AGFC: AN APPROXIMATE SIMULATION-BASED GLOBAL
FAULT COLLAPSING TOOL FOR COMBINATIONAL CIRCUITS

Hussain Al-Asaad
Department of Electrical & Computer Engineering
University of California
One Shields Avenue, Davis, CA 95616-5294
E-mail: halasaad@ece.ucdavis.edu

ABSTRACT

Exact global fault collapsing can be easily applied locally
at the logic gates, however, it is often ignored for large cir-
cuits due to its high demand of execution time and/or
memory. In this paper, we present AGFC, an approximate
global fault collapsing tool for combinational circuits.
Experimental results show that (i) AGFC reduces the num-
ber of faults drastically with feasible resources and (ii)
AGFC produces significantly better results than existing
approaches.

KEY WORDS

Global fault collapsing, fault simulation, physical fault
testing, combinational circuits.

1 Introduction

To test a digital circuit, an automatic test pattern genera-
tion (ATPG) tool generates a test set that targets possible
physical faults. As the complexity of the digital circuit
increases, the possible number of physical faults increases
that consequently leads to a significant slow down of the
test generation process using the ATPG tool. One
approach for considerably reducing the length of the test-
ing process as well as producing compact test sets is fault
collapsing. Fault collapsing [1] is the process of reducing
the number of faults by using redundance, equivalence,
and dominance relationships among faults. Exact fault col-
lapsing can be easily applied locally at the logic gates;
however, it is often not feasible to apply it globally for
large circuits.

Several researchers have worked on fault collapsing. An
algorithm was presented in [2] that collapse all the struc-
turally equivalent faults in a circuit, plus many of the func-
tionally equivalent faults. Application of the algorithm to
the ISCAS-85 benchmark circuits [3] establishes that iden-
tification of functionally equivalent faults is feasible, and
in some cases, they are a large fraction of the faults in a
circuit. However, the overall produced collapsed fault list
is still large in comparison to the global collapsed fault
list.

A graph-theoretic hierarchical fault collapsing method was
presented in [4][5] that can collapse faults in any large
cell-based circuit. Since functional analysis (equivalence
and dominance) is computationally expensive, it is only
applied to standard cells. As an example, consider the size
of the collapsed fault list for an exclusive-OR cell. Using
the method of [5], the collapsed fault list reduces to just
four faults when functional fault collapsing is considered.
With the traditional method of structural collapsing this set
contains 13 faults. When the exclusive-OR cell is used to
build an 8-bit adder circuit, the size of the collapsed fault
list produced by [5] reduces to 112 faults from a total of
466 faults. Traditional structural fault collapsing would
have given a set of 226 faults. Although a significant
reduction is achieved here, the method assumes a hierar-
chical design with a good use of standard cells. Moreover,
the size of the produced collapsed fault list is still large in
comparison to the exact global collapsed fault list.

Recently, a new diagnostic and detection fault collapsing
method was introduced for multiple-output circuits [6].
Using this method, a significant reduction in the fault list
was achieved, however, the method again assumes a hier-
archical design (such as adders and ALUs) with a good use
of small standard cells.

Efficient techniques for identifying functionally equiva-
lent faults in combinational circuits were presented in [7].
The techniques are based on implication of faulty values,
and evaluation of faulty functions in cones of dominator
gates of fault pairs. Experimental results show that most of
the equivalent fault pairs are identified. However, this
work does not aim at producing a small collapsed fault list.

In our previous work [8], we have presented a preliminary
method that produces a compact fault list—an approxima-
tion of the global collapsed fault list. Our approximate glo-
bal fault collapsing technique is based on the simulation of
random vectors. Experimental results show that our
method produced significant reduction in the size of the
collapsed fault list. However, our preliminary approximate
global fault collapsing tool (a set of scripts manipulating
several academic CAD tools) turned out to be resource
intensive and memory hungry process. Even with only
1,000 test vectors, many of the smaller benchmark circuits

required several hours to simulate.

