
OCTOBER–DECEMBER 1998 0740-7475/98/$10.00 © 1998 IEEE 17

EMBEDDED SYSTEMS are computers in-

corporated in consumer products or other

devices to perform application-specific func-

tions. The product user is usually not even

aware of the existence of these systems.

From toys to medical devices, from ovens to

automobiles, the range of products incor-

porating microprocessor-based, software-

controlled systems has expanded rapidly

since the introduction of the microproces-

sor in 1971. The lure of embedded systems is

clear: They promise previously impossible

functions that enhance the performance of

people or machines. As these systems gain

sophistication, manufacturers are using

them in increasingly critical applications—

products that can result in injury, econom-

ic loss, or unacceptable inconvenience

when they do not perform as required.

Embedded systems can contain a variety

of computing devices, such as microcon-

trollers, application-specific integrated cir-

cuits, and digital signal processors. A key

requirement is that these computing devices

continuously respond to external events in

real time. Makers of embedded systems take

many measures to ensure safety and relia-

bility throughout the lifetime of products in-

corporating the systems. Here, we consider

techniques for identifying faults during nor-

mal operation of the product—that is, on-

line-testing techniques. We evaluate them

on the basis of error coverage, error latency,

space redundancy, and time redundancy.

Embedded-system test issues
Cost constraints in consumer products typ-

ically translate into stringent constraints on

product components. Thus, embedded sys-

tems are particularly cost sensitive. In many

applications, low production and mainte-

nance costs are as important as performance.

Moreover, as people become dependent

on computer-based systems, their expecta-

tions of these systems’ availability increase

dramatically. Nevertheless, most people still

expect significant downtime with computer

systems—perhaps a few hours per month.

People are much less patient with computer

downtime in other consumer products,

since the items in question did not demon-

strate this type of failure before embedded

systems were added. Thus, complex con-

sumer products with high availability re-

quirements must be quickly and easily

repaired. For this reason, automobile man-

ufacturers, among others, are increasingly

providing online detection and diagnosis,

capabilities previously found only in very

complex and expensive applications such

as aerospace systems. Using embedded sys-

tems to incorporate functions previously

considered exotic in low-cost, everyday

products is a growing trend.

Since embedded systems are frequently

components of mobile products, they are ex-

posed to vibration and other environmental

stresses that can cause them to fail. Embed-

ded systems in automotive applications are

exposed to extremely harsh environments,

even beyond those experienced by most

portable devices.

Table 1 (next page) summarizes the at-

tributes of microprocessor applications that

affect ordinary consumers. These applica-

tions are proliferating rapidly, and their more

Online BIST for
Embedded Systems

Embedded systems must
meet increasingly high
expectations of safety

and high reliability. The
authors survey online-
testing techniques for

identifying faults that can
lead to system failure.
They focus on online

built-in self-test and its
role in a comprehensive

testing approach.

HUSSAIN AL-ASAAD
University of California, Davis

BRIAN T. MURRAY
General Motors
JOHN P. HAYES

University of Michigan,
Ann Arbor

.

EMBEDDED SYSTEMS

18 IEEE DESIGN & TEST OF COMPUTERS

stringent safety and reliability requirements pose a significant

challenge for designers. Critical applications and applications

with high availability requirements are the main candidates

for online testing.

Embedded systems consist of hardware and software, each

usually considered separately in the design process, despite

progress in the field of hardware-software codesign. A strong

synergy exists between hardware and software failure mech-

anisms and diagnosis, as in other aspects of system perfor-

mance. System failures often involve defects in both hardware

and software. Software does not “break” in the common sense

of the term. However, it can perform inappropriately due to

faults in the underlying hardware or specification or design

flaws in either hardware or software. At the same time, one

can exploit the software to test for and respond to the pres-

ence of faults in the underlying hardware.

Online software testing aims at detecting design faults (bugs)

that avoid detection before the embedded system is incorpo-

rated and used in a product. Even with extensive testing and

formal verification of the system, some bugs escape detection.

Residual bugs in well-tested software typically behave as in-

termittent faults, becoming apparent only in rare system states.

