(n+1)) = z[Z(A(n), B(n)), An, Bn]

For example, if Z is addition, we can write

Zadd(A(n+1), B(n+1)) = Zadd(A(n), B(n)) + 2n An + 2n Bn

where the 2n factor accounts for the shifted position of the new operand Dn = (An,Bn). Similarly, a

test sequence S(n) for a scalable circuit M(n) can be represented in recursive form. S(n) is

considered to be scalable if

S(A(n+1), B(n+1)) = s[S(A(n), B(n)), An, Bn]

As we will see, the test scaling functions s and S can take a few regular, shift-like forms for the

CUTs of interest.

To introduce our method, we use the very simple example of a ripple-carry incrementer shown

in Figure 4. Here the carry-in line C0 is set to 1 in normal operation, but is treated as a variable

during testing. The increment function Zinc can be expressed as

Zinc(A(n+1)) = Zinc(A(n)) + 2n An + C0 (1)

When n = 1, Equation (1) reduces to the half-adder equation

Zinc(A(1)) = A0 + C0 (2)

and (2) is realized by a single half-adder. An (n + 1)-bit incrementer Minc(n) is obtained by

appending a half-adder stage to Minc(n – 1). Figure 4 shows how Minc(3) is scaled up to implement

Minc(4).

A corresponding scaling of a test sequence Sinc(n) for n = 3 to 4 is also shown in the figure.

Sinc(n) consists of 2n + 2 test patterns of the form An–1An–2…A0C0, each corresponding to a row in

the binary matrices of Figure 4. These tests exhaustively test all half-adder slices of Minc(n) by
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applying the four patterns {00,01,10,11} to each half-adder and propagating any errors to the Z

outputs. For example, the first test pattern A3A2A1A0C0 = 00001 in Sinc(4) applies 00 to the top

three half-adders, and 01 to the bottom one. The next test 00011 applies 00 to the top two half-

adders, 01 to the third half-adder from top, and 11 to the bottom one, and so on. If a fault is

detected in, say, the bottom half-adder HA0 by some pattern, an error bit appears either on Z0, or

on HA0’s carry-out line; in the latter case, the error will propagate to output Z1, provided the fault

is confined to HA0. Thus Sinc(n) detects 100% of all cell faults in the incrementer and, by exten-

sion, all single stuck-line (SSL) faults in Minc(n), independent of the internal implementation of

the half-adder stages. The members of Sinc(n) can easily be shown to constitute a minimal com-

plete test with respect to cell or SSL faults. Note that, unlike a ripple-carry adder, a ripple-carry

incrementer such as Minc(n) is not C-testable, and can easily be shown to require at least 2n + 2

tests for 100% fault coverage. This linear testing requirement is unusual in bit-sliced circuits, but

is typical of CLA designs.

Each test in the sequences Sinc(n) shown in Figure 4 has been carefully chosen to be a shifted

version of the test above it. Moreover, the first n + 1 tests have been chosen to be bitwise comple-

ments of the second n + 1 tests. (We will see later that these special properties of S(n) can be sat-

isfied in other, more general datapath circuits.) The sequence of the 2(n + 1) test patterns of S is

exactly the state sequence of an (n + 1)-bit twisted ring (TR) counter1. This immediately suggests

that a suitable test generator TGinc(n) for Minc(n) is an (n + 1)-bit TR counter, as shown in Figure

4. Clearly TGinc(n) is also a scalable circuit. Thus we have a TG design conforming to the general

model of Figure 2, in which SG is a TR counter and DC is vacuous.