In addition to the above, we have developed an exact glo-
bal fault collapsing tool (EGFC) for combinational circuits
[9]. EGFC uses binary decision diagrams to compute the
tests for faults and consequently achieve the global fault
collapsing. EGFC reduces the number of faults drastically
in small circuits (such as a 4-bit ALU) but it cannot be
scaled to handle large circuits.

In this paper, we describe AGFC, an efficient tool for
approximate global fault collapsing. We review fault col-
lapsing in Section 2 and present our efficient technique for
approximate fault collapsing for medium size circuits
(comparable to the ISACS-85 benchmarks [3]) and the
AGFC tool in Section 3. We present some experimental
results in Section 4 and finish with a discussion about
extending our approximate global fault collapsing method
to large combinational circuits in Section 5.

2 Fault Collapsing

In physical fault testing, physical defects are abstracted
into a logical fault model. The most widely-used logical
fault model is the Single Stuck-Line (SSL) model [1].
Under this model, every single signal line can become per-
manently fixed (stuck) at a logical 1 or O value. The model
is simple and technology-independent. It represents a large
number of different physical faults, and tests derived for
SSL faults detect many design errors/faults [10]. In this
paper, we only consider SSL faults; however, our method
is applicable to several other fault models.

Fault collapsing first removes redundant faults from the
fault list. A fault is redundant if there is no test that can
detect it. In other words, a fault is redundant if the faulty
function is the same as the correct function. Fault collaps-
ing then reduces the number of faults using two relation-
ships among faults: fault equivalence and fault dominance.
Two faults are considered equivalent if the faulty functions
produced by the two faults are equal. Alternatively, the
two faults are equivalent if they can be detected by the
same tests. In this case, there is no way to distinguish
between the two faults. For example, the SSL fault a
stuck-at O represented by a/0 in Figure 1 is equivalent to
the fault z/0. If two faults are equivalent then one of the
faults can be dropped from the fault list since the detection
of the other fault guarantees the detection of the dropped
fault.

Inputs | out- Faulty functions

a b putz [af0[a/L[b0[b/L[07| 4

0/0] 0 [0 00 0 01 I@i
of1] o [of@]o oot

1o 0 [ololoalol1

11 1 o 1 o] = [0 1

Figure 1 Fault collapsing for a 2-input AND gate.

A fault f is considered to dominate another fault g when
every test for g is also a test for f. For example, the fault z/
1 dominates the fault a/1 in Figure 1 since the only test
vector 01 for a/1 (shaded in the figure) is also a test for z/1.
If a fault f dominates a fault g, then the fault f can be
dropped from the fault list since the detection of g guaran-
tees the detection of f.

By applying fault collapsing to the AND gate in Figure 1,
we can reduce the number of faults from six to three. First,
there are no redundant faults on the AND gate that should
be dropped. Second, the faults a/0 and b/0 are dropped
since they are equivalent to z/0. Finally, the fault z/1 is
dropped since it dominates both a/1 and b/1. The collapsed
fault list is thus {a/1, b/1, z/0}. A test set that detects the
faults in the collapsed list can be derived from the table in
Figure 1 as {01, 10, 11}. This test detects all faults in the
collapsed fault list and consequently all six faults in the
AND gate.

There are two approaches to fault collapsing: local and
global. The local fault collapsing method computes the
collapsed fault list for individual gates and then collects
the collapsed fault lists for the gates to form the overall
collapsed fault list for circuit. For example, by using fault
collapsing over the gates in the circuit shown in Figure 2,
we get the results shown in the figure. Both stuck at faults
on line s (called a stem since it branches to other lines)
need to be considered because s is not an input or output of
any gate. Using local fault collapsing, we combine the
faults on the gates to form the collapsed fault list for the
circuit as {s/0, s/1, s3/0, s3/1, a/l, b/1, s,/1, c/0, d/0, z/1}.
Therefore, by using local fault collapsing we were able to
reduce the fault list from 18 to 10.