Online software testing relies on two basic methods: accep-

tance testing and diversity.1 Acceptance testing checks for the

presence or absence of well-defined events or conditions, usu-

ally expressed as true-or-false conditions (predicates), related

to the correctness or safety of preceding computations.

Diversity techniques compare replicated computations, either

with minor variations in data (data diversity) or with proce-

dures written by separate, un-

related design teams (design

diversity).

This article focuses on dig-

ital hardware testing, in-

cluding techniques by

which hardware tests itself,

built-in self-test (BIST).

Nevertheless, we must con-

sider the role of software in

detecting, diagnosing, and

handling hardware faults. If

we can use software to test

hardware, why should we

add hardware to test hard-

ware? There are two possi-

ble answers. First, it may be

cheaper or more practical to

use hardware for some tasks

and software for others. In

an embedded system, pro-

grams are stored online in

hardware-implemented

memories such as ROMs (for this reason, embedded soft-

ware is sometimes called firmware). This program storage

space is a finite resource whose cost is measured in exact-

ly the same way as other hardware. A function such as a test

is “soft” only in the sense that it can easily be modified or

omitted in the final implementation.

The second answer involves the time that elapses between

a fault’s occurrence and a problem arising from that fault. For

instance, a fault may induce an erroneous system state that

can ultimately lead to an accident. If the elapsed time between

the fault’s occurrence and the corresponding accident is short,

the fault must be detected immediately. Acceptance tests can

detect many faults and errors in both software and hardware.

However, their exact fault coverage is hard to measure, and

even when coverage is complete, acceptance tests may take

a long time to detect some faults. BIST typically targets rela-

tively few hardware faults, but it detects them quickly.

These two issues, cost and latency, are the main para-

meters in deciding whether to use hardware or software for

testing and which hardware or software technique to use.

This decision requires system-level analysis. We do not con-

sider software methods here. Rather, we emphasize the ap-

propriate use of widely implemented BIST methods for

online hardware testing. These methods are components in

the hardware-software trade-off.

Online testing
Faults are physical or logical defects in the design or im-

plementation of a digital device. Under certain conditions,

Table 1. Microprocessor applications affecting ordinary consumers (excludes industrial
applications such as process controllers).

Cost Harsh Highly
Application Embedded? sensitive? Portable? environment? available? Critical?

Desktop PC
Laptop PC ✓

TV set-top box ✓ ✓ ✓

Home security ✓ ✓

Mobile phone ✓ ✓ ✓ ✓

Home
appliance ✓ ✓ ✓

Automotive:
engine/chassis/
safety ✓ ✓ ✓ ✓ ✓ ✓

Automotive:
comfort/
convenience ✓ ✓ ✓ ✓ ✓

Medical implant ✓ ✓ ✓ ✓ ✓

Smart card ✓ ✓ ✓

.

OCTOBER–DECEMBER 1998 19

they lead to errors—that is, incorrect system states. Errors

induce failures, deviations from appropriate system behav-

ior. If the failure can lead to an accident, it is a hazard. Faults

can be classified into three groups: design, fabrication, and

operational. Design faults are made by human designers or

CAD software (simulators, translators, or layout generators)

during the design process. Fabrication defects result from

an imperfect manufacturing process. For example, shorts

and opens are common manufacturing defects in VLSI cir-

cuits. Operational faults result from wear or environmental

disturbances during normal system operation. Such distur-

bances include electromagnetic interference, operator mis-

takes, and extremes of temperature and vibration. Some

design defects and manufacturing faults escape detection

and combine with wear and environmental disturbances to

cause problems in the field.

Operational faults are usually classified by their duration:

■ Permanent faults remain in existence indefinitely if no

corrective action is taken. Many are residual design or

manufacturing faults. The rest usually occur during

changes in system operation such as system start-up or

shutdown or as a result of a catastrophic environmen-

tal disturbance such as a collision.

■ Intermittent faults appear, disappear, and reappear re-

peatedly. They are difficult to predict, but their effects

are highly correlated. When intermittent faults are pre-

sent, the system works well most of the time but fails un-

der atypical environmental conditions.

