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Abstract

A project is under way at the University of Michigan to
develop a design verification methodology for micropro
cessor hardware based on modeling design errors a
generating simulation vectors for the modeled errors v
physical fault testing techniques. We have developed
method to systematically collect design error data, an
gathered concrete error data from a number of micropro
cessor design projects. The error data are being used
derive error models suitable for design verification testin
Design verification is done by simulating tests targeted
instances of the modeled errors. We are conducting expe
ments in which targeted tests are generated for mode
errors in circuits ranging from RTL combinational circuits
to pipelined microprocessors. The experiments gauge
quality of the error models and explore test generation fo
these models. This paper describes our approach and p
sents some initial experimental results.

1 Introduction

It is well known that about a third of the cost of devel
oping a new microprocessor is devoted to hardware deb
ging and testing. The inadequacy of existing hardwa
verification methods is graphically illustrated by the Pen
tium’s FDIV error, which cost its manufacturer an est
mated $500 million. The development of practica
verification methodologies for hardware verification ha
long been handicapped by two related problems: (1) t
lack of published data on the nature, frequency, and sev
ity of the design errors occurring in large-scale desig
projects; and (2) the absence of a verification methodolo
whose effectiveness can readily be quantified.
1. This research is supported by DARPA under Contract No.
DABT63-96-C-0074. The results presented herein do not neces-
sarily reflect the position or the policy of the U.S. Government.
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There are two broad approaches to hardware des
verification: formal methods and simulation-based met
ods. Formal methods try to verify the correctness of a sy
tem by means of mathematical proof [26]. Such metho
consider all possible behaviors of the models represent
the system and its specification, whereas simulation-ba
methods can only consider a subset of all behaviors. T
accuracy and completeness of the system and specifica
models is a fundamental limitation for any formal method
The computational complexity of many methods mak
their applicability dependent on the derivation of suitab
abstractions (models).

Simulation-based design verification tries to uncov
design errors by detecting a circuit’s faulty behavior whe
deterministic or pseudo-random tests (simulation vecto
are applied. Microprocessors are usually verified by sim
lation-based methods, but require an extremely large nu
ber of simulation vectors whose coverage is ofte
uncertain.

Hand-written test cases form the first line of defens
against bugs, focusing on basic functionality and impo
tant corner cases. These tests are very effective in
beginning of the debug phase, but lose there usefuln
later. Recently, tools have been developed to assist in
generation of focused tests [9,16]. Although these too
can significantly increase productivity, they are far from
being fully automated.

The most widely used method to generate verificatio
tests automatically is random test generation. It provide
cheap way to take advantage of the billion-cycles-a-d
simulation-capacity of networked workstations availab
in many big design organizations. Sophisticated syste
have been developed that are biased towards corner ca
thus improving the quality of the tests significantly [1]
Another source of test stimuli, thanks to advances in sim
lator and emulator technology, is existing application an
system software. Successfully booting the operating s
tem has become a common quality requirement [13,20]

Common to all the test generation techniques me
sign Validation and Test Workshop, 1997, pp. 194-201.
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tioned above is that they are not targeted at specific design
errors. This poses the problem of quantifying the effective-
ness of a test set. Various coverage metrics have been pro-
posed to address this problem. These include code
coverage metrics from software testing [1,4,7], finite state
machine coverage [16,17,23], architectural event coverage
[17], and observability-based metrics [12]. A shortcoming
of all these metrics is that the relationship between the
metric and detection of classes of design errors is not well
understood.

A different approach is to use design error models to
guide test generation. This exploits the similarity between
hardware design verification and physical fault testing, as
illustrated by Figure 1. For example, Al-Asaad and Hayes
[2] define a class of design error models for gate-level
combinational circuits. They describe how each of these
errors can be mapped onto single-stuck line (SSL) errors
that can be targeted with standard ATPG tools. This pro-
vides a method to generate tests with a provably high cov-
erage for certain classes of modeled errors.

A second method originated from observing the simi-
larities between software testing and hardware design veri-
fication. Mutation testing [11] considers programs, termed
mutants, that differ from the program under test by a single
simple error. The rationale for the approach is supported
by two hypotheses: 1) programmers write programs that
are close to correct ones, and 2) a test set that distinguishes
a program from all its mutants is also sensitive to more
complex errors. Although still considered too costly for
industrial purposes, mutation testing is one of the only
approaches that has yielded an automatic test generation
system for software testing [19]. Recently, Al Hayek and
Robach [3] have applied mutation testing to hardware

design verification. They demonstrate their approach w
verification examples of small VHDL modules.