Global fault collapsing is similar to local fault collapsing,
except that we perform the same process of fault collaps-
ing on the entire circuit as opposed to individual gates. In
other words, we look for equivalent and dominance rela-
tionships among all faults in the circuit. For example, to
perform global fault collapsing for the circuit in Figure 2,
we compute a table for all faulty functions (called a fault
table) as shown in Figure 2. It is simpler to start with the
local collapsed fault list since it has less faults than the
original fault list for the circuit. We then drop faults from
the local collapsed fault list using redundance, equivalence
and dominance relationships. It is obvious that there are no
redundant faults that should be dropped. The faults s/0, b/
1, z/1 are dropped since they dominate s3/1. Also, the
faults s/1, a/1 can are dropped since they dominate s,/1.
The fault s3/0 is dropped since it is equivalent to ¢/0. The
global collapsed fault list for the circuit is thus {s,/1, s3/1,
c/0, d/0}. Hence, by using global fault collapsing we were
able to reduce the number of faults from 18 to 4. This is in
effect a 77.78% reduction from the original fault list.

Local fault collapsing can be easily scaled to large circuits.
However, global fault collapsing is often avoided due to

a G1: {s3/0, s5/1}

s G2: {a/1, s4/1, c/0}
G3: {b/1, s,/1, d/0}

b G4: {c/0, d/0, z/1}

Stem s: {s/0, s/1}

Inputs | Correct Faulty functions

s a b|outputz|s/0|s/1|s3/0s3/1{a/1|b/1|s2/1|c/0|d/0|z/1
000 0 ofofojoj1{o|O0|O]|O|1X
001 0 of1(o0|j0j1(0j12|0|0|1
010 1 110101 (1(1(|1|0]|1]|1
011 1 11110111 (|1|0]1]|1
100 0 ojofojojoj1{o0ojo0|Oo|1
101 1 o|1(1|1(|1|1|1]|1]0]1
110 0 110|021 (0|212(0|0|0]|1
111 1 11111111 |1|1]0]1

Figure 2 A simple multiplexer circuit with a list of its
gate faults and the resulting fault table.

tis not a test

Figure 3 State diagram for tracking types of faults.

the lack of resources including the expensive computa-
tions and memory needed to determine redundance, equiv-
alence and dominance relationships among the faults in
the overall circuit. In the next section, we describe our
technique for approximate global fault collapsing and the
AGFC tool.

3 Approximate Global Fault Collapsing

In this section, we describe our method of approximate
global fault collapsing. In this method, a large set of ran-
dom vectors is used to reduce the number of faults instead
of using the complete vector set for the circuit. The idea
behind approximate collapsing is that the resulting faults
after the simulation is an approximation of the faults from
exact global fault collapsing of the circuit. As more and
more vectors are applied for the simulation, the results
appear more and more similar to those of exact global fault
collapsing.

In order to identify redundant faults, our approximate glo-
bal fault collapsing method works as follows. We first
label all the faults in the circuit as redundant (r) faults
since we have no information about the detectability of the
faults. We then apply a random test vector t and determine
the faults detected by t and then update the type of every
fault. Figure 3 shows a state diagram for tracking the types
of all faults in the circuit. Note that all faults are initially in
the redundant (r) state and once a fault becomes detectable
(d) due to detection by a random test t, it remains in that
state forever.

To speed up the fault collapsing in our implementation, we
apply a packet of 32 random vectors and determine the
faults detected by the packet and then update the type of
every fault. The type of a fault changes to detectable (d) if
the fault is detected by at least one vector from the packet.
The process is repeated for several iterations until no
change is reported in the types of faults for a constant
number of random packets (we use the number 100 in our
simulation experiments).

Once the simulation of random vectors is completed, all
the likely redundant faults (which include the random-
resistant hard-to-detect faults) are removed from the over-
all fault list of the circuit and stored in a separate fault list.
Since all of the faults remaining in the circuit’s fault list
are detectable, the goal of our approximate global fault
technique becomes to eliminate faults from the list using
equivalence and dominance relationships. We introduce
the notation of a fault pair <f;, f;> to identify the relation-
ship between faults f; and f;. It is obvious that if we have n
faults in the fault list, then we have n(n-1)/2 fault
pairs.

The type of the fault pair <f;, f;> can be any of the follow-
ing:

Equivalent (e) if f; is equivalent to f;.