■ Transient faults appear and disappear quickly and are

not correlated with each other. They are most com-

monly induced by random environmental disturbances.

One generally uses online testing to detect operational

faults in computers that support critical or high-availability

applications. The goal of online testing is to detect fault ef-

fects, or errors, and take appropriate corrective action. For ex-

ample, in some critical applications, the system shuts down

after an error is detected. In other applications, error detec-

tion triggers a reconfiguration mechanism that allows the sys-

tem to continue operating, perhaps with some performance

degradation. Online testing can take the form of external or

internal monitoring, using either hardware or software.

Internal monitoring, also called self-testing, takes place on

the same substrate as the circuit under test (CUT). Today,

this usually means inside a single IC—a system on a chip.

There are four primary parameters to consider in design-

ing an online-testing scheme:

■ error coverage—the fraction of modeled errors detect-

ed, usually expressed as a percentage. Critical and high-

ly available systems require very good error coverage

to minimize the probability of system failure.

■ error latency—the difference between the first time an

error becomes active and the first time it is detected.

Error latency depends on the time taken to perform a

test and how often tests are executed. A related para-

meter is fault latency, the difference between the onset

of the fault and its detection. Clearly, fault latency is

greater than or equal to error latency, so when error la-

tency is difficult to determine, test designers often con-

sider fault latency instead.

■ space redundancy—the extra hardware or firmware

needed for online testing.

■ time redundancy—the extra time needed for online

testing.

The ideal online-testing scheme would have 100% error

coverage, error latency of 1 clock cycle, no space redun-

dancy, and no time redundancy. It would require no redesign

of the CUT and impose no functional or structural restrictions

on it. Most BIST methods meet some of these constraints with-

out addressing others. Considering all four parameters in the

design of an online-testing scheme may create conflicting

goals. High coverage requires high error latency, space re-

dundancy, and/or time redundancy. Schemes with imme-

diate detection (error latency equaling 1) minimize time

redundancy but require more hardware. On the other hand,

schemes with delayed detection (error latency greater than

1) reduce time and space redundancy at the expense of in-

creased error latency. Several proposed delayed-detection

techniques assume equiprobable input combinations and

try to establish a probabilistic bound on error latency.2 As a

result, certain faults remain undetected for a long time be-

cause tests for them rarely appear at the CUT’s inputs.

To cover all the operational fault types described earlier,

test engineers use two different modes of online testing: con-

current and nonconcurrent. Concurrent testing takes place

during normal system operation, and nonconcurrent test-

ing takes place while normal operation is temporarily sus-

pended. One must often overlap these test modes to provide

a comprehensive online-testing strategy at acceptable cost.

Figure 1 (next page) depicts a taxonomy of online-testing

techniques for embedded systems.

Nonconcurrent testing. This form of testing is either

event-triggered (sporadic) or time-triggered (periodic) and

is characterized by low space and time redundancy. Event-

triggered testing is initiated by key events or state changes

such as start-up or shutdown, and its goal is to detect per-

manent faults. Detecting and repairing permanent faults as

soon as possible is usually advisable. Event-triggered tests

resemble manufacturing tests. Any such test can be applied

online, as long as the required testing resources are avail-

.

EMBEDDED SYSTEMS

20 IEEE DESIGN & TEST OF COMPUTERS

able. Typically, the hardware is partitioned into compo-

nents, each exercised by specific tests. RAMs, for instance,

are tested with manufacturing tests such as March tests.3

Time-triggered testing occurs at predetermined times in

the operation of the system. It detects permanent faults, of-

ten using the same types of tests applied by event-triggered

testing. The periodic approach is especially useful in sys-

tems that run for extended periods during which no signifi-

cant events occur to trigger testing. Periodic testing is also

essential for detecting intermittent faults. Such faults typi-

cally behave as permanent faults for short periods. Since

they usually represent conditions that must be corrected,

diagnostic resolution is important. Periodic testing can iden-

tify latent design or manufacturing flaws that appear only

under certain environmental conditions. Time-triggered tests

are frequently partitioned and interleaved so that only part

of the test is applied during each test period.