This paper addresses design verification for high-lev
designs such as microprocessors via error modeling a
test generation. A block diagram summarizing our met
odology is shown in Figure 2. Section 2 describes o
method for design error collection and presents som
design error statistics. Section 3 discusses design er
modeling. Coverage experiments are described in sect
4, followed by concluding remarks.

2 Design Error Collection

Motivation

Hardware design verification and physical fault testin
are closely related at the conceptual level [2]. The bas
task of physical fault testing (hardware design verificatio
is to generate tests that distinguish the correct circuit fro
faulty (erroneous) ones. The class of faulty circuits to b
considered is defined by a logical fault model. Logica
fault models represent the effect of physical faults on th
behavior of the system, and free us from having to de
with the plethora of physical fault types directly. The mos
widely used logical fault model, the SSL model, combine
simplicity with the fact that it forces each line in the circui
to be exercised.

Typical hardware design methodologies employ har
ware description languages as their input medium and u
previously designed high-level modules. To capture t
richness of this design environment, the SSL model w
have to be supplemented with new error models.

The lack of published data on the nature, frequency, a
severity of the design errors occurring in large-sca
projects, is a serious obstacle to the development of er
models for hardware design verification. Although bu
reports are collected and analyzed internally in industr
design projects, the results are rarely published. An exa

Prototype
system

Operational
systemDesign

Manufacturing

Verification
tests

Physical
fault tests

Design errors Physical faults

Design development Field deployment

(residual)

Error model Fault model

Figure 1 Similarity between design verification
and physical fault testing.
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Figure 2 Block diagram of our validation method.
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ple of a user-oriented bug list can be found in [21]. Some
insight into what can go wrong in a large microprocessor
design project is provided in [10].

Collection method and statistics

The considerations above have led us to implement a
systematic method for collecting design errors. Our
method uses the CVS revision management tool [8] and
targets ongoing design projects at the University of Michi-
gan, including the PUMA high-performance microproces-
sor project [6] and various class projects, all of which
employ Verilog as the hardware description medium.
Designers are asked to archive a new revision whenever a
design error is corrected or whenever the design process is
interrupted, making it possible to isolate single design
errors. We have augmented CVS so that each time a new
revision is entered, the designer is prompted to fill out a
standardized multiple-choice questionnaire which gathers
four key pieces of information: (1) the motivation for
revising the design; (2) the method by which a bug was
detected; (3) the class to which the bug belongs, and (4) a
short narrative description of the bug. This uniform report-
ing method greatly simplifies the analysis of the errors. A
sample error report is shown in Figure 3. The error classifi-
cation shown in the report is the result of the analysis of
error data from several earlier design projects.

Design error data has been collected so far from four
VLSI design class projects that involve implementing the
DLX microprocessor [15], and from the design of
PUMA’s fixed point and floating point units [6]. The dis-
tributions found for the various representative design
errors are summarized in Table 1. Error categories that
occurred with very low frequency were combined in the
“others” category in the table.

3 Error Modeling

We have begun the development of generic design error
models based on the data we are collecting. The require-
ments for these models are threefold: (1) tests (simulation
vectors) that provide complete coverage of the modeled
errors should also provide very high coverage of actual
design errors; (2) the modeled errors should be amenable
to automated test generation; (3) the number of modeled
errors should be relatively small. The error models need
not mimic actual design bugs precisely, but the tests
derived from complete coverage of modeled errors should
also provide very good coverage of actual design bugs.

Standard simulation and synthesis tools have a side
effect of detecting some design error categories of Table 1
and hence there is no need to develop error models for
those error categories. For example, the Verilog compiler

(replace the _ with X where appropriate)

MOTIVATION:

X bug correction
_ design modification
_ design continuation
_ performance optimization
_ synthesis simplification
_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary source of
the error. If in doubt, check all categories
that apply.

