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Abstract
Fault collapsing is the process of reducing the number

of faults by using redundance and equivalence/dominance
relationships among faults. Exact fault collapsing can be
easily applied locally at the logic gates, however, it is
often ignored for most circuits, due to its high demand of
resources such as execution time and/or memory. In this
paper, we present EGFC, an exact global fault collapsing
tool for combinational circuits. EGFC uses binary deci-
sion diagrams to compute the tests for faults and conse-
quently achieve efficient global fault collapsing.
Experimental results show that EGFC reduces the number
of faults drastically with feasible resources.

Keywords: Global fault collapsing, fault simulation, physi-
cal fault testing.

1  Introduction
To test a digital circuit, an automatic test pattern gener-

ation (ATPG) tool generates a test set that targets possible
physical faults. As the complexity of the digital circuit
increases, the possible number of physical faults increases
that consequently leads to a significant slow down of the
test generation process using the ATPG tool. One
approach for considerably reducing the length of the test-
ing process as well as producing compact test sets is fault
collapsing. Fault collapsing [1] is the process of reducing
the number of faults by using redundance, equivalence,
and dominance relationships among faults. Exact fault
collapsing can be easily applied locally at the logic gates;
however, it is often not feasible to apply it globally for
most circuits.

Several researchers have worked on fault collapsing.
An algorithm was presented in [2] that collapse all the
structurally equivalent faults in a circuit, plus many of the
functionally equivalent faults. Application of the algo-
rithm to the ISCAS-85 benchmark circuits [3] establishes
that identification of functionally equivalent faults is fea-
sible, and in some cases, they are a large fraction of the

faults in a circuit. However, the overall produced col-
lapsed fault list is still large in comparison to the global
collapsed fault list.

A graph-theoretic hierarchical fault collapsing method
was presented in [4][5] that can collapse faults in any large
cell-based circuit. Since functional analysis (equivalence
and dominance) is computationally expensive, it is only
applied to standard cells. As an example, consider the size
of the collapsed fault list for an exclusive-OR cell. Using
the method of [5], the collapsed fault list reduces to just
four faults when functional fault collapsing is considered.
With the traditional method of structural collapsing this
set contains 13 faults. When the exclusive-OR cell is used
to build an 8-bit adder circuit, the size of the collapsed
fault list produced by [5] reduces to 112 faults from a total
of 466 faults. Traditional structural fault collapsing would
have given a set of 226 faults. Although a significant
reduction is achieved here, the method assumes a hierar-
chical design with a good use of standard cells. Moreover,
the size of the produced collapsed fault list is still large in
comparison to the exact global collapsed fault list.

Efficient techniques for identifying functionally equiv-
alent faults in combinational circuits were presented in
[6]. The techniques are based on implication of faulty val-
ues, and evaluation of faulty functions in cones of domina-
tor gates of fault pairs. Experimental results show that
most of the equivalent fault pairs are identified. However,
this work does not aim at producing a small collapsed
fault list.

In our previous work [7], we have presented a prelimi-
nary method that produces a compact fault list—an
approximation of the global collapsed fault list. Our
approximate global fault collapsing technique is based on
the simulation of random vectors. Experimental results
show that our method produced significant reduction in
the size of the collapsed fault list. However, our prelimi-
nary approximate global fault collapsing tool (a set of
scripts manipulating several academic CAD tools) turned
out to be resource intensive and memory hungry process.
Even with only 1,000 test vectors, many of the smaller
benchmark circuits required several hours to simulate.
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In this paper, we describe EGFC, an efficient tool for
exact global fault collapsing. We review fault collapsing in
Section 2 and present our efficient technique for exact
fault collapsing and the EGFC tool in Section 3. We
present some experimental results in Section 4 and finish
with our conclusions in Section 5.

2  Fault Collapsing 

In physical fault testing, physical defects are abstracted
into a logical fault model. The most widely-used logical
fault model is the Single Stuck-Line (SSL) model [1].
Under this model, every single signal line can become per-
manently fixed (stuck) at a logical 1 or 0 value. The model
is simple and technology-independent. It represents a large
number of different physical faults, and tests derived for
SSL faults detect many design errors/faults. In this paper,
we only consider SSL faults; however, our method is
applicable to several other fault models.