Concurrent testing. Nonconcurrent testing cannot de-

tect transient or intermittent faults whose effects disappear

quickly. Concurrent testing, on the other hand, continuously

checks for errors due to such faults. However, concurrent

testing is not particularly useful for diagnosing the source of

errors, so test designers often combine it with diagnostic soft-

ware. They may also combine concurrent and nonconcur-

rent testing to detect or diagnose complex faults of all types.

A common method of providing hardware support for con-

current testing, especially for detecting control errors, is a

watchdog timer.4 This is a counter that the system resets re-

peatedly to indicate that the system is functioning properly.

The watchdog concept assumes that the system is fault-free—

or at least alive—if it can reset the timer at appropriate inter-

vals. The ability to perform this simple task implies that control

flow is correctly traversing timer reset points. One can moni-

tor system sequencing very precisely by guarding the watch-

dog-reset operations with

software-based acceptance

tests that check signatures

computed while control flow

traverses various check-

points. To implement this last

approach in hardware, one

can construct more complex

hardware watchdogs.

A key element of concur-

rent testing for data errors is

redundancy. For example,

the duplication-with-compar-

ison (DWC) technique5 de-

tects any single error at the

expense of 100% space re-

dundancy. This technique re-

quires two copies of the CUT, which operate in tandem with

identical inputs. Any discrepancy in their outputs indicates an

error. In many applications, DWC’s high hardware overhead

is unacceptable. Moreover, it is difficult to prevent minor tim-

ing variations between duplicated modules from invalidating

comparisons.

A possible lower-cost alternative is time redundancy. A

technique called double execution, or retry, executes criti-

cal operations more than once at diverse time points and com-

pares their results. Transient faults are likely to affect only one

instance of the operation and thus can be detected. Another

technique, recomputing with shifted operands (RESO),5

achieves almost the same error coverage as DWC with 100%

time redundancy but very little space redundancy. However,

no one has demonstrated the practicality of double execu-

tion and RESO for online testing of general logic circuits.

A third, widely used form of redundancy is information

redundancy—the addition of redundant coded information

such as a parity-check bit.5 Such codes are particularly ef-

fective for detecting memory and data transmission errors,

since memories and networks are susceptible to transient

errors. Coding methods can also detect errors in data com-

puted during critical operations.

Built-in self-test
For critical or highly available systems, a comprehensive

online-testing approach that covers all expected permanent,

intermittent, and transient faults is essential. In recent years,

BIST has emerged as an important method of testing manu-

facturing faults, and researchers increasingly promote it for

online testing as well.

BIST is a design-for-testability technique that places test func-

tions physically on chip with the CUT, as illustrated in Figure

2. In normal operating mode, the CUT receives its inputs from

other modules and performs the function for which it was de-

Online testing

Nonconcurrent

CPU Analog Memory I/O Other logic

Concurrent

RAM ROMRegisters
Data transfer
ALU
Instruction sequences

BIST IDDQ

DataControl

Space
redundancy

Information
redundancy

Time
 redundancy

Watchdogs

Figure 1. Taxonomy of online-testing methods for embedded systems.

.

OCTOBER–DECEMBER 1998 21

signed. In test mode, a test pattern generator circuit applies a

sequence of test patterns to the CUT, and a response monitor

evaluates the test responses. In the most common type of BIST,

the response monitor compacts the test responses to form fault

signatures. It compares the fault signatures with reference sig-

natures generated or stored on chip, and an error signal indi-

cates any discrepancies detected. We assume this type of BIST

in the following discussion.

In developing a BIST methodology for embedded systems,

we must consider four primary parameters related to those

listed earlier for online-testing techniques:

■ fault coverage—the fraction of faults of interest that the

test patterns produced by the test generator can expose

and the response monitor can detect. Most monitors

produce a fault-free signature for some faulty response

sequences, an undesirable property called aliasing.

■ test set size—the number of test patterns produced by

the test generator. Test set size is closely linked to fault

coverage; generally, large test sets imply high fault cov-

erage. However, for online testing, test set size must be

small to reduce fault and error latency.

■ hardware overhead—the extra hardware needed for

BIST. In most embedded systems, high hardware over-

head is not acceptable.

