
1

MODELING AND DETECTING CONTROL ERRORS IN
MICROPROCESSORS

HUSSAIN AL-ASAAD
Computer Engineering Research Laboratory

Department of Electrical and Computer Engineering
University of California, One Shields Avenue, Davis, CA 95616-5294

E-mail: halasaad@ece.ucdavis.edu

JOHN P. HAYES and TREVOR MUDGE
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122

E-mail: {jhayes,tnm}@eecs.umich.edu

Design validation for microprocessors based on modeling design errors and generating tests for
them is discussed. An error model for control errors is introduced and validated experimentally
for a small microprocessor. A general validation approach using this model is outlined. Prelim-
inary experimental results suggest that high coverage of control as well as data errors can be
achieved using our approach.

1 Introduction

Hardware verification has long been handicapped by the absence of good high-level
design error models. To be useful for design validation, error models should satisfy
three requirements: (i) tests (simulation vectors) that cover the modeled errors should
also provide very high coverage of actual design errors; (ii) the modeled errors should
be amenable to automated test generation; and (iii) the number of modeled errors
should be small. Several researchers [1][2][3] have proposed high-level error models
that satisfy some, but not all, of the above requirements. Al Hayek and Robach [3]
have adapted mutation errors from the software testing method called mutation test-
ing, to hardware design verification in the case of small VHDL modules. Mutation
testing [4] generates tests that distinguish a program under test from its mutants,
where a mutant is created by injecting a small error (mutation) such as changing an
add to subtract.

Recently, a set of synthetic error models that attempt to meet all the above-men-
tioned requirements was defined [5]. They include (i) basic errors such as a bus-
order error that refers to incorrectly ordering the bits in a bus, and (ii) conditional
errors that combine a basic error with a condition over a signal in the design. This
paper discusses a related error model that targets control errors in microprocessor-
like circuits. The model is defined in Section 2, and a mutation-based validation

2

approach using it is discussed in Section 3. Section 4 presents a case study based on
a small microprocessor, the LC-2 [6].

2 Mutation Control Errors

A mutation control error (MCE) denoted (i,c,s,vc,ve) is a change in the control signal
s in the cycle c of the instruction i of the microprocessor from the correct value vc to
the erroneous value ve. For example, in an ADD instruction, the MCE (ADD, execute,
load_flags, 1’b1, 1’b0) corresponds to incorrectly maintaining the contents of the
flags in the ADD’s execute cycle.

MCEs are classified by their detectability as redundant (undetectable), invalid,
or testable. Of these, only testable MCEs are targeted for test generation. A redun-
dant MCE for instruction i does not change the functions performed by i. The follow-
ing conditions typically lead to redundant MCEs:

• Unchanged visible state: MCEs which do not affect the processor or memory
state are redundant. These include: (i) reading a register or memory without
storing a new result, (ii) loading a register or memory multiple times without
reading it until some final value is loaded, and (iii) changing registers not visi-
ble to the instruction set, which are not used across several instructions.

• Disabled signals: MCEs on disabled signals are redundant. For example, an
MCE that changes a select signal of a register file with a disabled read port
will not affect instruction behavior.

Invalid MCEs violate usage constraints on modules, buses, or the overall micro-
processor, for example:

• Module input constraints: These prevent inconsistencies such as: (i) reading
and writing to memory in the same clock cycle, and (ii) setting the select bus
of a 3-input multiplexer to 11.

• Bus constraints: These are bus usage rules such as: (i) a bus cannot have mul-
tiple drivers at the same time, and (ii) a bus cannot be read if it has no data
source, e.g. a high-impedance bus.

• Microprocessor constraints: These are global operating constraints such as: (i)
an instruction must be fetched every instruction cycle, and (ii) one and only
one of the flags must be set.

Testable MCEs change a correct design to one with different functionality that
meets all the specified design constraints. Detection of such MCEs requires instruc-
tion sequences that distinguish the correct design from erroneous ones. These
sequences constitute tests for the modeled errors.

3

3 Validation Approach

We now outline a microprocessor validation algorithm that generates test sequences
for MCEs. The microprocessor’s instruction set IS is defined by the instruction set
architecture (ISA). The design constraints CT are derived from the ISA and the bus/
module usage rules. We assume that a microprocessor implementation IM is given
that consists of a control unit and a datapath unit; the problem is to verify IM. Both
the ISA and IM are specified by a simulatable hardware description language (Verilog
in our case).