Fault collapsing first removes redundant faults from the
fault list. A fault is redundant if there is no test that can
detect it. In other words, a fault is redundant if the faulty
function is the same as the correct function. Fault collaps-
ing then reduces the number of faults using two relation-
ships among faults: fault equivalence and fault dominance.
Two faults are considered equivalent if the faulty functions
(for the case of a single-output circuit) produced by the
two faults are equal. Alternatively, the two faults are
equivalent if they can be detected by the same tests. In this
case, there is no way to distinguish between the two faults.
For example, the SSL fault a stuck-at 0 represented by a/0
in Figure 1 is equivalent to the fault z/0. If two faults are
equivalent then one of the faults can be dropped from the
fault list since the detection of the other fault guarantees
the detection of the dropped fault.

A fault f is considered to dominate another fault g when
every test for g is also a test for f. For example, the fault z/
1 dominates the fault a/1 in Figure 1 since the only test
vector 01 for a/1 (shaded in the figure) is also a test for z/1.
If a fault f dominates a fault g, then the fault f can be

dropped from the fault list since the detection of g guaran-
tees the detection of f. 

By applying fault collapsing to the AND gate in Figure
1, we can reduce the number of faults from six to three.
First, there are no redundant faults on the AND gate that
should be dropped. Second, the faults a/0 and b/0 are
dropped since they are equivalent to z/0. Finally, the fault
z/1 is dropped since it dominates both a/1 and b/1. The
collapsed fault list is thus {a/1, b/1, z/0}. A test set that
detects the faults in the collapsed list can be derived from
the table in Figure 1 as {01, 10, 11}. This test detects all
faults in the collapsed fault list and consequently all six
faults in the AND gate.

There are two approaches to fault collapsing: local and
global. The local fault collapsing method computes the
collapsed fault list for individual gates and then collects
the collapsed fault lists for the gates to form the overall
collapsed fault list for circuit. For example, by using fault
collapsing over the gates in the circuit shown in Figure 2,
we get the results shown in the figure. Both stuck at faults
on line s (called a stem since it branches to other lines)
need to be considered because s is not an input or output of
any gate. Using local fault collapsing, we combine the
faults on the gates to form the collapsed fault list for the
circuit as {s/0, s/1, s3/0, s3/1, a/1, b/1, s2/1, c/0, d/0, z/1}.
Therefore, by using local fault collapsing we were able to
reduce the fault list from 18 to 10.

Global fault collapsing is similar to local fault collaps-
ing, except that we perform the same process of fault col-
lapsing on the entire circuit as opposed to individual gates.
In other words, we look for equivalent and dominance
relationships among all faults in the circuit. For example,
to perform global fault collapsing for the circuit in Figure
2, we compute a table for all faulty functions (called a
fault table) as shown in Figure 2. It is simpler to start with
the local collapsed fault list since it has less faults than the
original fault list for the circuit. We then drop faults from
the local collapsed fault list using redundance, equivalence
and dominance relationships. It is obvious that there are no
redundant faults that should be dropped. The faults s/0, b/
1, z/1 are dropped since they dominate s3/1. Also, the
faults s/1, a/1 can are dropped since they dominate s2/1.
The fault s3/0 is dropped since it is equivalent to c/0. The
global collapsed fault list for the circuit is thus {s2/1, s3/1,
c/0, d/0}. Hence, by using global fault collapsing we were
able to reduce the number of faults from 18 to 4. This is in
effect a 77.78% reduction from the original fault list.

Local fault collapsing can be easily scaled to large cir-
cuits. However, global fault collapsing is often avoided
due to the lack of resources including the expensive com-
putations and memory needed to determine redundance,
equivalence and dominance relationships among the faults
in the overall circuit. In the next section, we describe our
technique for exact global fault collapsing and the EGFC
tool.

a

b
zG1

Figure 1  Fault collapsing for a 2-input AND gate.