■ performance penalty—the impact of BIST hardware on

normal circuit performance, such as worst-case (criti-

cal) path delays. Overhead of this type is sometimes

more important than hardware overhead.

System designers can use BIST for nonconcurrent, online

testing of a system’s logic and memory.6 They can readily

configure the BIST hardware for event-triggered testing, ty-

ing the BIST control to the system reset so that testing occurs

during system start-up or shutdown. BIST can also be de-

signed for periodic testing with low fault latency. This re-

quires incorporating a test process that guarantees the

detection of all target faults within a fixed time.

Designers usually implement online BIST with the goals of

complete fault coverage and

low fault latency. Hence,

they generally design the test

generator and the response

monitor to guarantee cover-

age of specific fault models,

minimum hardware over-

head, and reasonable test

set size. Different parts of the

system meet these goals by

different techniques.

Test generator and re-

sponse monitor implementa-

tions often consist of simple, counterlike circuits, especially lin-

ear-feedback shift registers.5 An LFSR is formed from standard

flip-flops, with outputs of selected flip-flops being fed back

(modulo 2) to its inputs. When used as a test generator, an LFSR

is set to cycle rapidly through a large number of its states. These

states, whose choice and order depend on the LFSR’s design pa-

rameters, define the test patterns. In this mode of operation, an

LFSR is a source of pseudorandom tests that are, in principle,

applicable to any fault and circuit types. An LFSR can also serve

as a response monitor by counting (in a special sense) the re-

sponses produced by the tests. After receiving a sequence of

test responses, an LFSR response monitor forms a fault signa-

ture, which it compares to a known or generated good signa-

ture to determine whether a fault is present.

Ensuring that fault coverage is sufficiently high and the

number of tests is sufficiently low are the main problems with

random BIST methods. Researchers have proposed two gen-

eral approaches to preserve the cost advantages of LFSRs

while greatly shortening the generated test sequence. One ap-

proach is to insert test points in the CUT to improve control-

lability and observability. However, this approach can result

in performance loss. Alternatively, one can introduce some

determinism into the generated test sequence—for example,

by inserting specific “seed tests” known to detect hard faults.

Some CUTs, including data path circuits, contain hard-to-

detect faults that are detectable by only a few test patterns,

denoted Thard. An N-bit LSFR can generate a sequence that

eventually includes 2N − 1 patterns (essentially all possibili-

ties). However, the probability that the tests in Thard will ap-

pear early in the sequence is low. In such cases, one can use

deterministic testing, which tailors the generated test se-

quence to the CUT’s functional properties, instead of ran-

dom testing. Deterministic testing is especially suited to

RAMs, ROMs, and other highly regular components. A de-

terministic technique called transparent BIST 3 applies BIST

to RAMs while preserving the RAM contents—a particular-

ly desirable feature for online testing. Keeping hardware

overhead acceptably low is the main difficulty with deter-

ministic BIST.

Error

Inputs
Outputs

Control

Test
generator

Response
monitor

Mutiplexer
Test

pattern
sequence

Circuit under test
(CUT)

Figure 2. Generic BIST scheme.

.

EMBEDDED SYSTEMS

22 IEEE DESIGN & TEST OF COMPUTERS

A straightforward way to generate a specific test set is to

store it in a ROM and address each stored test pattern with

a counter. Unfortunately, ROMs tend to be much too ex-

pensive for storing entire test sequences. An alternative

method is to synthesize a finite-state machine that directly

generates the test set. However, the relatively large test set

size and test vector width, as well as the test set’s irregular

structure, are much more than current FSM synthesis pro-

grams can handle.

Another group of test generator design methods, loosely

called deterministic, attempt to embed a complete test set

in a specific generated sequence. Again the generated tests

must meet the coverage, overhead, and test size constraints

we’ve discussed. An earlier article7 presents a representa-

tive BIST design method for data path circuits that meets

these requirements. The test generator’s structure, based on

a twisted-ring counter, is tailored to produce a regular, de-

terministic test sequence of reasonable size. One can sys-

tematically rescale the test generator as the size of a

non-bit-sliced data path CUT, such as a carry-look-ahead

adder, changes.