X combinational logic:

X wrong signal source
_ missing input(s)
_ unconnected (floating) input(s)
_ unconnected (floating) output(s)
_ conflicting outputs
_ wrong gate/module type
_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop
_ missing latch/flipflop
_ extra state
_ missing state
_ wrong next state
_ other finite state machine error

_ statement:

_ if statement
_ case statement
_ always statement
_ declaration
_ port list of module declaration

_ expression (RHS of assignment):

_ missing term/factor
_ extra term/factor
_ missing inversion
_ extra inversion
_ wrong operator
_ wrong constant
_ completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ verilog syntax error

_ conceptual error

_ new category (describe below)

BUG DESCRIPTION:

Used wrong field from instruction

Figure 3   Sample error report.
3 of 8
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flags all Verilog syntax errors (category 9), declaration
statement errors (category 12), and incorrect port list of
modules (category 16). Also, synthesis tools flag all wrong
bus width errors (category 10) and sensitivity list errors in
thealways statement (category 13).

A set of error models that satisfy the requirements for
the restricted case of gate-level logic circuits was devel-
oped in [2]. Several of these models appear useful for the
higher-level (RTL) designs found in Verilog descriptions
as well. For example, we can determine the following set
of error models from the RTL errors in Table 1:

• Module substitution error (MSE):This refers to mis-
takenly replacing a module by another module with
the same number of inputs and outputs (category 5).
This class includes word gate substitution errors and
extra/missing inversion errors.

• Module count error (MCE):This corresponds to
incorrectly adding or removing a module (category
16), which includes the extra/missing word gate
errors and the extra/missing registers.

• Bus order error (BOE): This refers to using an incor-
rect order of bits in a bus (category 16). Bus flipping
is the most common form of BOE.

• Bus count error (BCE):This corresponds to using a
module with more or fewer input buses than required
(categories 4 and 8).

• Bus source error (BSE):This error corresponds to

connecting a module input to a wrong source (cat
gory 1).

• Bus driver error (BDE): This error refers to mistak-
enly driving a bus with two sources (category 16
This error model is useful in the validation of bus-ori
ented designs.

For behavioral Verilog descriptions, additional erro
models are needed as follows:

• Label count error (LCE): This error corresponds to
incorrectly adding or removing labels of a case stat
ment (category 3).

• Expression structure error (ESE): This includes var-
ious deviations from the correct expressio
(categories 3, 6, 7, 11, 15), such as extra/missi
terms, extra/missing inversions, wrong operator, an
wrong constant.

• State count error (SCE): This error corresponds to an
incorrect FSM with an extra or missing state (cate
gory 14).

• Next state error (NSE): This error corresponds to
incorrect next state function in an FSM (category 14

Conceptual errors (category 2) cannot be easily mo
eled due to their very high-level nature. Correcting such
error usually requires a major revision to the design. How
ever, a conceptual error often manifests itself as a com
nation of the error models described above.

Direct generation of tests for the above error models
difficult, and is not supported by currently available CAD
tools. While the errors can be easily activated, propagati
of their effects is difficult, especially when modules o
behavioral constructs do not have transparent operat
modes. In the next section, we discuss the manual gene
tion of tests for various error models.

4 Coverage Experiments

We are presently conducting a set of experimen
whose goal is twofold: 1) investigate the relationshi
between coverage of modeled design errors and cover
of (more complex) actual errors; and 2) explore test gen
ation with these candidate error models. At this stage
our work we have yet to automate test generation. Con
quently, we are limited in the size of circuits and the var
ety of error models that we can handle. We describe he
three experiments for small but representative circuits a
for a limited set of error models. In the first two experi
ments, we show how to generate tests for certain er
models in a carry-lookahead adder and an ALU, and w
further quantify the coverage of these error models. In
last experiment, we generate tests for two error models a
for actual design errors in a small pipelined microproce
sor and evaluate the coverage obtained.

Table 1  Design error distributions.

Design error category

Relative frequency
[%]

DLX PUMA

1. Wrong signal source 29.9 28.4
2. Conceptual error 39.0 19.1
3. Case statement 0.0 10.1
4. Gate or module input 11.2 9.8
5. Wrong gate/module type 12.1 0.0
6. Wrong constant 0.4 5.7
7. Logical expression wrong 0.0 5.5
8. Missing input(s) 0.0 5.2
9. Verilog syntax error 0.0 3.0

10. Bit width error 0.0 2.2
11. If statement 1.1 1.6
12. Declaration statement 0.0 1.6
13. Always statement 0.4 1.4
14. FSM error 3.1 0.3
15. Wrong operator 1.7 0.3
16. Others 1.1 5.8
4 of 8
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Experiment 1: The 74283 adder