Inputs Correct 
function (z)

Faulty functions
a b a/0 a/1 b/0 b/1 z/0 z/1
0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1
1 1 1 0 1 0 1 0 1



3

3  Exact Global Fault Collapsing
In this section, we determine the conditions needed to

establish redundance, equivalence, and dominance. For
this purpose, let us consider a combinational circuit C with
n inputs, m outputs, and k faults. Let the n inputs of C be
represented as X = xn–1...x1x0. Also, let the m outputs of C
be represented as Y = ym–1...y1y0. For every fault f of C, we
define the function T as follows:

where yi(X,c) is the correct (fault-free) function of output i
and yi(X,f) is the faulty function of output i in the presence
of f. In fact, the function T specifies whether an input X is
a test for f or not as follows:

 if X is a test for f
 if X is not a test for f

As a consequence of the above, a fault f is redundant if and
only if . This translates to:

which ultimately leads to  for every i.
So, to prove that a fault f is redundant, we need to compute
the faulty functions of the outputs and show that they
match the correct (fault-free) functions of the correspond-
ing outputs.

The equivalence relationship between two faults f and g
is defined as: . For the case of a single-
output circuit (m = 1), the above equation reduces to

. So, the two faults f and g are equiva-
lent if they have the same faulty function (as discussed in
Section 2). However, for the case of multi-output circuit, if
the faulty functions are equivalent for every output, then
the two faults are equivalent. However, the converse is not
necessarily true.

The dominance relationship between a fault f and a
fault g is defined as follows:

In other words, there is no test for g that is not a test for f.
So, to prove that f dominates g, we need to compute the
function  and prove that it
is identical to zero. Similarly, to prove that g dominates f,
we need to compute the function

 and prove that it is identi-
cal to zero.

It can be easily shown that if f dominates g and g domi-
nates f, then f is equivalent to g. The proof is as follows:

Hence, f is equivalent to g. Based on the above, we need to
compute the two functions  and 
and determine the relationship between f and g as follows:

•  & : f is equivalent to
g.

•  & : f dominates g.

•  & : g dominates f.

•  & : f is not related
to g.

Once the relationship between f and g is established, we
can possibly drop a fault as follows:

Figure 2  A simple multiplexer circuit with a list of its 
gate faults and the resulting fault table.

Inputs Correct 
output z

Faulty functions

s a b s/0 s/1 s3/0 s3/1 a/1 b/1 s2/1 c/0 d/0 z/1

0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 0 1 0 0 0 1
1 0 1 1 0 1 1 1 1 1 1 1 0 1
1 1 0 0 1 0 0 1 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1

ca
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s3 z

s2

s1s
G4

G2

G3

G1

Gate G1: {s3/0, s3/1}
Gate G2: {a/1, s3/1, c/0}
Gate G3: {b/1, s2/1, d/0}
Gate G4: {c/0, d/0, z/1}
Stem s: {s/0, s/1}

T X f,( ) yi X c,( ) yi X f,( )⊕( )
i 0=

m 1–

∑=

T X f,( ) 1=

T X f,( ) 0=

T X f,( ) 0≡

T X f,( ) yi X c,( ) yi X f,( )⊕( )
i 0=

m 1–

∑ 0≡=

yi X f,( ) yi X c,( )≡

T X f,( ) T X g,( )≡

y0 X f,( ) y0 X g,( )=

f  dominates  g T X f,( )T X g,( ) 0≡⇔

Dfg X f g, ,( ) T X f,( )T X g,( )=

Dgf X f g, ,( ) T X f,( )T X g,( )=

f  dominates  g T X f,( )T X g,( ) 0≡⇔

g  dominates  f T X f,( )T X g,( ) 0≡⇔

T X f,( )T X g,( ) T X f,( )T X g,( )+( ) 0≡
T X f,( ) T X g,( )⊕ 0≡

T X f,( ) T X g,( )≡

Dfg X f g, ,( ) Dgf X f g, ,( )

Dfg X f g, ,( ) 0≡ Dgf X f g, ,( ) 0≡

Dfg X f g, ,( ) 0≡ Dgf X f g, ,( ) 0≠( )

Dfg X f g, ,( ) 0≠ Dgf X f g, ,( ) 0≡

Dfg X f g, ,( ) 0≠ Dgf X f g, ,( ) 0≠( )
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• If f is equivalent to g then drop f or g. 
• If f dominates g then drop f.
• If g dominates f then drop g.
• If f is not related to g then no fault is dropped.

In order to produce the collapsed fault list, we need to
compute the functions , , and

. We use reduced ordered binary decision dia-
grams (ROBDDs) [8] in the computations of functions.
This is the case since ROBDDs is a compact canonical
representation that can be easily manipulated. Moreover,
algorithms for ROBDD operations are well studied and are
widely used in various research fields including test, syn-
thesis, and verification.