Although at first glance, a TG like TGinc(4) seems to embody a large amount of BIST overhead

given the small size of Minc(4), we can argue that, in fact, TGinc(4) is of near-minimal (if not min-

imal) cost. Assuming 10 test patterns are required, any TG in the style of Figure 2 requires an SG

of 10 states, implying  = 4 flip-flops, plus an indeterminate amount of logic to imple-

ment DC. Our design uses 5 flip-flops—one more than the minimum—plus a single inverter. The

fact that DC is vacuous in this particular case is consistent with a basic property of the TR

counter: it is almost fully decoded. In contrast, a comparable (2n + 2)-state ring counter has 2n +

2 flip-flops and is fully decoded, whereas an ordinary (binary) counter has  flip-

1. This well-known circuit is also called a switch-tail, Johnson or Moebius counter [17].

102log

2n 2+( )2log



10

flops but is fully encoded. Thus we can hope to use TR counters in TGs that require little decoding

logic.

We can now outline our general approach to designing TGs for scalable datapath circuits. We

use high-level information about the CUT to explore in a systematic, but still heuristic, fashion a

large number of its possible test sets to find one that has a regular, shift-complement (SC) structure

resembling that illustrated by Sinc(n) in Figure 4. The main steps involved are as follows:

1. Obtain a high-level, scalable model of the CUT M(n).

2. Analyze this model using high-level functional analysis to derive a complete SSL-fault

test set T(n) for M(n) for some small value of n. Use don’t cares in the test patterns

wherever feasible.

3. Convert T(n) to an SC-style test sequence S(n) as far as possible.

4. Synthesize a test generator TG(n) for S(n) in the style of Figure 5.

The test generator TG(n) adds to the TR counter of Figure 4 a decoding array DC of identical

combinational cells DC0,DC1,…,DCn–1 that modify the counter’s output as needed by a particular

CUT. The array structure of DC ensures the scalability of TG. There is also a small mode-control

FSM to allow DC to be modified for complex cases like multifunction circuits. The only inputs to

the mode-control FSM are the signals H and L, which are active in the second half of states of the

TR counter and the last state, respectively. The state behavior of the TR counter and the mode-

control FSM are shown in Figure 5; they have  and k states, respectively, where k is a fixed

number independent of n. The total number of states for TG(n) is thus , which

approximates the number of tests in the test set T(n).

Our use of functional, high-level circuit models to derive test sets (Step 1 and 2 above) is based

on the work of Hansen and Hayes [13], who show that test generation for datapath circuits can be

done efficiently at the functional level while, at the same time, providing 100% coverage of low-

level SSL faults for typical implementations. The model required for Step 1 is usually available

for these types of circuits, since their scalable nature is exploited in their specification and carries

through to high-level modeling during synthesis as illustrated by our incrementer example (Figure

4). Step 3 is perhaps the most difficult to formalize. It requires modifying and ordering the tests

from Step 2 to obtain a sequence of shifting test patterns that resemble the output of the TR

counter, but retain the full fault coverage of the original tests.

2n 2+

k 2n 2+( )
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In the remaining sections, we apply the preceding approach to derive similar, scalable test sets

and test generators for the CLA and some other datapath circuits.

4 CARRY-LOOKAHEAD ADDER

The CLA is a key component of many high-speed datapath circuits, including arithmetic-logic

units and multipliers. A high-level model of a generic n-bit CLA MCLA(n), with the 4-bit 74283

[24] serving as a model, was derived in [13] and is shown in Figure 6. It is composed of (i) a mod-

ule MPGX(n) that realizes the functions , , and , (ii) a

carry-lookahead generator (CLG) module MCLG(n) that computes all carry signals, and (iii) an
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XOR word gate that computes the sum outputs. The CLG module MCLG(n) contains the adder’s

hard-to-detect faults, and so is the focus of the test-generation process. Its testing requirements

can be satisfied by generating tests for the SSL faults on the input lines of MCLG(n) that propagate

the fault effects along the path to Cn, which is the longest and “hardest” fault-detection path. The

resulting test set TCLG(n) contains  tests and detects all faults in the CLG logic. For exam-

ple, when n = 2, TCLG(2) = {10101, 10110, 11000, 10100, 10001, 00111}, where the test patterns

are in the form P1G1P0G0C0. Hansen and Hayes [13] have proven that such a test set detects all

SSL faults in typical implementations of MCLG(n). Their method induces high-level functional

faults from the SSL faults, and generates TCLG(n) for a small set of functional faults that cover all

SSL faults. Because the carry functions are unate, it can be shown that TCLG(n) is a “universal”

test set in the sense of [2], hence it covers all SSL faults in any inverter-free AND/OR implemen-

tation of MCLG(n).