First dominating (f) if f; dominates f;.

Second dominating (s) if f; is dominated by f;.
Independent (i) if there is no relationship between f;
and fj.

Initially, all fault pairs are of the equivalent type (e). As
random test vectors are applied, the types of fault pairs are
updated. The process is repeated for several iterations until
no change is reported in the fault-pair types for a constant
number of random packets (we use the number 100 in our
simulation experiments). Figure 4 shows that state dia-
gram describing the possible changes of fault-pair types.
After applying a random vector t to a fault pair of type
equivalent (e), the type of the fault pair does not change if
(1) t does not detect any of the two faults in the fault pair

tis not a test for f; or f; or
tis a test for f; and f;

tis a test for f; only

tis not a test for f; or
tisatest for f; and f;

tis a test for fj only

tis a test for f; only

tis not a test for f; or
tisatest for f;and f;

tis a test for fj only

Figure 4 State diagram for tracking types of fault
pairs.

or (2) t detects both faults in the fault pair. However, if t
detects f; but not f;, then the type of the fault pair becomes
first dominating (f). Finally, if t detects f; but not f;, then
the type of the fault pair becomes second dominating (s).
Similarly, the transitions from other fault-pair types in Fig-
ure 4 can be easily explained. It is interesting to notice that
once the type of a fault pair becomes independent (i), it
remains in that type forever.

The number of fault pairs with type (e) decreases as more
random vectors are applied. On the other hand, the number
of fault pairs with type (i) increases as more random vec-
tors are applied. The number of fault pairs with types (f) or
(s) often increases at the beginning but later decreases as
more vectors are applied.

Once the simulation of random vectors is completed, the
types of fault pairs are used to eliminate faults from the
fault list according to the following rules: (1) If the type of
the fault pair <fj, f;> is equivalent (e), then eliminate either
fi or fj; (2) If the type of the fault pair is first dominating
(f), then eliminate f;; (3) If the type of the fault pair is sec-
ond dominating (s), then eliminate f;. Note that all fault
pairs with independent (i) type are discarded since they do
not help in eliminating faults from the fault list.

After the elimination of equivalent and dominating faults
from the fault list as described above, we obtain an
approximate global collapsed fault list. Now, we have to
choose what to do with the (likely) redundant faults that
we have extracted earlier. We have two possible alterna-
tives:

 Option 1: Discard the likely redundant faults. This will
speed up the test generation since no time is wasted in
targeting the redundant faults. Moreover, if the likely
redundant faults are in fact redundant, the fault cover-
age is not affected. On the other hand, if the likely
redundant faults are in fact random-resistant hard-to-
detect faults, then the coverage will be reduced by a lit-
tle percentage (that is often negligible).

e Option 2: Add the likely redundant faults to the
approximate global collapsed fault list. This will slow
down the test generation but the fault coverage will not
be affected. If the majority of the likely redundant
faults are in fact redundant, then plenty of test genera-
tion time is often wasted.

Since the goal is to produce an approximate global col-
lapsed fault list that will simplify the test generation and
since the loss in fault coverage is often negligible if we
discard the likely redundant faults, we adopt option 1 in
this paper. However, option 2 can be used if the need
arises.

Since the number of fault pairs is proportional to the
square of the number of faults, then the storage of the fault
pairs in memory become prohibitive for the largest
ISCAS-85 benchmark circuits. To solve this problem, we
first simulate a random packet and then decide on the

/* C is the circuit*/
procedure AGFC(C);
begin
Form the fault/error list L
/* Redundancy Identification */

repeat
Select a random packet P of 32 tests

Fault simulate using P on L
Update fault types (redundant or detectable)
until no change is reported in 100 random packets or
all faults are detectable
Remove faults with redundant type
/* Equivalence and dominance relationship identification
Build fault pair list

repeat
Select a random packet P of 32 tests

Fault simulate using P on L
Update types of fault pairs
until no change is reported in 100 random packets
Drop faults from the fault list according to the rules
Output the results;
end;

Figure 5 AGFC's simulation algorithm.

types of fault pairs. This allow us to skip storing fault pairs
of type (i) in memory since they are not useful in fault col-
lapsing. Moreover, during the simulation, fault pairs that
change their type to (i) are automatically removed from
memory. It should be noted that most fault pairs will ulti-
mately be identified as of type (i). For example, out of
29,718,195 possible fault pairs in the ISCAS-85 circuit
€6288 [3], there are at least 29,658,213 fault pairs of type
(i). So, only 0.2% of the fault pairs are useful in determin-
ing the collapsed fault list and this is the same set of fault
pairs that remain in memory at the end of the simulation.

