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Abstract—Fault collapsing is the process of reducing
the number of faults by using redundance and equiva-
lence/dominance relationships among faults. Exact glo-
bal fault collapsing can be easily applied locally at the
logic gates, however, it is often ignored for library
modules due to its high demand of resources such as
execution time and/or memory. In this paper, we
present an efficient and exact global fault collapsing
method for library modules that uses both binary deci-
sion diagrams and fault simulation with random vec-
tors. Experimental results show that the new method
reduce the number of faults drastically with feasible
resources and produce significantly better results than
existing approaches.

Keywords: Global fault collapsing, fault simulation,
testing, combinational circuits.

1  INTRODUCTION
To test a digital circuit, an automatic test pattern

generation (ATPG) tool generates a test set that targets
possible physical faults. As the complexity of the digi-
tal circuit increases, the possible number of physical
faults increases that consequently leads to a significant
slow down of the test generation process using the
ATPG tool. One approach for considerably reducing
the length of the testing process as well as producing
compact test sets is fault collapsing. Fault collapsing
[1] is the process of reducing the number of faults by
using redundance, equivalence, and dominance rela-
tionships among faults. Exact fault collapsing can be
easily applied locally at the logic gates; however, it is
often not feasible to apply it globally for large circuits.

Several researchers have worked on fault collapsing.
An algorithm was presented in [2] that collapse all the
structurally equivalent faults in a circuit, plus many of
the functionally equivalent faults. Application of the
algorithm to the ISCAS-85 benchmark circuits [3]
establishes that identification of functionally equivalent
faults is feasible, and in some cases, they are a large
fraction of the faults in a circuit. However, the overall
produced collapsed fault list is still large in comparison
to the global collapsed fault list.

A graph-theoretic hierarchical fault collapsing
method was presented in [4][5] that can collapse faults
in any large cell-based circuit. Since functional analysis
(equivalence and dominance) is computationally
expensive, it is only applied to standard cells. As an
example, consider the size of the collapsed fault list for

an exclusive-OR cell. Using the method of [5], the col-
lapsed fault list reduces to just four faults when func-
tional fault collapsing is considered. With the
traditional method of structural collapsing this set con-
tains 13 faults. When the exclusive-OR cell is used to
build an 8-bit adder circuit, the size of the collapsed
fault list produced by [5] reduces to 112 faults from a
total of 466 faults. Traditional structural fault collaps-
ing would have given a set of 226 faults. Although a
significant reduction is achieved here, the method
assumes a hierarchical design with a good use of stan-
dard cells. Moreover, the size of the produced collapsed
fault list is still large in comparison to the exact global
collapsed fault list.

Recently, a new diagnostic and detection fault col-
lapsing method was introduced for multiple-output cir-
cuits [12]. Using this method, a significant reduction in
the fault list was achieved, however, the method again
assumes a hierarchical design (such as adders and
ALUs) with a good use of small standard cells.

Efficient techniques for identifying functionally
equivalent faults in combinational circuits were pre-
sented in [6]. The techniques are based on implication
of faulty values, and evaluation of faulty functions in
cones of dominator gates of fault pairs. Experimental
results show that most of the equivalent fault pairs are
identified. However, this work does not aim at produc-
ing a small collapsed fault list.

In our previous work [7], we have presented a pre-
liminary method that produces a compact fault list—an
approximation of the global collapsed fault list. Our
approximate global fault collapsing technique is based
on the simulation of random vectors. Experimental
results show that our method produced significant
reduction in the size of the collapsed fault list. How-
ever, our preliminary approximate global fault collaps-
ing tool (a set of scripts manipulating several academic
CAD tools) turned out to be resource intensive and
memory hungry process. Even with only 1,000 test vec-
tors, many of the smaller benchmark circuits required
several hours to simulate.