Once the tests for MCLG(n) are known, they are traced back to the primary inputs of the

MCLA(n) through the module MPGX(n); the resulting test sets for n = 2, are shown in Table 1(a).

The table gives a condensed representation of MCLG(2)’s test requirements within MCLA(2), and

specifies implicitly all possible sets of 6 tests (the minimum number) that cover all SSL faults in

Figure 6  High-level model of the n-bit CLA [13].
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Table 1  Condensed representation of complete test sets in (a) MCLG(2) and (b) MPGX(2).
(c) Specific test sequence for the CLA that follow the SC style.

A1 B1 A0 B0 C0 A1 B1 A0 B0 C0 Test # A1 B1 A0 B0 C0

{10,01} {10,01} 1 01 xx x 1 10 10 1
{10,01} 00 1 10 xx x 2 10 00 1

00 11 1 xx 01 x 3 00 11 1
{10,01} {10,01} 0 xx 10 x 4 01 01 0
{10,01} 11 0 5 01 11 0

11 00 0 6 11 00 0

(a) (b) (c)
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MCLG(2). For example, the first row in Table 1(a) defines the tests for the fault “C0 fails to propa-

gate 0 to C2”, which requires C0 = 1 and AiBi = 10 or 01 for i = 0 and 1. Hence the potential tests

for this fault are {10101, 10011, 01101, 01011}. The second row specifies the test for the faults

“A0 or B0 fails to propagate 1 to C2”, which requires A0B0 = 00, but AiBi = 10 or 01 as before to

ensure error propagation to C2. To test for all SSL faults in module MPGX(n), each pair of bits AiBi

must be exhaustively tested. The tests for MCLG(n) guarantee the application of 00 and 11 on each

AiBi of MPGX(n), as we can see from Table 1(a), for the case of . Therefore, the remaining

requirement for testing MPGX(n) is to apply 01 and 10 to each AiBi, as shown in Table 1(b). The n

XOR gates that feed the sum output Z are automatically covered by the tests for MCLG(n) and

MPGX(n), and also provide non-blocking error propagation paths for these modules.

Once we know the possible test sets for MCLA(n), our next goal is to obtain a specific test

sequence that follows the SC style. Such a test sequence of size 6 is extracted in Table 1(c). This

sequence is minimal and complete for SSL faults in the CLA [13], as can be verified by simula-

tion. Tests 1, 2, and 3 are selected to make the 00 pattern applied to AiBi shift from right to left, as

the shading in the table shows. Tests 4, 5, and 6 are selected to be the complements of tests 1, 2,

and 3 respectively. Hence these tests shift the pattern 11 on AiBi from right to left. The specific test

sequence SCLA(2) in Table 1(c) can be easily extended to a complete test sequence SCLA(n) of size

 for any . For example, Table 2 shows how SCLA(2) is scaled up to SCLA(4) to obtain a

complete SC-style test sequence for the 74283 CLA.

n 2=

2n 2+ n 2>

Table 2  Complete and minimal SC-style test sequence for the 74283 CLA and the
corresponding responses.