The proposed verification algorithm is described in Figure 1 in five phases. The
first phase identifies all relevant control/data symbols in each instruction. For exam-
ple, the 16-bit LC-2 instruction ADD DR, SR1, SR2 is represented by a sequence of
(name, location, value) symbols as follows:

{(opcode,[15:12],0001), (DR,[11:9],N), (SR1,[8:6],N), (SR2,[2:0],N), (M,[5],0)}

This indicates that bits 15:12 of the instruction specify the opcode which is 0001 for
ADD, bits 11:9 specify the destination register DR which is an unsigned integer (N),
bits 8:6 and 2:0 specify the source registers which are also unsigned integers, and
finally bit 5 is a mode bit M which is set to 0. (M distinguishes ADD DR, SR1, SR2
from the instruction ADD DR, SR1, imm5, where imm5 is a signed 5-bit constant.)
This preprocessing step is based only on the microprocessor’s ISA.

The second phase performs symbolic simulation of IM and its mutants, where a
mutant is IM with a single injected MCE. For every instruction i, we first simulate
the control unit cycle by cycle, and evaluate the resulting control signals originating
from the control unit. Each such signal has the value undefined, constant, or sym-
bolic; it is undefined if it is never assigned a value in the instruction cycle under con-
sideration. We then simulate the datapath unit to compute the processor state at the
end of the instruction cycle, and consequently determine if IM violates any specified
design constraint. After simulating all cycles of i, we compute the final processor
state MSI. For example, after simulating the ADD instruction described above, we
end up with RF[DR] = RF[SR1] + RF[SR2], where RF denotes for the register file.

Next the possible MCEs are injected one at a time and the resulting mutants are
simulated for all cycles of i to obtain the final processor state MSM. By checking the
constraints and comparing MSI to MSM, we can determine whether the current MCE
is redundant, invalid, or testable. Redundant and invalid MCEs are dropped at this
stage, while testable MCEs are inserted in the error list for later test generation.

 The third phase in the verification algorithm is error collapsing to reduce the
number of MCEs. Dominance among MCEs in the same instruction can be estab-

4

lished for this purpose. An error e1 is dominated by an error e2 if any test for e1 is
also a test for e2, in which case, e2 can be dropped from the error list. Normally,
some MCEs in cycle i of an instruction dominate others in cycle j (i ≤ j) of the same
instruction.

The fourth phase of the algorithm is test generation. Applying the instruction i is
generally necessary to activate an MCE affecting i. We then may need instructions
that justify the processor state needed to activate the MCE, and other instructions to

Figure 1 The microprocessor validation algorithm.

extract IS from ISA
preprocess every instruction in IS to identify its fields

1
2

for every instruction i in IS
begin

for every instruction cycle
begin

simulate control and datapath units
if any constraint from CT is violated then

report {erroneous IM} and then stop
end
MSI := processor state in IM after simulating all cycles of i
for every instruction cycle
begin

for every control signal c in IM
begin

ci := value of c in IM
for every possible value cm of c not equal to ci
begin

inject the MCE (i.e. set c := cm) to form a mutant
perform complete simulation of the mutant under i
MSM:= final processor state in mutant
if any constraint from CT is violated then MCE is INVALID
else if (MSI == MSM) then MCE is REDUNDANT
else add the TESTABLE MCE to error list

end
end

end
end

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

collapse the MCE list via dominance relations29

set overall test sequence S := φ
while there are more MCEs in the list
begin

select an MCE m
generate an instruction sequence s to detect m
remove all MCEs that are detected by s
add s to S

end

30
31
32
33
34
35
36
37

apply S to IM and ISA
if the responses are different then report {erroneous IM}
else report {correct IM}

38
39
40

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Procedure MV(instruction set architecture ISA, constraints CT, implementation IM)

5

propagate error values to the primary outputs of the processor.
The final phase of the algorithm applies the generated instruction sequence to

both IM and ISA. If a difference is detected in the responses, the implementation is
erroneous.

4 Case Study

In this section, we validate the MCE model and illustrate our validation approach by
an example.
MCE validation: To evaluate the effectiveness of MCEs, an experiment was designed
to apply them manually to a microprocessor called Little Computer 2 (LC-2) [6]—a
simple computer used for teaching purposes at Michigan. LC-2 has a representative
set of 16 instructions that are subset of the instruction sets of most current micropro-
cessors. The LC-2 was implemented as 921 lines of Verilog code comprising a
datapath unit consisting of library modules and a few custom modules, and a control
unit described as a finite state machine with five states and 27 output control signals.
The errors made during the LC-2 design process were systematically recorded using
our error collection system [5].

The actual design errors were injected manually one at a time in the final, pre-
sumed correct design of LC-2. We then determine whether testing for all MCEs
guarantees the detection of the injected design errors. This is done by deriving the
detection conditions for every actual error e and then determining if an MCE exists
that is dominated by e.