In addition to the above, we can further limit the memory
needed for the storage of fault pairs by enforcing a maxi-
mum value on the number of fault pairs that can be stored
in memory. Once the fault pairs are initiated, they are
stored in memory until the maximum value is reached. We
then simulate a random packet to identify fault pairs of
type (i) that are residing in memory. Consequently, these
fault pairs are removed from memory and a new batch of
fault pairs are initiated that can be stored in memory. The
process is repeated until all fault pairs are processed.

The above techniques enabled us to handle the largest
ISCAS-85 benchmark circuits. In order to handle even
larger circuits, other techniques (to be described in Section
5) can be used.

Our AGFC tool implements the techniques presented in
this section for the elimination of faults from the fault list.
AGFC is written using C++ in approximately 5600 lines
of code. Its simulation algorithm (a simplified version) is
shown in Figure 5. The fault simulation engine used
within AGFC is the same as the error simulator tool ESIM
[12]. The fault simulation engine is a novel combination of
parallel-pattern evaluation, multiple fault/error activation,

single fault propagation, and critical path tracing.

4 Experimental results

We now describe experimental results that illustrate the
capabilities of AGFC. The circuits used in the experiments
are the ISCAS-85 benchmark circuits [3] as well as few

circuits from the 74X TTL IC series [11].

The approximate global fault collapsing results for the
above considered circuits are shown in Table 1. The first
column in the table reports the circuit name. The next col-
umn reports the possible number of SSL faults (twice the
number of lines in the circuit). The next two columns
report the number of inputs and outputs in the circuit,
respectively. The next column reports the number of SSL
faults reported by the netlist which is often the local col-
lapsed fault list of the circuit. The next column reports the
number of random packets used by AGFC. It should be
clear that the number of packets should be at least 100
since this is the condition needed to stop the simulation.
The next column reports the number of (likely) redundant
faults reported by AGFC and the actual number of redun-
dant faults. It should be noted that AGFC likely redundant
faults are in most cases the same as the actual redundant
faults. For the ¢2670 circuit, there is a big difference due
to the large number of inputs to the circuit. The next four
columns in the table report the number of fault pairs at the
end of the simulation in each of the four fault pair types. It
is interesting to note that most of the fault pairs are proved
to be independent. The next two columns in the table
report the approximate global collapsed fault list size (and
percentage from total faults) produced by AGFC. It is
clear that the size of the AGFC fault list can be as low as
11.54% of the total faults which corresponds to 88.46%
reduction in the fault list. The AGFC fault list size actually
produced the exact global collapsed fault list for the cir-
cuits with a shaded AGFC fault list size. This is estab-

lished using EGFC [9], a tool that can produce the exact
global collapsed fault list for small-size circuits. For the
other circuits, we cannot determine at this time how far
our AGFC fault list size from the exact global collapsed
fault list. The next column in the table shows the execution
time in seconds for a sample run on a Dell computer (2.2
GHz Pentium 11, 512MB of RAM) running Windows XP.
It should be noted that the time varies from one run to
another since it depends on the quality of the generated
random vectors. The last column in the table shows the
best known collapsed fault list size from other researchers.
It should be clear that our method produced way better
results in comparison to prior work.

Our AGFC tool was not able to compute the approximate
global collapsed fault list for the circuit c7552. AGFC ter-
minated (after running for a long time) once a sequence of
100 random vectors did not produce any further changes to
the fault pairs. The generated random vectors were not
sufficient to identify a lot of the fault pairs of type (i) and
the remaining fault pairs were not capable of collapsing
the fault list. However, if more time is allowed and a stop
limit greater than 100 is used, we are certain that AGFC
can produce the collapsed fault list.