Instead of using an LFSR, a straightforward way to com-

press test response data and produce a fault signature is to

use an FSM or an accumulator. However, FSM hardware

overhead and accumulator aliasing are difficult parameters

to control. Keeping hardware overhead acceptably low and

reducing aliasing are the main difficulties in response mon-

itor design.

An example
As noted earlier, the control of passenger transportation

systems—from automobiles to airplanes—is a major appli-

cation for embedded real-time controllers. A high-end, late-

model car may contain more than a hundred embedded

microcontrollers, supervising both critical and high-

availability functions including air bag deployment, antilock

braking, engine throttle control, and collision avoidance.

These applications require online testing with low error la-

tency and very high fault coverage to ensure rapid detec-

tion of faults and fail-safe operation.

Automobile manufacturers use many of the previously

mentioned online-testing techniques as well as a large vari-

ety of software checks to detect and handle faults and er-

rors in such applications. For example, embedded

controllers in several antilock braking systems use the clas-

sic DWC approach, in which two copies of the host micro-

controller operate in a master-slave configuration with

comparison at various checkpoints. A disagreement be-

tween processors invokes a software-controlled diagnostic

or shutdown procedure. Although the DWC technique has

low error detection latency with essentially no performance

overhead, it requires more than 100% hardware overhead—

a high cost penalty for most automotive applications.

In an effort to reduce this cost, a European consortium in-

volving the Robert Bosch Company, the University of

Erlangen-Nuremberg, and others developed the AE11 mi-

crocontroller (see page 57).8 The AE11 is intended to replace

dual controllers in critical applications, including automotive

and railway controllers. It is a single-chip design using SGS-

Thomson’s CMOSM5 technology with a 0.7-micron feature

size and two metal layers. Compatible with Intel’s 8051 eight-

bit instruction-set architecture, the AE11 has a 4-Kbyte main

memory (RAM) and a fairly conventional set of peripheral

I/O modules. It is designed to detect and respond to hardware

faults within milliseconds under all operating conditions. A su-

pervisory system can respond either with a fail-safe shutdown

or by gracefully degrading the system’s performance.

The main design objectives for the AE11 were very high

fault coverage and very short fault detection latency. To

meet these stringent goals, the developers included essen-

tially all the online-testing features discussed earlier—par-

ticularly concurrent checking based primarily on parity

coding, and time-triggered checking based on special BIST

circuitry. Because the fault detection latency is very short

(a few milliseconds), the BIST functions must be invoked

periodically (at least once every fault latency period). Thus,

these functions belong in the online category.

Figure 3 outlines the AE11’s structure and main test fea-

tures. These include the following:

■ parity code checking throughout the system

■ parity checking and ALU parity prediction in the CPU

data path

■ program control flow checking via signature monitoring

■ self-checking address-decoding logic in the RAM

■ programmable watchdog timer

■ pseudorandom and IDDQ testing of peripheral modules

■ power supply and temperature monitoring

■ test control logic using boundary scan and a test access

port controller

Since RAM occupies a large fraction of the total chip area,

the AE11 designers devoted considerable attention to its on-

line-testing needs. They added a parity-check bit to both the

address and data buses and designed the memory’s parity

checkers to be concurrently self-checking.9 Additional self-

testing logic detects both word line and address decoder

faults. Special circuits detect bridging faults, including re-

sistive shorts that result in arbitrary voltage levels in the de-

coder. The AE11’s stringent fault latency requirements rule

out most conventional RAM BIST methods, which are too

slow and destroy stored data during testing.

The CPU design presents two testing problems: how to

check the data path, including the ALU, and how to check

.

OCTOBER–DECEMBER 1998 23

the control logic. The traditional approach to concurrent

checking of a CPU’s data path is to use an arithmetic code,

such as a residue code, whose error-detecting property, un-

like that of a parity code, is preserved by arithmetic opera-

tions. The AE11’s designers used an alternative approach

called parity prediction, which has the advantages of lower

cost and compatibility with the AE11’s overall use of parity

codes. (Wakerly9 describes a contrasting self-checking mi-

croprocessor design that uses residue codes.)