An RTL model [14] of the 74283 4-bit fast adder [24] is
shown in Figure 4. It consists of a carry-lookahead genera-
tor (CLG) and a few word gates. The 74283 adder is an
SSL-irredundant circuit, i.e. all SSL faults are detectable.
We next show how to generate tests for some design error
models in the adder and then we discuss our overall cover-
age of the targeted error models.
BOE on A bus: A possible bus value that activates the
error isAg = (0XX1), whereX denotes an unknown value.
The faulty value ofA is thusAf = (1XX0). Hence, we can
represent the error byA = , whereD repre-
sents the error signal which is 1 (0) in the good circuit and
0 (1) in the faulty circuit. One way to propagate this error
through the AND gateG1 is to setB = (1XX1). Hence, we
get G2 = (1XX1), G5 = , andG3 = .
Now for the module CLG we haveP = (1XX1), G =

, and C0 = X. The resulting outputs areC =
(XXXX) and C4 = X. This implies thatS = (XXXX) and
hence the error is not detected at the primary outputs. We
need to assign more input values to propagate the error. If
we setC0 = 0, we getC = , C4 = X, and S =

. Hence, the error is propagated toS and the
complete test vector is (A, B, C0) = (0XX11XX10).
BSE of the P bus (The correct source is G3): To activate
the error we need to set opposite values on at least one bit
of theP andG3 buses. If we start withPf = (XXX0) andG3
= Pg = (XXX1), we reach to a conflict through implica-
tions. If we try Pf = (XXX1) andG3 = Pg = (XXX0), we
obtainP = , A = (XXX1), andB = (XXX1). How-
ever, no error is propagated through the CLG module since
G = (XXX1). After all the activation conditions are
explored, we can easily conclude that the error is redun-
dant (undetectable).
MSE G3/XNOR: To distinguish the word AND gateG3
from an XNOR gate, we need to apply the all-0 pattern on
one of the gates formingG3. So, we start with the values
G5 = (0XXX) andG2 = (0XXX). By making implications,
we find that there is a conflict when selecting the values of
A andB. We then change to another set of activation condi-

tion G5 = (X0XX) andG2 = (X0XX). This also leads to a
conflict. After trying the other possible combinations, w
conclude that no test exists, and hence the error is red
dant.

We generated tests for all BSEs in the adder and w
found that just 2 tests detect all 33 detectable BSEs a
proved that a single BSE is redundant as shown above.
further targeted all MSEs in the adder and we found tha
tests detect all 27 detectable MSEs and proved that a s
gle MSE (G3/XNOR) is redundant. Finally, we found that
all BOEs are detected by the tests generated for BSEs
MSEs. Therefore, complete coverage of BOEs, BSEs, a
MSEs is achieved with only 5 tests.

Experiment 2: The c880 ALU

In this example, we try to generate tests for some mo
eled design errors in the c880 ALU, a member of th
ISCAS-85 benchmark suite [5]. A high-level model base
on a Verilog description of the ALU [18] is shown in Fig-
ure 5, and is composed of six modules: an adder, two m
tiplexing units, a parity unit, and two control units. It ha
60 inputs and 26 outputs. The gate-level implementati
of the ALU has 383 gates.

The design error models to be considered in the c8
are: BOEs, BSEs, and MSEs (inversion errors on 1-bit s
nals). We next generate tests for these error models.
BOEs: In general, we attempt to determine a minimum s
of assignments needed to detect each error. Some BO
are redundant such as the BOE onB (PARITY), but most
BOEs are easily detectable. Consider, for example, t
BOE onD. One possible way to activate the error is to s
D[3] = 1 andD[0] = 0. To propagate the error to a primary
output, the path across IN-MUX and then OUT-MUX is
selected. The signal values needed to activate this path

Sel-A= 0 Usel_D = 1 Usel_A8B = 0
Usel_G = 0 PassB = 0 PassA = 1
PassH = 0 F-shift = 0 F-add= 0
F-and= 0 F-xor = 0

Solving the gate-level logic equations forG andC we get:
G[1:2] = 01 C[3] = 1 C[5:7] = 011
C[14] = 0

All signals not mentioned in the above test have don’t ca
values.