Test #
Input pattern Response

A3 B3 A2 B2 A1 B1 A0 B0 C0 C4 Z3 Z2 Z1 Z0

1 1    0 1    0 1    0 1    0 1 1 0   0   0   0
2 1    0 1    0 1    0 0    0 1 0 1   1   1   1
3 1    0 1    0 0     0 1    1 1 0 1   1   1   1
4 1    0 0     0 1    1 1    1 1 0 1   1   1   1
5 0     0 1    1 1    1 1    1 1 0 1   1   1   1
6 0    1 0    1 0    1 0    1 0 0 1   1   1   1
7 0    1 0    1 0    1 1    1 0 1 0   0   0   0
8 0    1 0    1 1    1 0    0 0 1 0   0   0   0
9 0    1 1    1 0    0 0    0 0 1 0   0   0   0
10 1    1 0    0 0    0 0    0 0 1 0   0   0   0
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A test generator TGCLA(n) for MCLA(n) can now be synthesized from SCLA(n) following the

general structure in Figure 5. As in the incrementer example, the sequence generator is an (n + 1)-

bit TR counter. Note, however, that the number of input lines has almost doubled from N = n + 1

to N = 2n + 1. The size of SCLA(n) is , which is the number of states of the TR counter, so

no mode-control FSM is needed. Table 3 lists the CLA test sequence side by side with the TR

counter’s output sequence for the 4-bit case; the truth table of a decoder cell DCi can be extracted

directly, as shown in Figure 7. The combinations (HQi+1Qi) = {010, 101} never appear at the

inputs of the decoder cells, hence the outputs of DCi are considered don’t care for these combina-

tions. Furthermore, the patterns (HQi+1Qi) = {011, 100} never appear at the inputs of the high-

order decoder cell DCn–1, however, we choose not to take advantage of this, since our goal is to

keep the decoder logic DC simple and regular. The carry-in signal C0 can be seen from Table 3 to

be . The resulting design for TGCLA(n) shown in Figure 7 requires  flip-flops and n

small logic cells that form DC. The hardware overhead of TG, as measured by transistor count in

a standard CMOS implementation, amounts to 35.8% for a 32-bit CLA. This overhead decreases

as the size of the CLA increases, a characteristic of all our TGs.

Our TGs, like the underlying TR counters, produce two sets of complementary test patterns.

Such tests naturally tend to detect many faults because they toggle all primary inputs and outputs,

as well as many internal signals. An n-bit adder also has the interesting property that A plus B plus

Cin = CoutS implies A plus B plus Cin = CoutS, where plus denotes addition modulo 2n. Hence the

adder’s outputs are complemented whenever a test is complemented, implying that there are only

2n 2+

Table 3  Mapping of the CLA test sequence to the TR counter’s output sequence.

Test #
TR counter outputs TG outputs (CLA test sequence)

H Q4Q3 Q3Q2 Q2Q1 Q1Q0 A3 B3 A2 B2 A1 B1 A0 B0 C0

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
2 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1
3 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1
4 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
5 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0
7 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0
8 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0
9 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
10 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

C0 H= n 1+
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two distinct responses, 100...0 and 011...1, to all the tests in TGCLA(n), as can be seen from Table

2. Consequently, a simple, low-cost and scalable RM can be easily designed for the CLA adder as

depicted in Figure 7. This example shows that some of the benefits of scalable, regular tests carry

over to RM design.

TGCLA(n)

Figure 7  Scalable hardware test generator and response monitor for an n-bit CLA.
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5 OTHER EXAMPLES

In this section, we extend the approach developed in the preceding sections to the design of a

TR-counter-based TG for an arithmetic logic unit and two circuits involving multiplication.

Arithmetic Logic Unit. We first consider an n-bit ALU MALU(n) that employs the standard design

represented by the 4-bit 74181 [24]. This ALU is basically a CLA with additional circuits that

implement all 16 possible logic functions of the form . A high-level model for the 74181

is shown in Figure 8 [13], and consists of a CLG module M2, a function select module M1, and

several word gates. Following the approach of the previous section, the tests needed for the CLG

module M2 are traced back to the ALU’s primary inputs. During this process, the signal values

applied to the function-select control bus S are chosen to satisfy the testing needs for M1 as well.