The CPU’s control unit also applies parity checking to con-

trol words. An interesting additional feature is the use of

software signatures, codelike words computed during com-

pilation of application programs and inserted automatical-

ly into the program flow. The AE11 executes special

instructions that monitor these signatures to detect many

types of hardware and software errors.

The designers used parity checking wherever the AE11’s

data path extends into the I/O subsystem. The AE11 uses on-

line BIST and IDDQ testing on the peripheral modules (Figure

3). A test controller conforming to the IEEE 1149.1 boundary-

scan standard handles these test functions directly, with ul-

timate control of the test functions residing in software

executed by the CPU. The BIST logic employs pseudoran-

dom test and signature generation implemented by LFSRs in

the CPU and multiple-input signature registers (MISRs) in

the peripheral modules. The use of many pseudorandom

test patterns provides a measure of protection against un-

known or nontargeted hardware faults, as well as standard

stuck-at faults. The system data bus transmits the pseudo-

random test vectors from the LFSRs to the circuits being test-

ed. The MISRs compress the resulting responses to obtain

signatures that control the bist_ok signals.

Some of the test vectors also set up IDDQ tests that use on-

chip current monitors. The AE11 also includes special fault

detection and error-monitoring procedures for components

such as the analog-to-digital converter (ADC). Other spe-

cialized test circuits monitor the power supply voltage and

the chip temperature.

The following is the AE11’s overall test process: At system

start-up, the test controller executes a set of tests to check

that the major subsystems—CPU, RAM, and peripheral mod-

ules—are fault-free. During normal operation, the concur-

rent-checking circuits flag errors as soon as they occur. In

addition, the microcontroller stops periodically (under soft-

ware-controlled periods depending on the acceptable fault

latency) to execute IDDQ and various functional tests.

Functional tests are needed to test circuits that are not self-

testing, such as the interrupt controller and the ADC’s input

channels.

The developers estimate that the AE11’s self-testing hard-

ware features achieve over 99.7% coverage of modeled faults

and errors, with less than 35% area overhead and less than

15% performance loss.

It is interesting to compare this design with Wakerly’s ear-

ly work,9 as well as Nicolaidis’s more recent design of a self-

checking version of the Motorola 68000 microprocessor.10

The AE11 is an intriguing case of the application of hard-

ware features for hardware self-testing in a single, low-cost

Test controller

Test access port
(TAP)

ALU

LFSRs

Serial I/O

System bus

run_bist

run_iddq

Error flags

run_adc

adc_ok

bist_ok

run_alu
run_bist
run_iddqBreakStart

BIST

3

2

5

Analog-digital
converter (ADC)

2

alu_ok

RAM

CPU
control

CPU

Watchdog
timer

Misc. I/O
modules

Figure 3. Key testing features of the AE11 fail-safe controller.

.

EMBEDDED SYSTEMS

24 IEEE DESIGN & TEST OF COMPUTERS

microcontroller. However, its ultimate usefulness in system

design remains to be demonstrated. There are reasons for

duplicating functions off chip besides the detection of hard-

ware faults, including online software testing, diagnosis, and

fault tolerance. Nevertheless, the AE11 demonstrates that

most major online-testing techniques, including BIST, can

be implemented simultaneously as on-chip hardware com-

ponents at moderate cost. Thus, these techniques can serve

as basic building blocks in embedded-system design. Self-

testing microcontrollers like the AE11 permit the design of

critical systems without external monitoring. Therefore, as

critical systems proliferate, sophisticated microcontrollers

of this kind will become essential components.

ONLINE TESTING IS FAST BECOMING a basic feature of em-

bedded systems, not only for critical applications, but also

to meet the high-availability requirements of common con-

sumer products. To achieve the twin goals of high fault and

error coverage and low error latency, the system must in-

clude advanced hardware and software features for testing

and monitoring. One such hardware feature is BIST, a tech-

nique widely applied in manufacturing testing and widely

promoted for online testing. The type of online testing for

which BIST is most appropriate is nonconcurrent testing for

permanent and intermittent faults. But BIST can be only part

of a comprehensive approach to online testing. We need

further research to learn how to systematically integrate

hardware and software to enhance safety and reliability in

embedded systems.