Recently, we have further introduced two new meth-
ods for global fault collapsing: an exact method
(EGFC-BDD) using binary decision diagrams [8], and
an approximate method (AGFC) using fault simulation
with random vectors [9]. We describe these methods in
Section 2. In Section 3, we present our new efficient
method of exact global fault collapsing (EGFC-HYB)
that uses both binary decision diagrams and fault simu-
lation with random vectors. The method integrates
EGFC-BDD and AGFC to take the advantages of both
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and consequently produce fast exact global fault col-
lapsing. The section also presents some experimental
results. Finally, we conclude the paper in Section 4 and
present some comparisons and possible extensions.
2  FAULT COLLAPSING 

In physical fault testing, physical defects are
abstracted into a logical fault model. The most widely-
used logical fault model is the Single Stuck-Line (SSL)
model [1]. Under this model, every single signal line
can become permanently fixed (stuck) at a logical 1 or
0 value. The model is simple and technology-indepen-
dent. It represents a large number of different physical
faults, and tests derived for SSL faults detect many
design errors/faults. In this paper, we only consider
SSL faults; however, our method is applicable to sev-
eral other fault models.

Fault collapsing first removes redundant faults from
the fault list. A fault is redundant if there is no test that
can detect it. In other words, a fault is redundant if the
faulty function is the same as the correct function. Fault
collapsing then reduces the number of faults using two
relationships among faults: fault equivalence and fault
dominance. Two faults are considered equivalent if the
faulty functions (for the case of a single-output circuit)
produced by the two faults are equal. Alternatively, the
two faults are equivalent if they can be detected by the
same tests. In this case, there is no way to distinguish
between the two faults. For example, the SSL fault a
stuck-at 0 represented by a/0 in Figure 1 is equivalent
to the fault z/0. If two faults are equivalent then one of
the faults can be dropped from the fault list since the
detection of the other fault guarantees the detection of
the dropped fault.

A fault f is considered to dominate another fault g
when every test for g is also a test for f. For example,
the fault z/1 dominates the fault a/1 in Figure 1 since
the only test vector 01 for a/1 (shaded in the figure) is
also a test for z/1. If a fault f dominates a fault g, then
the fault f can be dropped from the fault list since the
detection of g guarantees the detection of f. 

By applying fault collapsing to the AND gate in Fig-
ure 1, we can reduce the number of faults from six to
three. First, there are no redundant faults on the AND
gate that should be dropped. Second, the faults a/0 and
b/0 are dropped since they are equivalent to z/0. Finally,
the fault z/1 is dropped since it dominates both a/1 and
b/1. The collapsed fault list is thus {a/1, b/1, z/0}. A
test set that detects the faults in the collapsed list can be
derived from the table in Figure 1 as {01, 10, 11}. This
test detects all faults in the collapsed fault list and con-

sequently all six faults in the AND gate.
There are two approaches to fault collapsing: local

and global. The local fault collapsing method computes
the collapsed fault list for individual gates and then col-
lects the collapsed fault lists for the gates to form the
overall collapsed fault list for circuit. For example, by
using fault collapsing over the gates in the circuit
shown in Figure 2, we get the results shown in the fig-
ure. Both stuck at faults on line s (called a stem since it
branches to other lines) need to be considered because s
is not an input or output of any gate. Using local fault
collapsing, we combine the faults on the gates to form
the collapsed fault list for the circuit as {s/0, s/1, s3/0,
s3/1, a/1, b/1, s2/1, c/0, d/0, z/1}. Therefore, by using
local fault collapsing we were able to reduce the fault
list from 18 to 10.

Global fault collapsing is similar to local fault col-
lapsing, except that we perform the same process of
fault collapsing on the entire circuit as opposed to indi-
vidual gates. In other words, we look for equivalent and
dominance relationships among all faults in the circuit.
For example, to perform global fault collapsing for the
circuit in Figure 2, we compute a table for all faulty
functions (called a fault table) as shown in Figure 2. It
is simpler to start with the local collapsed fault list
since it has less faults than the original fault list for the
circuit. We then drop faults from the local collapsed
fault list using redundance, equivalence and dominance
relationships. It is obvious that there are no redundant
faults that should be dropped. The faults s/0, b/1, z/1
are dropped since they dominate s3/1. Also, the faults s/
1, a/1 can are dropped since they dominate s2/1. The
fault s3/0 is dropped since it is equivalent to c/0. The
global collapsed fault list for the circuit is thus {s2/1,
s3/1, c/0, d/0}. Hence, by using global fault collapsing
we were able to reduce the number of faults from 18 to
4. This is in effect a 77.78% reduction from the original
fault list.