An obvious choice is to make S select the add (S3S2S1S0 = 1001) and subtract (S3S2S1S0 = 0110)

modes of the ALU. However, we found by trial and error that the assignments S3S2S1S0 = 1010 and

0101 lead to a TG design with less overhead. The testing needs for the word gates in the high-level

model of the ALU must be also considered. The final test sequence SALU(n) has an SC structure

that closely resembles that of the CLA. Table 4 shows SALU(4); note how the tests exhibit the same

shifting property as before for the patterns  and . Moreover, tests 1:20 are

the complements of tests 21:40. The test sequence SALU(4) is not minimal, however, since 12 tests

are sufficient to detect all SSL faults in the 74181 [13]. SALU(4) can be easily extended to SALU(n)

with a near-minimal size of .

A test generator TGALU(n) for MALU(n) is shown in Figure 9, which again follows the general

test generator model of Figure 5. Since the test sequence size is  and the general test gener-
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Figure 8  High-level model for the 74181 ALU [13].
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ator has  states, the mode-select FSM of TGALU(n) has  states. The state table of

the mode-select FSM and the truth table of the decoder cell are shown in Figure 9. The decoder

cell DCi turns to be extremely simple in this case—a single inverter. The overall test generator

TGALU(n) requires  flip-flops, n inverters, and a small amount of combinational logic whose

size is independent of n. The hardware overhead decreases as the number of inputs n of the ALU

Table 4  Complete and near-minimal SC-style test sequence for the
74181 ALU.

Test # A3 B3 A2 B2 A1 B1 A0 B0 C0 M S3 S2 S1 S0

1 0    1 0    1 0    1 0    1 1 0 1   0   1   0
2 0    1 0    1 0    1 0    0 1 0 1   0   1   0
3 0    1 0    1 0    0 1    0 1 0 1   0   1   0
4 0    1 0    0 1    0 1    0 1 0 1   0   1   0
5 0    0 1    0 1    0 1    0 1 0 1   0   1   0
6 1    0 1    0 1    0 1    0 0 0 1   0   1   0
7 1    0 1    0 1    0 1    1 0 0 1   0   1   0
8 1    0 1    0 1    1 0    1 0 0 1   0   1   0
9 1    0 1    1 0    1 0    1 0 0 1   0   1   0
10 1    1 0    1 0    1 0    1 0 0 1   0   1   0
11 0    1 0    1 0    1 0    1 1 1 1   0   1   0
12 0    1 0    1 0    1 0    0 1 1 1   0   1   0
13 0    1 0    1 0    0 1    0 1 1 1   0   1   0
14 0    1 0    0 1    0 1    0 1 1 1   0   1   0
15 0    0 1    0 1    0 1    0 1 1 1   0   1   0
16 1    0 1    0 1    0 1    0 0 1 1   0   1   0
17 1    0 1    0 1    0 1    1 0 1 1   0   1   0
18 1    0 1    0 1    1 0    1 0 1 1   0   1   0
19 1    0 1    1 0    1 0    1 0 1 1   0   1   0
20 1    1 0    1 0    1 0    1 0 1 1   0   1   0
21 0    1 0    1 0    1 0    1 1 0 0   1   0   1
22 0    1 0    1 0    1 0    0 1 0 0   1   0   1
23 0    1 0    1 0    0 1    0 1 0 0   1   0   1
24 0    1 0    0 1    0 1    0 1 0 0   1   0   1
25 0    0 1    0 1    0 1    0 1 0 0   1   0   1
26 1    0 1    0 1    0 1    0 0 0 0   1   0   1
27 1    0 1    0 1    0 1    1 0 0 0   1   0   1
28 1    0 1    0 1    1 0    1 0 0 0   1   0   1
29 1    0 1    1 0    1 0    1 0 0 0   1   0   1
30 1    1 0    1 0    1 0    1 0 0 0   1   0   1
31 0    1 0    1 0    1 0    1 1 1 0   1   0   1
32 0    1 0    1 0    1 0    0 1 1 0   1   0   1
33 0    1 0    1 0    0 1    0 1 1 0   1   0   1
34 0    1 0    0 1    0 1    0 1 1 0   1   0   1
35 0    0 1    0 1    0 1    0 1 1 0   1   0   1
36 1    0 1    0 1    0 1    0 0 1 0   1   0   1
37 1    0 1    0 1    0 1    1 0 1 0   1   0   1
38 1    0 1    0 1    1 0    1 0 1 0   1   0   1
39 1    0 1    1 0    1 0    1 0 1 0   1   0   1
40 1    1 0    1 0    1 0    1 0 1 0   1   0   1