Acknowledgments
General Motors Global Research and Development Operations

supported this research.

References
1. M.R. Lyu, ed., Software Fault Tolerance, John Wiley & Sons,

New York, 1995.

2. K.K. Saluja, R. Sharma, and C.R. Kime, “A Concurrent Testing

Technique for Digital Circuits,” IEEE Trans. Computer-Aided

Design, Vol. 7, No. 12, Dec. 1988, pp. 1250-1259.

3. M. Nicolaidis, “Theory of Transparent BIST for RAMs,” IEEE

Trans. Computers, Vol. 45, No. 10, Oct. 1996, pp. 1141-1156.

4. A. Mahmood and E. McCluskey, “Concurrent Error Detection

Using Watchdog Processors—A Survey,” IEEE Trans. Comput-

ers, Vol. 37, No. 2, Feb. 1988, pp. 160-174.

5. B.W. Johnson, Design and Analysis of Fault Tolerant Digital Sys-

tems, Addison-Wesley, Reading, Mass., 1989.

6. B.T. Murray and J.P. Hayes, “Testing ICs: Getting to the Core of

the Problem,” Computer, Vol. 29, No. 11, Nov. 1996, pp. 32-45.

7. H. Al-Asaad, J.P. Hayes, and B.T. Murray, “Scalable Test Gen-

erators for High-Speed Data Path Circuits,” J. Electronic Test-

ing: Theory and Applications, Vol. 12, No. 1/2, Feb./Apr. 1998,

pp. 111-125 (reprinted in On-Line Testing for VLSI, M. Nicolaidis,

Y. Zorian, and D.K. Pradhan, eds., Kluwer, Boston, 1998).

8. E. Böhl, T. Lindenkreuz, and R. Stephan, “The Fail-Stop Con-

troller AE11,” Proc. Int’l Test Conf., IEEE Computer Society

Press, Los Alamitos, Calif., 1997, pp. 567-577.

9. J. Wakerly, Error Detecting Codes, Self-Checking Circuits, and

Applications, North-Holland, New York, 1978.

10. M. Nicolaidis, “Efficient UBIST Implementation for Micro-

processor Sequencing Parts,” J. Electronic Testing: Theory and

Applications, Vol. 6, No. 3, June 1995, pp. 295-312.

Hussain Al-Asaad is an assistant professor in

the department of Electrical and Computer En-

gineering at the University of California, Davis.

His research interests include design verifica-

tion, testing, and fault-tolerant computing. Al-

Asaad received his BE in computer and

communications engineering from the Amer-

ican University of Beirut, Lebanon, his MS in computer engineering

from Northeastern University, Boston, and his PhD in computer sci-

ence and engineering from the University of Michigan, Ann Arbor.

He is a member of the IEEE, ACM, and Sigma Xi.

Brian T. Murray is a member of the techni-

cal staff of General Motors Global Research

and Development Operations, where he has

led projects in testing, high-dependability

embedded systems, and computer architec-

ture. He is also an adjunct lecturer at the Uni-

versity of Michigan. Murray received the AB

in physics and mathematics from Albion College, the MS in elec-

trical engineering from Duke University, and the PhD in computer

science and engineering from the University of Michigan. He is a

member of the IEEE, ACM, Sigma Xi, and Phi Beta Kappa.

John P. Hayes is a professor in the Electrical

Engineering and Computer Science Depart-

ment at the University of Michigan, Ann Ar-

bor. He teaches and conducts research in

computer-aided design verification and test-

ing, computer architecture, VLSI design, and

fault-tolerant computing. Hayes received the

BE from the National University of Ireland, Dublin, and the MS and

PhD from the University of Illinois, all in electrical engineering. He

is an IEEE fellow and a member of ACM and Sigma Xi.

Send questions and comments about this article to Hussain Al-

Asaad, University of California, Davis, Dept. of Electrical and Com-

puter Engineering, One Shields Ave., Davis, CA 95616-5294;

halasaad@ece.ucdavis.edu.

.