Local fault collapsing can be easily scaled to large
circuits. However, global fault collapsing is oftenFigure 1  Fault collapsing for a 2-input AND gate.
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function (z)

Faulty functions
a b a/0 a/1 b/0 b/1 z/0 z/1
0 0 0 0 0 0 0 0 1
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0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 0 1 0 0 0 1
1 0 1 1 0 1 1 1 1 1 1 1 0 1
1 1 0 0 1 0 0 1 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1
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Gate G1: {s3/0, s3/1}
Gate G2: {a/1, s3/1, c/0}
Gate G3: {b/1, s2/1, d/0}
Gate G4: {c/0, d/0, z/1}
Stem s: {s/0, s/1}

Figure 2  A simple multiplexer circuit with a list of its gate 
faults and the resulting fault table.
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avoided due to the lack of resources including the
expensive computations and memory needed to deter-
mine redundance, equivalence and dominance relation-
ships among the faults in the overall circuit. In the rest
of this section, we describe our recent new techniques
for global fault collapsing: EGFC-BDD and AGFC.
2.1  BDD-BASED EXACT GLOBAL FAULT 
COLLAPSING (EGFC-BDD)

In this sub-section, we first determine the conditions
needed to establish redundance, equivalence, and dom-
inance. For this purpose, let us consider a combina-
tional circuit C with n inputs, m outputs, and k faults.
Let the n inputs of C be represented as

. Also, let the m outputs of C be rep-
resented as . For every fault f of C,
we define the function T as follows:

where yi(X,c) is the correct (fault-free) function of out-
put i and yi(X,f) is the faulty function of output i in the
presence of f. In fact, the function T specifies whether
an input X is a test for f or not as follows:

 if X is a test for f
 if X is not a test for f

As a consequence of the above, a fault f is redundant if
and only if . This translates to:

which ultimately leads to  for every
i. So, to prove that a fault f is redundant, we need to
compute the faulty functions of the outputs and show
that they match the correct (fault-free) functions of the
corresponding outputs.

The equivalence relationship between two faults f
and g is defined as: . For the case of a
single-output circuit (m = 1), the above equation
reduces to . So, the two faults f and
g are equivalent if they have the same faulty function
(as discussed earlier in Section 2). For the case of
multi-output circuit, if the faulty functions are equiva-
lent for every output, then the two faults are equivalent.
However, the converse is not necessarily true.

The dominance relationship between a fault f and a
fault g is defined as follows:

In other words, there is no test for g that is not a test for
f. So, to prove that f dominates g, we need to compute
the function  and prove
that it is identical to zero. Similarly, to prove that g
dominates f, we need to compute the function

 and prove that it is
identical to zero.

It can be easily shown that if f dominates g and g
dominates f, then f is equivalent to g. The proof is as
follows:

Hence, f is equivalent to g. Based on the above, we
need to compute the two functions  and

 to determine the relationship between f
and g as follows:

•  & : f is equivalent
to g.

•  & : f dominates
g.

•  & : g dominates f.
•  & : f is not

related to g.
Once the relationship between f and g is established,

we can possibly drop a fault as follows:
• If f is equivalent to g then drop f or g. 
• If f dominates g then drop f.
• If g dominates f then drop g.
• If f is not related to g then no fault is dropped.
In order to produce the collapsed fault list, we need

to compute the functions , , and
. We use reduced ordered binary decision

diagrams (ROBDDs) [10] in the computations of func-
tions. This is the case since ROBDDs is a compact
canonical representation that can be easily manipu-
lated. Moreover, algorithms for ROBDD operations are
well studied and are widely used in various research
fields including test, synthesis, and verification.

In using ROBDDs, there is a trade-off between the
computation time of functions and the memory needed
for the computations. Our EGFC-BDD tool stores all
ROBDDs for internal signals so that it can compute the
functions , , and  as
quickly as possible. EGFC-BDD can be easily modi-
fied so that it uses less memory on the expense of more
execution time.

Our EGFC-BDD tool implements the method pre-
sented in this section for the elimination of faults from
the fault list. It is written using C++ in approximately
7000 lines of code. A detailed description of the EGFC-
BDD algorithm as well as experimental results that
illustrate its capabilities can be found in [8].
2.2  SIMULATION-BASED APPROXIMATE 
GLOBAL FAULT COLLAPSING (AGFC)

In our AGFC method, a large set of random vectors
is used to reduce the number of faults instead of using
the complete vector set for the library module. The idea
behind approximate collapsing is that the resulting
faults after the simulation is an approximation of the
faults from exact global fault collapsing of the library
module. As more and more vectors are applied for the
simulation, the results appear more and more similar to
those of exact global fault collapsing.