We generated tests for all BOEs in the c880. We foun
that just 10 tests detect all 22 detectable BOEs and serv
prove that another 2 BOEs are redundant.
BSEs: The buses in the ALU are grouped according t
their size since the correct source of a bus must have
same size as the incorrect one. We targeted BSEs with
widths 8 and 4 only. We found that by adding 3 tests to th
ten tests generated for BOEs, we are able to detect all
BSEs affecting the c880’s multibit buses. Since the mulFigure 4   High-level model of the 74283 carry-

lookahead adder [14].

A
B

P

G

C0
C0

S

CLG

C

4

4

4

4

4
4

1

4

C4
1

G1

G2

G3
G4G5

DXXD( ) D( )

DXXD( ) DXXD( )

DXXD( )

XXD0( )
XXXD( )

XXXD( )
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plexing units are not decoded, most BSEs on their control
1-bit signals are detected by the tests generated for BOEs.
Further test generation is needed to get complete coverage
of BSEs on the other 1-bit signals.
MSEs: Tests for BOEs detect most but not all inversion
errors on multibit buses. In the process of test generation
for the c880 ALU, we noticed that a case exists where a
test for the inversion error on a busA can be found even
though the BOE onA is redundant. This is the case when
an n-bit bus (n odd) is fed into a parity function. Testing
for inversion errors on 1-bit signals needs to be considered
explicitly, since a BOE on a 1-bit bus is not possible. Most
inversion errors on 1-bit signals in the c880 ALU are
detected by the tests generated for BOEs and BSEs. This is
especially true for the control signals to the multiplexing
units.

In summary, we have generated tests for a subset of
error models using an RTL version of the ISCAS-85 c880
benchmark. This experiment demonstrates that good cov-
erage of the modeled errors can be achieved with very
small test sets.

Experiment 3: A pipelined microprocessor

This experiment considers the well-known DLX micro-
processor [15]. The particular DLX version considered is a
student-written design that implements 44 instructions, has
a five-stage pipeline and branch prediction logic, and con-
sists of 1552 lines of structural Verilog code, excluding the
models for library modules such as adders, register-files,

etc. A simplified block diagram of the design is shown i
Figure 6. The design errors committed by the student du
ing the design process were systematically recorded us
our error collection system. An example of an actual err
is shown in Figure 7. The differing code fragments of th
good and faulty designs are shown with some context. T
error is composed of several signal source errors. The b
data reported by the student for this error was shown e
lier in Figure 3.

In this test generation experiment, we only consid
two basic error models: the SSL fault model, and th
inverter insertion (INV) model adopted from mutation
testing [25]. Under the INV model, the faulty design dif
fers from the fault-free one in that it has an extra invert
inserted in any one of the signal lines. A set of fault
designs was constructed by injecting an actual design er
(Table 1) or a single modeled error into the final comple
DLX design. For each such error, a test consisting of
short DLX assembly program, was constructed manual
An example of such a test is shown in Figure 8. This te
was targeted at an SSL error in the branch prediction log
To expose this particular error, a conditional branch has
cause a hit in the branch target buffer, and the branch p
diction has to be wrong. The test code is a small loo
where in the last iteration, these conditions are exhibited

Three separate test sets targeted at the INV errors,
SSL errors, and the actual design errors were devised.
tests were constructed by hand, the size of this experim
was necessarily very limited. We considered only tho

IN-MUX OUT-MUX

B

A

A8

D

G

Cin

H

C Cont

ParA

ParB

F

Par-Hi
Par-Al
Par-Bl

Pass-B

S
el

-A
U

se
l-D

U
se

l-A
8B

Ls
el

-D
Ls

el
-A

8B

Usel-G Cout

GEN

XORF
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ADG

CNTRL1

ADDER

CNTRL2
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Figure 5   High-level model of the c880 ALU.
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actual design errors that occurred in the instruction deco
stage of the pipeline, which was observed to contain t
most actual design errors. As to the modeled errors,
selected a random sample of 5.5% of total population
the same decode stage. Error detection was determined
checking the contents of the DLX’s register file and th
contents of its program counter in every clock cycle.