It is obvious from Table 1 that the execution time of
AGFC for the large ISCAS-85 circuits is high. This is jus-
tified since global fault collapsing has exponential com-
plexity. Moreover, our AGFC tool is a preliminary tool
that can be further optimized to speed up the fault collaps-
ing.

It may be the case that the execution time of AGFC is
longer than the ATPG applied on a non collapsed fault list.
So, where is the advantage of using AGFC? The collapsed
fault list is computed once for every desigh module and it
can be stored with the module in a design library. For large
designs with multiple modules from the design library, the

Table 1 Approximate global fault collapsing results for the considered ISACS-85 and TTL circuits.

- Circuit .| AGFC | AGFC No. of fault pairs at end AGFC

Circuit Possglt)le characteristics Nseélll_st rgr?dgrfn recfi:lTlc:gnt of simuplation fault list eggulf[i%n %g”ﬁﬂ?setd

faults | Inputs | Outputs | faults | ooyers | actual) | © | @ (s) (i) |Size| % time in[4]
c17 34 5 2 22 103 0 (0) 1 18 25 187 | 11 |32.36] 0.04 16
c432 864 36 7 524 555 4 (4) 69 | 1962 | 4508 | 128401 | 152 |17.60| 19.62 449
c499 998 41 32 758 475 8(8) 28 | 1892 | 7164 | 271791 | 438 |43.89| 18.19 706
€880 | 1760 60 26 942 2905 1(0) 63 | 1645 | 1466 | 439096 | 498 |28.30| 321.28 N/A
cl355 | 2710 41 32 1574 700 8 (8) 756 | 11812 | 11972 | 1200855 | 462 |17.05| 259.89 1210
c1908 | 3816 33 25 1879 | 2597 9(9) 581 | 12316 | 19461 | 1715157 | 524 |13.73| 1769.14 1566
c2670 | 5340 233 140 | 2747 | 1971 | 429(117) | 1266 | 12693 | 35407 | 2636037 | 802 |15.02| 3211.66 | 2317
€3540 | 7080 50 22 3428 | 5848 | 142 (137) | 925 | 21563 | 22110 | 5352657 |1234|17.43|10802.78 | 2786
€5315 | 10630 178 123 5350 | 5031 59 (59) 937 | 25175 | 21357 |13947226|1781 |16.75| 24844.24 | 4492
c6288 | 12576 32 32 7744 | 329 34 (34) |4491 | 23101 | 32390 (29658213|2202 |17.51 | 2689.49 5824
c7552 | 15104 | 207 108 | 7550 | 8693 | 132 (131) | 7102 |393024|288017|26821510| Fail | N/A |106984.50| 6132
7485 234 11 3 137 118 0(0) 12 362 406 8536 48 (20.51| 0.48 N/A
74181 | 398 14 8 237 158 0 (0) 26 | 709 | 1096 | 26135 | 81 |20.35| 1.19 N/A
74283 | 208 9 5 128 141 0 (0) 22 373 524 7209 24 |11.54| 0.46 N/A

faults of the modules can be added together to form the
fault list of the overall design. ATPG execution time for
large designs with multiple modules will eventually sur-
pass the execution time of fault collapsing for the individ-
ual modules.

5 Conclusions

AGFC is a approximate global fault collapsing tool for
combinational circuits. It is based on a novel combination
of parallel-pattern evaluation, multiple fault activation,
single fault propagation, critical path tracing, and random
simulation. The experiments reported here show that
AGFC is relatively fast. They also confirm a number of
interesting observations such as: (1) AGFC produced a
small collapsed fault list that matches the exact global col-
lapsed fault list for small circuits, (2) the ratio of the
AGFC fault list to the total number of circuit faults can be
as low as 11.54%, and (3) our method produced better
results in comparison to prior work.