In order to identify redundant faults, our approxi-
mate global fault collapsing method works as follows.

X xn 1– …x1x0=
Y ym 1– …y1y0=

T X f,( ) yi X c,( ) yi X f,( )⊕( )
i 0=

m 1–

∑=

T X f,( ) 1=

T X f,( ) 0=

T X f,( ) 0≡

T X f,( ) yi X c,( ) yi X f,( )⊕( )
i 0=

m 1–

∑ 0≡=

yi X f,( ) yi X c,( )≡

T X f,( ) T X g,( )≡

y0 X f,( ) y0 X g,( )=

f  dominates  g T X f,( )T X g,( ) 0≡⇔

Dfg X f g, ,( ) T X f,( )T X g,( )=

Dgf X f g, ,( ) T X f,( )T X g,( )=

f  dominates  g T X f,( )T X g,( ) 0≡⇔

g  dominates  f T X f,( )T X g,( ) 0≡⇔

T X f,( )T X g,( ) T X f,( )T X g,( )+( ) 0≡
T X f,( ) T X g,( )⊕ 0≡
T X f,( ) T X g,( )≡

Dfg X f g, ,( )
Dgf X f g, ,( )

Dfg X f g, ,( ) 0≡ Dgf X f g, ,( ) 0≡

Dfg X f g, ,( ) 0≡ Dgf X f g, ,( ) 0≠( )

Dfg X f g, ,( ) 0≠ Dgf X f g, ,( ) 0≡
Dfg X f g, ,( ) 0≠ Dgf X f g, ,( ) 0≠( )

T X f,( ) Dfg X f g, ,( )
Dgf X f g, ,( )

T X f,( ) Dfg X f g, ,( ) Dgf X f g, ,( )



4

We first label all the faults in the circuit as redundant
(r) faults since we have no information about the
detectability of the faults. We then apply a random test
vector t and determine the faults detected by t and then
update the type of every fault. Figure 3 shows a state
diagram for tracking the types of all faults in the circuit.
Note that all faults are initially in the redundant (r) state
and once a fault becomes detectable (d) due to detec-
tion by a test t, it remains in that state forever.

To speed up the fault collapsing in our implementa-
tion, we apply a packet of 32 random vectors and deter-
mine the faults detected by the packet and then update
the type of every fault. The type of a fault changes to
detectable (d) if the fault is detected by at least one vec-
tor from the packet. The process is repeated for several
iterations until no change is reported in the types of
faults for a constant number of random packets (we use
the number 100 in our simulation experiments).

Once the simulation of random vectors is com-
pleted, all the redundant faults (which include the ran-
dom-resistant hard-to-detect faults) are removed from
the overall fault list of the circuit and stored in a sepa-
rate fault list. Since all of the faults remaining in the
circuit’s fault list are detectable, the goal of our approx-
imate global fault technique becomes to eliminate
faults from the list using equivalence and dominance
relationships. We introduce the notation of a fault pair
<fi, fj> to identify the relationship between faults fi and
fj. It is obvious that if we have n faults in the fault list,
then we have  fault pairs.

The type of the fault pair <fi, fj> can be any of the
following:

• Equivalent (e) if fi is equivalent to fj.
• First dominating (f) if fi dominates fj.
• Second dominating (s) if fi is dominated by fj.
• Independent (i) if there is no relationship between fi

and fj.
Initially, all fault pairs are of the equivalent type (e).

As random test vectors are applied, the types of fault
pairs are updated. The process is repeated for several
iterations until no change is reported in the fault-pair
types for a constant number of random packets (we use
the number 100 in our simulation experiments). Figure
4 shows that state diagram describing the possible
changes of fault-pair types. After applying a random
vector t to a fault pair of type equivalent (e), the type of
the fault pair does not change if (1) t does not detect
any of the two faults in the fault pair or (2) t detects
both faults in the fault pair. However, if t detects fi but
not fj, then the type of the fault pair becomes first dom-
inating (f). Finally, if t detects fj but not fi, then the type
of the fault pair becomes second dominating (s). Simi-
larly, the transitions from other fault-pair types in Fig-
ure 4 can be easily explained. It is interesting to notice

that once the type of a fault pair becomes independent
(i), it remains in that type forever.