We applied this process to a complex actual error and we were able to find a
dominated MCE for it as shown in Figure 2. The error occurs when the signal
R1_temp is assigned a value independent of any condition. However, the correct
implementation requires an if-then-else construct to control the signal assignment.

Figure 2 Example of an actual design error, its detection requirements, and the corresponding
dominated MCE.

// Decoding of register file inputs

Correct Code:
if (ir_out[15:12] == 4'b1101) // RET

R1_temp = 3'b111;
else

R1_temp = ir_out[8:6];

Erroneous Code:
R1_temp = ir_out[8:6];

ir_out[15:12] == 4'b1101;
ir_out[8:6] != 3’b111;
RF[7] != RF[ir_out[8:6]]
Propagate RF[R1_temp] to primary output

MCE(RET, Decode, R1_temp, 3’b111, ir_out[8:6])

Design error

Detection requirements

Dominated MCE

}

6

We analyzed manually all design errors in the test implementation of the LC-2
and the results are summarized in Table 1. A total of 16 design errors were found,
nine in the control unit and the rest is in the datapath unit. Four of these errors are
easily detected by the Verilog simulator, two are redundant, and the rest are testable.
We can infer from Table 1 that all testable design errors in the LC-2 control unit are
detected after simulation with tests for eight MCEs, and only two testable errors in
the datapath unit are not guaranteed to be detected. However, by analyzing their
detection requirements, we found that the probability for these two errors being
undetected or masked is extremely low.
Approach illustration: To illustrate our validation methodology, we apply it here to
the LC-2 instruction ADD DR, SR1, SR2. We define the state of the LC-2 micropro-
cessor as all its storage elements, including the program counter (PC), instruction
register (IR), memory-address register (MAR), flags register (FLAGS), register file
(RF), and temporary registers (REG1 and REG2). The LC-2’s initial state is thus
(PC0, IR0, MAR0, FLAGS0, RF0, REG10, REG20). Table 2 shows the control signal
values in the implementation for the ADD instruction and the corresponding datapath
actions. For every possible MCE m, we injected m in the implementation to form a
mutant that is manually simulated to determine the type of m. The ADD instruction
has a total of 58 MCEs of which 18 are testable. To reduce the number of testable
MCEs, dominance relations among MCEs are used. Of the 18 testable MCEs, only
one can be removed by dominance.

In generating a test sequence for the MCEs of an instruction i, we first target
MCEs in the last cycle of i with the hope that other MCEs in earlier cycles of i are
detected by the generated sequence. The specifications of LC-2 give the starting PC
address as 3000H. So, we start our PC value with a number larger than 3000H to give

Table 1 Design errors and the number of corresponding dominated MCEs for LC-2.
Design errors No. of

corresponding
dominated MCEsCategory [5] Total Easily

detected
Unde-

tectable Testable

Control
Unit

Expression error 2 0 0 2 2
Bit width error 1 1 0 0 0

Missing assignment(s) 3 0 0 3 3
Wrong constant(s) 1 0 0 1 1

Unused signal 1 0 1 0 0
Always statement 1 1 0 0 0

Datapath
Unit

Wrong signal source(s) 3 0 0 3 1
Bit width error 2 2 0 0 0
Unused signal 1 0 1 0 0
Wrong module 1 0 0 1 1

Total 16 4 2 10 8

7

some space for justification of instructions, say 3080H. We generated manually the
10-instruction test sequence shown in Figure 3 to detect all 15 MCEs on control sig-
nals having constant values in the ADD instruction.

To get an idea about the total number of MCEs in the LC-2, we analyzed its
instruction set and found that 430 MCEs (18.9%) are testable, 763 MCEs (33.5%)

Table 2 Simulation of the instruction ADD DR, SR1, SR2: control signal values and
corresponding datapath actions.

Simulation
results

Instruction cycles
1: Fetch 2: Decode 3: Execute

Control
signal
values

read_mem_bar := 1’b0
write_mem_bar := 1’b1
load_pc_bar := 1’b1
RE1 := 1’b0
RE2 := 1’b0
WE := 1’b0
load_ir_bar := 1’b0
load_flags_bar := 1’b1
load_reg1_bar := 1’b1
load_reg2_bar := 1’b1
reg2_to_bus_bar := 1’b1
sel_ab_mux := 2’b00
R1 := SR1
R2 := SR2
W := DR

read_mem_bar := 1’b1
write_mem_bar := 1’b1
load_pc_bar := 1’b1
RE1 := 1’b1
RE2 := 1’b1
WE := 1’b0
load_ir_bar := 1’b1
load_flags_bar := 1’b1
load_reg1_bar := 1’b0
load_reg2_bar := 1’b0
reg2_to_bus_bar := 1’b1
R1 := SR1
R2 := SR2
W := DR