In using ROBDDs, there is a trade-off between the
computation time of functions and the memory needed for
the computations. Our EGFC tool stores all ROBDDs for
internal signals so that it can compute the functions

, , and  as quickly as pos-
sible. EGFC can be easily modified so that it uses less
memory on the expense of more execution time.

Our EGFC tool implements the techniques presented
above for the elimination of faults from the fault list.
EGFC is written using C++ in approximately 7000 lines of
code. A simplified view of its main algorithm is shown in
Figure 3.

4  Experimental Results
We now describe experimental results that illustrate the

capabilities of EGFC. The circuits used in the experiments
are the ISCAS-85 benchmark circuit c17 [3], 2-input
MUX, 4-input MUX, a 3-input majority circuit, a circuit
r10 with few redundant faults, as well as three circuits
from the 74X TTL IC series [9]. A sample run of the
EGFC tool on the 74283 4-input ripple carry adder is
shown in Figure 4.

The exact global fault collapsing results for the above
considered circuits are shown in Table 1. The first column

in the table reports the circuit name. The next column
reports the possible number of SSL faults (twice the num-
ber of lines in the circuit). The next two columns report the
number of inputs and outputs in the circuit, respectively.
The next column reports the number of SSL faults
reported by the netlist which is often the local collapsed
fault list of the circuit. The next three columns report the
number of faults removed via redundance, equivalence,

T X f,( ) Dfg X f g, ,( )
Dgf X f g, ,( )

T X f,( ) Dfg X f g, ,( ) Dgf X f g, ,( )

 
Table 1  Exact global fault collapsing results for the considered circuits.

Circuit
Possible

SSL
faults

Circuit 
characteristics

Netlist
SSL 
faults

Faults 
removed via 
redundance

Faults 
removed via 
equivalence

Faults 
removed via 
dominance

EGFC collapsed 
fault list

EGFC
execution 

timeInputs Outputs Size %

c17 34 5 2 22 0 0 11 11 32.36 0.64

2-input multiplexer 18 3 1 18 0 6 8 4 22.22 0.16

4-input multiplexer 46 6 1 46 0 15 19 12 26.09 1.59

3-input majority circuit 26 3 1 26 0 9 11 6 23.08 0.29

r10 (redundant circuit) 20 3 1 20 2 10 4 4 20.00 0.12

7485 (4-bit comparator) 234 11 3 137 0 10 79 48 20.51 654.83

74181 (4-bit ALU) 398 14 8 237 0 0 156 81 20.35 17101.61

74283 (4-bit adder) 208 9 5 128 0 12 92 24 11.54 140.21

/* C is the circuit*/
procedure EGFC(C);
begin

Build fault-free ROBDDs
Form the fault/error list L
/* Redundancy Identification */
for every fault f in fault list L
begin

Determine if f is redundant (using ROBDDs)
Remove f from fault list L if it is redundant

end
/* Equivalence and dominance relationship identification
for every fault f in fault list L
begin

for every fault g in fault list L
begin

Using ROBDDs, determine C1 = (f dominates g)
Using ROBDDs, determine C2 = (g dominates f)
if C1 = true and C2 = true then 
begin

The faults f and g are equivalent
Mark f for deletion

end
else if C1 = true then Mark f for deletion
else if C2 = true then Mark g for deletion

end
end
Remove marked faults from fault list
Output the results

end;

Figure 3  EGFC main algorithm.
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and dominance, respectively. The next two columns in the
table report the exact global collapsed fault list size (and
percentage from total faults) produced by EGFC. It should
be noted that the size of the EGFC fault list can be as low
as 11.54% of the total faults which corresponds to 88.46%
reduction in the fault list. The final column in the table
shows the execution time (in seconds) of EGFC for the
given circuit using an HP 9000/785 Workstation (400MHz
and 256MB).

Our EGFC tool was not able to compute the exact glo-
bal collapsed fault list for larger ISCAS-85 benchmark cir-
cuits since the memory needed for building the ROBDDs
is more than the physical memory of the used workstation.
However, more results can be obtained using a better
machine (with a large physical memory).

5  Conclusions
EGFC is a exact global fault collapsing tool for combi-

national circuits. It computes the tests for a given fault
using ROBDDs and then eliminates faults using redun-
dance, equivalence, and dominance. The experiments
reported here show a number of interesting observations:
(1) EGFC is relatively fast, (2) EGFC produced a small
collapsed fault list; and (3) the ratio of the EGFC fault list
to the total number of circuit faults can be as low as
11.54%.