The number of fault pairs with type (e) decreases as
more random vectors are applied. On the other hand,
the number of fault pairs with type (i) increases as more
random vectors are applied. The number of fault pairs
with types (f) or (s) often increases at the beginning but
later decreases as more vectors are applied.

Once the simulation of random vectors is com-
pleted, the types of fault pairs are used to eliminate
faults from the fault list according to the following
rules: (1) If the type of the fault pair <fi, fj> is equiva-
lent (e), then eliminate either fi or fj; (2) If the type of
the fault pair is first dominating (f), then eliminate fi;
(3) If the type of the fault pair is second dominating (s),
then eliminate fj. Note that all fault pairs with indepen-
dent (i) type are discarded since they do not help in
eliminating faults from the fault list.

After the elimination of equivalent and dominating
faults from the fault list as described above, we obtain
an approximate global collapsed fault list. Now, we
have to choose what to do with the (likely) redundant
faults that we have extracted earlier. We have two pos-
sible alternatives:

• Option 1: Discard the likely redundant faults. This
will speed up the test generation since no time is
wasted in targeting the redundant faults. Moreover,
if the likely redundant faults are in fact redundant,
the fault coverage is not affected. On the other
hand, if the likely redundant faults are in fact ran-
dom-resistant hard-to-detect faults, then the
coverage will be reduced by a little percentage (that
is often negligible).

• Option 2: Add the likely redundant faults to the
approximate global collapsed fault list. This will
slow down the test generation but the fault coverage
will not be affected. If the majority of the likely
redundant faults are in fact redundant, then plenty
of test generation time is often wasted.

Since the goal is to produce an approximate global
collapsed fault list that will simplify the test generation
and since the loss in fault coverage is often negligible if
we discard the likely redundant faults, we adopt option
1 in this paper. However, option 2 can be used if the
need arises.

Since the number of fault pairs is proportional to the
square of the number of faults, then the storage of the

r dt is a test

t is not a test

Figure 3  State diagram for tracking types of faults.

n n 1–( ) 2⁄
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t is not a test for fi or fj or
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i

t is a test for fi only t is a test for fj only

t is a test for fj only t is a test for fi only

t is not a test for fj or
t is a test for fi and fj

t is not a test for fi or
t is a test for fi and fj

t is a test for fi and fj

Figure 4  State diagram for tracking types of fault pairs.
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fault pairs in memory become prohibitive for large cir-
cuits. To solve this problem, we first simulate a random
packet and then decide on the types of fault pairs. This
allow us to skip storing fault pairs of type (i) in mem-
ory since they are not useful in fault collapsing. More-
over, during the simulation, fault pairs that change their
type to (i) are automatically removed from memory. It
should be noted that most fault pairs will ultimately be
identified as of type (i). For example, out of 29,718,195
possible fault pairs in the ISCAS-85 circuit c6288 [3],
there are at least 29,658,213 fault pairs of type (i). So,
only 0.2% of the fault pairs are useful in determining
the collapsed fault list and this is the same set of fault
pairs that remain in memory at the end of the simula-
tion.

In addition to the above, we can further limit the
memory needed for the storage of fault pairs by enforc-
ing a maximum value on the number of fault pairs that
can be stored in memory. Once the fault pairs are initi-
ated, they are stored in memory until the maximum
value is reached. We then simulate a random packet to
identify fault pairs of type (i) that are residing in mem-
ory. Consequently, these fault pairs are removed from
memory and a new batch of fault pairs are initiated that
can be stored in memory. The process is repeated until
all fault pairs are processed.

Our AGFC tool implements the techniques pre-
sented in this section for the elimination of faults from
the fault list. AGFC is written using C++ in approxi-
mately 5600 lines of code. A detailed description of the
AGFC algorithm as well as experimental results that
illustrate its capabilities can be found in [9].
3  EXACT GLOBAL FAULT COLLAPSING: A 
HYBRID APPROACH (EGFC-HYB)

In this section, we describe our new method of exact
global fault collapsing using binary decision diagrams
and fault simulation. In this method, we first apply a
large set of random vectors in order to identify the
likely redundant faults similar to AGFC. We then use
the method of EGFC-BDD to prove whether the faults
are redundant or not. Consequently, all the proven
redundant faults are removed from the overall fault list
of the circuit.