read_mem_bar := 1’b1
write_mem_bar := 1’b1
load_pc_bar := 1’b0
RE1 := 1’b0
RE2 := 1’b0
WE := 1’b1
load_ir_bar := 1’b1
load_flags_bar := 1’b0
load_reg1_bar := 1’b1
load_reg2_bar := 1’b1
reg2_to_bus_bar := 1’b1
zero_or_sign := 1’b1
sel_alu_mux := 1’b0
sel_rf_mux := 2’b00
sel_pc_mux := 2’b00

S3 := 1’b1
S2 := 1’b0
S1 := 1’b0
S0 := 1’b1
M := 1’b1
R1 := SR1
R2 := SR2
W := DR

Corre-
sponding
datapath
actions

MEM := MEM0
IR := MEM[PC0]
PC := PC0
FLAGS := FLAGS0
REG1 := REG10
REG2 := REG20
RF := RF0
MAR := MAR0

MEM := MEM0
PC := PC0
IR := IRP
FLAGS := FLAGS0
REG1 := RF[SR1]
REG2 := RF[SR2]
RF := RF0
MAR := MAR0

MEM := MEM0
PC := PC0 + 1
IR := IRP
FLAGS := Detect(REG1 + REG2)
REG1 := REG1P
REG2 := REG2P
RF[DR] := REG1 + REG2
MAR := MAR0

Figure 3 A test sequence for most MCEs in the ADD DR, SR1, SR2 instruction.

307A: 0010 000 100000000 LD R0, 105H
307B: 0010 001 100000001 LD R1, 106H
307C: 0101 001 001 0 00 000 AND R2, R1, R0
307D: 1010 010 100000011 LDI R2, 103H
307E: 0010 000 100000000 LD R0, 100H
307F: 0010 001 100000001 LD R1, 101H
3080: 0001 001 001 0 00 000 ADD R1, R1, R0
3081: 0011 001 100000010 ST R1, 102H
3082: 0001 011 010 0 00 010 ADD R3, R2, R2
3083: 1000 010 100000100 BRZ 104H

3100: 0000 0000 0000 0110 Data = 6
3101: 0000 0000 0000 0101 Data = 5
3102: xxxx xxxx xxxx xxxx Storage
3103: 0011 0001 0000 0100 Data = 3104H
3104: 0000 000000000000 NOP
3105: 0000 0000 0000 0001 Data = 1
3106: 0000 0000 0000 0010 Data = 2

8

are invalid, and 1085 MCEs (47.6%) are redundant.

5 Discussion

Our initial experimental results suggest that high coverage of data as well as control
errors can be obtained by a test set for MCEs. An interesting observation is that most
MCEs are either invalid or redundant—only 18.9% of the MCEs in the LC-2 are test-
able. This can significantly reduce the number of MCEs that need to be targeted by
test generation. Moreover, the MCE model proved to be especially useful for detect-
ing errors that involve missing logic—all ‘missing assignments(s)’ errors in the LC-
2 control unit are covered by tests for MCEs.

The MCE error model and validation approach are, at least in principle, expand-
able to microprocessors with instruction pipelines, multiple instruction issue, etc.
The definition of the MCE then needs to be generalized to (I,c,s,vc,ve), where I rep-
resents a sequence of one or more instructions. However, the complexity of the MCE
model increases rapidly, so the applicability of this approach remains to be seen.
Currently, we are working on automating our validation algorithm and extending it
to more complex microprocessor types.

Acknowledgments

The research presented in this paper is supported by DARPA under Contract No.
DABT63-96-C-0074.

References

[1] I. Pomeranz et al., “Generation of test cases for hardware design verification of a
super-scalar fetch processor”, Proc. Int’l Test Conf., 1996, pp. 904-913.

[2] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors”, IEEE
Transactions on Computers, Vol. C-29, pp. 429-441, June 1980.

[3] G. Al Hayek and C. Robach, “From specification validation to hardware testing:
A unified method”, Proc. IEEE Int’l Test Conf., 1996, pp. 885–893.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:
Help for the practicing programmer”, IEEE Computer, pp. 34–41, April 1978.

[5] H. Al-Asaad et al., “High-level design verification of microprocessors via error
modeling”, Digest of Papers: IEEE Int’l High-Level Design Validation and Test
Workshop, 1997, pp. 194-201.

[6] M. Postiff, LC-2 Programmer’s Reference Manual, Revision 3.1, University of
Michigan, 1996.