k 2n 2+( ) k 4=

n 3+
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increases, and it amounts to 11.4% for a 32-bit ALU.

Multiply-Add Unit. Our next example introduces another important arithmetic operation,

multiplication. The high-level model and some implementation details of the target -bit

multiply-add unit (MAU) MMAU(n) are shown in Figure 10. The MAU composed of a cascaded

sequence of carry-save adders followed by a CLA in the last stage. This design is faster than a

normal multiply-add unit where the last stage is a ripple-carry adder [4] [16].

Following our general methodology, we first analyze a small version of MAU, in this case, the

4-bit case. Again the tests for the CLA (Table 2) are traced back to the primary inputs through the

cell array. The primary input signals are selected to preserve the shifting structure of the CLA

tests. The resulting MAU tests do not test the cell array completely—two SSL faults per cell

CUT

n-bit

A0
B0

C0

Figure 9  Test generator for an n-bit 74181-style ALU.
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remain undetected. These undetected faults require two extra tests, leading to a complete test set

of size 12. Once the possible test sets are determined, a sequence that has the desired SC structure

is constructed. Table 5 shows a possible test sequence SMAU(4) of size 20 for MMAU(4). This test

sequence can be easily extended to MMAU(n) with a resultant test set of size .

A test generator TGMAU(n) for MMAU(n) in the target style is shown in Figure 11. Since the test

sequence size is  and the general test generator TG(n) has  states, the mode-

select FSM has  states (one flip-flop). The state table of the mode-select FSM and the truth

table for DCi are shown in Figure 11. The hardware overhead of TGMAU(n) is estimated to be only

0.8% for a -bit multiply-add unit.

Booth multiplier. Our technique can be applied with some minor modifications, to a fast Booth

multiplier that is composed of a cascaded sequence of carry-save adders followed by a final stage

consisting of a 2n-bit CLA [4]. Our design is faster than the usual Booth multiplier where the last

stage is a ripple-carry adder; test generation has been studied before only for the slower, ripple-

carry design [12]. We have been able to derive a complete scalable test sequence of size

Figure 10  High-level model for the multiply-add unit.
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for the CLA-based Booth multiplier. The corresponding test generator TG(n) contains a TR

counter with  flip-flops and a 10-state mode-control FSM with 5 flip-flops. The hardware

overhead is estimated to be 5.3% for a -bit multiplier.

6 DISCUSSION

We have presented a new approach to the design of scalable hardware test generators for BIST,

and illustrated it for several practical datapath circuits. The resulting test generators produce com-

plete and extremely small test sets; they are of minimal or near-minimal size for all examples cov-

ered. Small test sets of this kind are essential for the on-line use of BIST, especially in

applications requiring fast arithmetic techniques like carry-lookahead, for which previously pro-

posed BIST schemes are not well suited. The TGs proposed here also have low hardware over-

head, and are easily expandable to test much larger versions of the same target CUT.

Table 6 summarizes the results obtained for the scalable TGs we have designed so far. The first

part of the table contains the results for the circuits discussed in Sections 4 and 5. The average

hardware overhead for the ALU, MAU, and Booth multiplier with n = 32 is around 6%. The table

Table 5  Complete and near-minimal SC-style test sequence for the multiply-add unit.