Since all of the faults remaining in the circuit’s fault
list are detectable, then our next goal is to remove faults
from the fault list using equivalence and redundance.
Similar to AGFC, we apply random vectors to identify
the types of fault pairs. At the end of the simulation,
fault pairs are identified as either of type equivalent (e),
first dominating (f), second dominating (s), or indepen-
dent (i). However, the resulting assignment of types to
the fault pairs is in fact an approximation since not all
possible vectors are applied. Table 1 shows the rela-
tionship between approximate and actual fault pair

types. This table can be easily derived from Figure 4.
After the simulation of random vectors, fault pairs that
are assigned a type (i) are in fact proven to be of type
(i). However, this does not apply to other types of fault
pairs. Since our goal in the hybrid method is to find the
exact global collapsed fault list, then before using a
fault pair of type (e), (f), or (s) to remove faults from
the fault list, we need to prove or correct the fault pair
type, using binary decision diagrams as used in EGFC-
BDD. Figure 5 shows the algorithm used by our EGFC-
HYB method. It is obvious that the method would ben-
efit significantly by reducing the number of fault pairs
of type (e), (f), or (s). The less the number of fault pairs
that need to be identified using ROBDDs, the faster the
execution of EGFC-HYB method.

Our EGFC-HYB tool implements the techniques
presented in this section for the elimination of faults
from the fault list. It is written using C++ in approxi-
mately 9000 lines of code.

We now describe experimental results that illustrate
the capabilities of EGFC-HYB. The combinational
library modules used in the experiments are the ISCAS-
85 benchmark circuit c17 [3], 2-input MUX, 4-input
MUX, a 3-input majority circuit, a circuit r10 with few
redundant faults, as well as three circuits from the 74X
TTL IC series [11]. The exact global fault collapsing
results for the considered modules are shown in Table
2. The first column in the table reports the library mod-
ule name. The next column reports the possible number
of SSL faults (twice the number of lines in the circuit).
The next column reports the number of SSL faults
reported by the netlist which is often the local collapsed
fault list of the circuit. The next column reports the
number of random packets used by EGFC-HYB. It
should be clear that the number of packets should be at
least 100 since this is the condition needed to stop the
simulation. The next column reports the number of

Table 1  Relationship between approximate and actual 
fault pair types.

Approximate fault pair type (e) (f) (s) (i)
Corresponding possible 

actual type of the fault pair (f), (s), or (i) (f) or (i) (s) or (i) (i)

/* C is the circuit*/
procedure EGFC-HYB(C);
begin

Form the fault/error list L
/* Redundancy Identification */
repeat

Select a random packet P of 32 tests
Fault simulate using P on L
Update fault types (redundant or detectable)

until no change is reported in 100 random packets or 
all faults are detectable

Remove faults with redundant type that are proven to be
redundant using ROBDDs

/* Equivalence and dominance relationship identification
Build fault pair list
repeat

Select a random packet P of 32 tests
Fault simulate using P on L
Update types of fault pairs

until no change is reported in 100 random packets
repeat

Select a fault pair FP not of type (i)
Determine the type of FP using ROBDDs
Remove a fault f from fault list according to rules
Remove all fault pairs using f

Until fault pair list is empty.
Output the results;

end;

Figure 5  EGFC-HYB’s algorithm.
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proven redundant faults reported by EGFC-HYB. The
next four columns in the table report the number of
fault pairs at the end of the simulation in each of the
four fault pair types. The next column in the table
report the number of fault pairs that was verified (using
ROBDDs) by EGFC-HYB. Note that this number is
significantly less than the total number of fault pairs
with types (e), (f), and (s). The next two columns in the
table report the exact global collapsed fault list size
(and percentage from total faults) produced by EGFC-
HYB. The next column in the table shows the execu-
tion time in seconds for a sample run on a Dell com-
puter (2.2 GHz Pentium II, 512MB of RAM) running
Windows XP. It should be noted that the time varies
from one run to another since it depends on the quality
of the generated random vectors.