We then calculated the coverage of each test set w
respect to all three error types. The results are summariz
in Table 2. Only one actual error was not detected by t
test sets targeted at the modeled errors. This error, wh
was presented in Figures 3 and 7, can only be exposed
two particular instruction types: “shift left logical” (SLL)
and “set greater than” (SGT). However, in the decod
stage there does not appear to be any single INV or S
error that can only be exposed by an SLL or SGT instru
tion. The execute pipeline stage contains logic specific

INC

ADD

ALU

TO DATA
MEMORY

TO INSTR.
MEMORY

BRANCH
TARGET
BUFFER

REGISTER
FILE

PC0 PC1 OP1

PCN2PCN1

PC2 PC3

PCN3

IAR

OP2

DOUT2

ALU3 ALU4

MEM4DOUT3
IR

FORWARD

SELECT

INTERFACE INTERFACE

Figure 6   Block diagram of the student-designed DLX.

DECODING
LOGIC

CONTEXT:

//
//  Instruction Decoding . . .
//
assign {c0b,c1b,c2b,c3b,c4b,c5b} = ~IR_IN[0:5];
//
//  Choose ‘opcode’
//
mux2 #(6) opcode_mux(.Y(opc), .S0(rtype_opcode),

.IN0(IR_IN[0:5]),
.IN1(IR_IN[26:31]));
assign {f0, f1, f2, f3, f4, f5 } = opc[0:5];
assign {f0b,f1b,f2b,f3b,f4b,f5b} = ~opc[0:5];
//
//  Encode RDEST
//(All but: SW,J,JR,BEQZ,BNEQ,TRAP,RFE,HALT)
//
nor6 a15(a15_Y, a10_Y, a11_Y, a12_Y, a13_Y,

a14_Y, 1’b0);
and2 a16(use_rdest, nop_opcode_bar, a15_Y);
//
// DISCREPANT CODE FOLLOWS HERE
//

CORRECT CIRCUIT:

and6 a10(a10_Y, c0, c1b, c2, c3b, c4, c5);
and6 a11(a11_Y, c0b, 1’b1, c2b, c3b, c4, c5b);
and6 a12(a12_Y, c0b, c1b, c2b, c3, c4b, 1’b1);
and6 a13(a13_Y, c0b, c1, c2b, c3b, c4b, 1’b1);
and6 a14(a14_Y, c0, c1, c2, c3, c4, c5);

ERRONEOUS CIRCUIT:

and6 a10(a10_Y, f0, f1b, f2, f3b, f4, f5);
and6 a11(a11_Y, f0b, 1’b1, f2b, f3b, f4, f5b);
and6 a12(a12_Y, f0b, f1b, f2b, f3, f4b, 1’b1);
and6 a13(a13_Y, f0b, f1, f2b, f3b, f4b, 1’b1);
and6 a14(a14_Y, f0, f1, f2, f3, f4, f5);

Figure 7   Example of an actual design error.

// TARGET ERROR: dbp_a5.IN0 stuck-at-0
//
// or3 dbp_a5 (.Y(btb_squash),
// .IN0(hit_but_not_taken),
// .IN1(bw_not_taken),
// .IN2(fw_taken)) ;
//
@C00
main:

ADDUI r1, r0, #2
loop:

SUBI r1, r1, #1
BNEZ r1, loop
NOP
HALT

Figure 8   Example of a test for the DLX design.
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SLL and SGT instructions. Hence the undetected actual
error in the decode stage would have been detected by the
test set targeted at the modeled errors in the execute stage.

The coverage results suggest that test sets aimed at the
modeled errors provide good coverage of actual design
errors. This conclusion, although still very preliminary in
view of the small scale of the experiment, tends to confirm
the power of simple error models, which has been
observed in several other design validation domains
[2,22].

5 Conclusions

We are attempting to develop a practical microproces-
sor design verification methodology and supporting CAD
tools, based on the synthesis of error models from actual
design errors, and the adaptation of test technology for
physical faults to detect these errors. Our experimental
work to date suggests that high-level test generation is fea-
sible, and that good coverage of both modeled and actual
errors is possible with relatively small test sets. Supporting
evidence for this approach is provided by experiments that
compare the error coverage of verification tests with
respect to such errors in some nontrivial designs.
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Table 2  Coverage of modeled and actual
design errors in the instruction decode stage

of the DLX pipeline by various test sets.

Target errors of test set

Coverage (%) of each
error type

INV SSL Actual

Inverter insertion (INV) 100 82 92
Single stuck-line (SSL) 100 100 92
Actual design errors 72 53 100
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