Several aspects of EGFC remain to be investigated. For
example, we need to enhance the implementation of
EGFC so that it needs less memory and execution time
and consequently produce fault collapsing results for the
large ISCAS-85 circuits.

When circuits do become huge in size, the process of
exact global collapsing of faults eventually becomes
tedious and time consuming. A method for expediting the
process of global fault collapsing is to take the middle
ground between global and local fault collapsing. In this
hybrid process, we take a complex circuit and partition it
into smaller modular components. We then perform global
fault collapsing for each of the components using EGFC
so that we end up with a list of the remaining faults that
characterize each of the components. Once this is accom-
plished, we recombine the entire circuit and target all the
collapsed fault lists from each of the components. The
premise is that the combined collapsed fault lists of the
components produces an approximation of the globally
collapsed fault list.

One benefit of this process is time. We initially perform
global fault collapsing on smaller simpler circuits (compo-
nents) and this process can be performed in parallel on dif-
ferent computers. When the fault collapsing of every
component is completed, then the overall collapsed fault
list of the circuit can be constructed. Moreover, a library of
components with their collapsed fault lists can be con-
structed so that it can be used for other designs.

Figure 4  Output generated by a sample run of 
EGFC.

EGFC Copyright 2005
Programmer: Hussain Al-Asaad

Gates = 104
================================= 
  Gtype Ngates Mxfin  Mxfout
================================= 
  nand   4   2    7
  and   14   5    1
  nor   8   5    5
  or   0   0    0
  xor   4   2    0
  xnor   0   0    0
  inpt   9   0    2
  from   59   1    1
  not   6   1    5
  buff   0   0    0
  GND   0   0    0
  VDD   0   0    0
  dff   0   0    0
================================= 
Levels = 6
Inputs = 9
Outputs = 5
Stems = 22
Tests = 12

Redundant Fault Identification
==============================

Redundant Faults: 

Equivalent and Dominant Fault Identification
====================================

Equivalent and Dominant Faults:

2inpt Stuck_at_0
......
102xor Stuck_at_0
103xor Stuck_at_0

Global Collapsed Fault List
===========================

Remaining Faults:

Gate: 6from    Fault Type:Stuck_at_0
Gate: 7from    Fault Type:Stuck_at_1
.........
Gate: 88and    Fault Type:Stuck_at_0

=====================================
============SUMMARY RESULTS=========
=====================================
Possible Faults   = 208
Existing Faults   = 128
Redundant Faults  = 0
Faults Removed via Equivalence = 12
Faults Removed via Dominance = 92
Remaining Faults  = 24

Total Execution Time = 140.21



6

Acknowledgements
This material is based upon work supported by the

National Science Foundation under Grant No. 0092867.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,

Digital Systems Testing and Testable Design (Com-
puter Science Press, New York, 1990).

[2] A. Lioy, Advanced fault collapsing, IEEE Design and
Test of Computers, 9(1), 1992, 64-71.

[3] F. Brglez and H. Fujiwara, A neutral netlist of 10
combinational benchmark circuits and a target trans-
lator in fortran, Proc. International Symposium on
Circuits and Systems, 1985, 695-698.

[4] A. V. S. S. Prasad, V. D. Agrawal, and M. V. Atre, A
new algorithm for global fault collapsing into equiva-
lence and dominance sets, Proc. International Test
Conference, 2002, 391-397.

[5] V. D. Agrawal, A. V. S. S. Prasad, and M. V. Atre,
Fault collapsing via functional dominance, Proc.
International Test Conference, 2003, 274-280.

[6] M. E. Amyeen et al., Fault equivalence identification
in combinational circuits using implication and eval-
uation techniques, IEEE Transactions on CAD, 22
(7), 2003, 922-936.

[7] H. Al-Asaad and R. lee, Simulation-based approxi-
mate global fault collapsing, Proc. International
Conference on VLSI, 2002, 72-77.

[8] R. Bryant, Graph-based algorithms for boolean func-
tion manipulation, IEEE Transactions on Computers,
C-35(8), 1986, 677-691.

[9] Texas Instruments, The TTL Logic Data Book (Texas
Instruments, Dallas, 1988).