Test # A3B3C3S7S3 A2B2C2S6S2 A1B1C1S5S1 A0B0C0S4S0 Cin

1 11100 11100 11100 11100 1
2 11100 11100 11100 11000 1
3 11100 11100 11000 11101 1
4 11100 11000 11101 11101 1
5 11000 11101 11101 11101 1
6 00011 00011 00011 00011 0
7 00011 00011 00011 00111 0
8 00011 00011 00111 00010 0
9 00011 00111 00010 00010 0
10 00111 00010 00010 00010 0
11 10100 10100 10100 10100 1
12 10100 10100 10100 10000 1
13 10100 10100 10000 10101 1
14 10100 10000 10101 10101 1
15 10000 10101 10101 10101 1
16 01011 01011 01011 01011 0
17 01011 01011 01011 01111 0
18 01011 01011 01111 01010 0
19 01011 01111 01010 01010 0
20 01111 01010 01010 01010 0

n 1+

32 32
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also indicates how the overhead decreases as n increases from 4 to 32. The overhead for the MAU

shrinks by 90%, and the average decrease for all the circuits is 61%.

When applying BIST in a system, designers usually try to take advantage of existing flip-flops

and logic already present in or around the CUT. For a typical datapath in, say, a digital signal pro-

cessing circuit, all the data inputs to ALUs or multipliers come from a small register file. These

registers can be designed to be reconfigured into TR counters like that in Figure 5, thus eliminat-

ing the need for special flip-flops in SG. Similar schemes have been proposed in prior techniques

such as BILBO [6]. Moreover, it may be possible to share the resulting SGs among several CUTs.

Multiplexing logic will then be needed to select the DCs for individual CUTs during test mode but
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circumvent them during normal operation. For a small additional increase in circuit complexity,

time-multiplexing can be used to select the DCs in test mode, while avoiding the performance

penalty associated with multiplexers.

In some cases, it may be feasible to share the entire TG. To illustrate this possibility, consider

an n-bit ALU, an -bit MAU, and a register file connected to a common bus. A single, recon-

figurable TG attached to the bus can test both arithmetic units. The results of this approach are

summarized in Table 6 for various values of n, and suggest that replacing separate TGs for the

ALU and MAU by a single combined TG reduces overhead by about a third.

Our TG designs shed some light on the following interesting, but difficult question: How much

overhead is necessary for built-in test generation? As we noted in the incrementer case, the size of

the TGinc(4) must be close to minimal for any TG that is required to produce a complete test

sequence of near-minimal length. The same argument applies to TGCLA(4), since it has 5 flip-

flops in SG and a small amount of combinational logic in DC; any test generator G(4) producing

the same number of tests (12) must contain at least 4 flip-flops in its SG. In general, the overhead

of a TR-counter-based design TG(n) scales up linearly and slowly with n. The number of flip-

flops in some other test generator G(n) may increase logarithmically with n, but the combinational

part of G(n) is likely to scale up at a faster rate than that of TG(n). This suggest that even if the

overhead of TG(n) is considered high, it may not be possible to do better using other BIST tech-

niques under similar overall assumptions. If the constraints on test sequence length are relaxed,

simpler TGs for datapath circuits may be possible, but such designs have yet to be demonstrated.

Table 6  Summary of the scalable test generator examples.

Circuit(s)
SSL
fault

coverage

Regular
test set

size

Hardware overhead %

n = 4 n = 8 n = 16 n = 32

Carry-lookahead adder (CLA) 100% 45.5 40.1 36.9 35.8

Arithmetic-logic unit (ALU) 100% 23.2 16.1 12.9 11.4

Multiply-add unit (MAU) 100% 7.8 3.5 1.6 0.8

Booth multiplier 100% 32.9 18.0 9.9 5.3

A combination of ALU,
MAU, and registers

Separate TGs
100%

9.8 5.7 3.3 1.8

Combined TG 6.2 3.6 2.1 1.1

2n 2+

8n 8+

4n 4+

4n 14+

8n 8+

n n
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