When circuits do become huge in size, the process of
approximate global collapsing of faults eventually
becomes tedious and time consuming. A method for expe-
diting the process of global fault collapsing is to take the
middle ground between global and local fault collapsing.
In this hybrid process, we take a complex circuit and parti-
tion it into smaller modular components. We then perform
approximate global fault collapsing for each of the compo-
nents using AGFC so that we end up with a list of the
remaining faults that characterize each of the components.
Once this is accomplished, we recombine the entire circuit
and target all the collapsed fault lists from each of the
components. The premise is that the combined collapsed
fault lists of the components produces an approximation of
the globally collapsed fault list.

To illustrate the advantage of the above hybrid process,
assume that an arbitrary large design is partitioned into k
modules each with n/k faults, where n is the number
faults in the large design. Instead of analyzing n(n-1)/2
fault pairs, AGFC needs to analyze (n/k)((n/k)-1)/2
fault pairs for each module. So, the overall number of fault
pairs that need to be analyzed by AGFC is approximately
the total number of fault pairs divided by k. So, a signifi-
cant speedup can be achieved by AGFC as a result of par-
titioning the design.

To further speed up the fault collapsing, components can
be simulated in parallel on different computers. When the
simulation of all the components are completed and their
collapsed fault lists are determined, the overall collapsed
fault list of the circuit can then be constructed. Moreover,
a library of components with their collapsed fault lists can
be constructed so that it can be used for other designs.

In summary, there are two methods for collapsing the
faults in a circuit. Local fault collapsing is simple to
implement, but does not reduce the faults as efficiently as

exact global fault collapsing. Global fault collapsing is
highly desirable, but it requires extensive resources in
terms of time and memory. In this paper, we have pre-
sented an approximate global fault collapsing tool which
produces a more compact fault list—an approximation of
the global collapsed fault list. Experimental results com-
paring our method to prior research show that our method
achieves significantly better results.

Acknowledgment

This material is based upon work supported by the
National Science Foundation under Grant No. 0092867.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,
Digital Systems Testing and Testable Design, IEEE
Press, New Jersey, 1994.

[2] A. Lioy, “Advanced fault collapsing”, IEEE Design
and Test of Computers, Vol. 9, NO. 1, pp. 64-71,
March 1992.

[3] F. Brglez and H. Fujiwara, “A neutral netlist of 10
combinational benchmark circuits and a target trans-
lator in fortran”, Proc. International Symposium on
Circuits and Systems, 1985, pp. 695-698.

[4] A.V.S.S.Prasad, V.D. Agrawal, and M. V. Atre, “A
new algorithm for global fault collapsing into equiva-
lence and dominance sets”, Proc. International Test
Conference, 2002, pp. 391-397.

[5] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre,
“Fault collapsing via functional dominance”, Proc.
International Test Conference, 2003, pp. 274-280.

[6] R. Sandireddy and V. D. Agrawal, “Diagnostic and
detection fault collapsing for multiple output cir-
cuits”, Proc. Design, Automation and Test in Europe,
2005, pp. 1014-1019.

[71 M. E. Amyeen et al., “Fault equivalence identifica-
tion in combinational circuits using implication and
evaluation techniques”, IEEE Transactions on CAD,
Vol. 22, pp. 922-936, July 2003.

[8] H.Al-Asaad and R. Lee, “Simulation-Based Approx-
imate Global Fault Collapsing”, Proc. International
Conference on VLSI, 2002, pp. 72-77.

[9]1 H. Al-Asaad, “EGFC: An exact global fault collaps-
ing tool for combinational circuits”, Proc. IASTED
conference on Circuits, Signals, and Systems, 2005,
pp. 56-61.

[10] H. Al-Asaad and J. P. Hayes, “Logic design verifica-
tion via simulation and automatic test pattern
generation”, Journal of Electronic Testing: Theory
and Applications, Vol. 16, No. 6, pp. 575-589,
December 2000.

[11] Texas Instruments, The TTL Logic Data Book, Dallas,
1988.

[12] H. Al-Asaad and J. P. Hayes, “ESIM: A multimodel
design error and fault simulator for logic circuits”,
Proc. IEEE VLSI Test Symposium, 2000, pp. 221-228.