Our EGFC-HYB tool was not able to compute the
exact global collapsed fault list for larger ISCAS-85
benchmark circuits since the memory needed for build-
ing the ROBDDs is more than the physical memory of
the used workstation. However, more results can be
obtained using a better machine (with larger physical
memory and faster processor).
4  COMPARISONS AND EXTENSIONS

EGFC-BDD is an exact global fault collapsing tool
for combinational circuits. It computes the tests for a
given fault using ROBDDs and then eliminates faults
using redundance, equivalence, and dominance. The
experiments reported in [8] show a number of interest-
ing observations: (1) EGFC-BDD is relatively fast, (2)
EGFC-BDD produced a small collapsed fault list; and
(3) the ratio of the EGFC-BDD fault list to the total
number of circuit faults can be as low as 11.54%.

AGFC is a approximate global fault collapsing tool
for combinational circuits. It is based on a novel combi-
nation of parallel-pattern evaluation, multiple fault acti-
vation, single fault propagation, critical path tracing,
and random simulation. The experiments reported in
[9] show that AGFC is relatively fast. They also con-
firm a number of interesting observations such as: (1)
AGFC produced a small collapsed fault list that
matches the exact global collapsed fault list for small
library modules, and (2) it produced better results in
comparison to prior work.

EGFC-HYB is an exact global fault collapsing
method that is based on the integration of fault simula-
tion and binary decision diagrams. It uses a combina-

tion of the features of EGFC-BDD and AGFC in order
to achieve a fast global fault collapsing.

It should be noted that our tools are preliminary
implementations that can be further improved in order
to quickly handle larger library modules. Improving the
implementation of BDD manipulations will definitely
lead to less memory and execution time and conse-
quently produce fault collapsing results for the large
ISCAS-85 circuits.

By comparing the three presented global fault col-
lapsing methods, we conclude the following:

• AGFC is an approximate global fault collapsing
method. So, we cannot measure how close is the
produced approximate collapsed fault list to the
exact collapsed fault list. However, we can guaran-
tee that the size of the approximate global collapsed
fault list is less than or equal to the size of the exact
global collapsed fault list. Nevertheless, the method
can handle large library modules (such as the larg-
est ISCAS-85 benchmark circuits) and in fact it
produced the exact global collapsed fault list for the
small library modules used in the experiments.

• EGFC-BDD is an exact global fault collapsing
method. The produced fault list is the smallest pos-
sible fault list size. The drawback of this method is
its high demand of memory and execution time.

• EGFC-HYB is a faster version of EGFC-BDD. It
uses the method of AGFC to reduce the amount of
computations needed for ROBDDs. However, the
memory requirements for EGFC-HYB remain the
same as that of EGFC-BDD.

To illustrate the comparison among the three pre-
sented fault collapsing methods, consider a library
module M that uses the circuit 74181 ALU. M’s charac-
teristics and the summary of the fault simulation results
for each of the three methods are shown in Figure 6.
We can conclude from this figure that AGFC is 67
times faster than EGFC-HYB and 1197 times faster
than EGFC-BDD for the module M. However, the col-
lapsed fault list produced by AGFC is 2 faults less than
the exact global collapsed fault list of M. EGFC-HYB
and EGFC-BDD produced the same exact global fault
collapsing results of M, but with EGFC-HYB being 18
times faster than EGFC-BDD.

When library modules do become large in size, the
process of exact global collapsing of faults eventually
becomes tedious and time consuming even if we have
unlimited memory. A method for expediting the pro-

Table 2  Exact global fault collapsing results for the considered modules using EGFC-HYB.

Combinational
library module

Possible
SSL

faults

Netlist
SSL 

faults

No. of 
random 
packets

No. of 
redundant

faults 

No. of fault pairs at end 
of simulation

Verified 
pairs using 

BDDs

Fault list Execution
time(e) (f) (s) (i) Size %

c17 34 22 103 0 1 18 25 187 11 11 32.36 2.63
2-input multiplexer 18 18 102 0 13 6 22 112 14 4 22.22 2.46
4-input multiplexer 46 46 106 0 38 54 106 837 34 12 26.09 5.26

3-input majority circuit 26 26 102 0 18 24 54 229 20 6 23.08 3.38
r10 (redundant circuit) 20 20 202 2 34 0 15 104 14 4 20.00 3.23

7485 (4-bit comparator) 234 137 143 0 12 362 406 8536 89 48 20.51 33.03
74181 (4-bit ALU) 398 237 158 0 26 709 1096 26135 156 81 20.35 439.13
74283 (4-bit adder) 208 128 118 0 22 373 524 7209 104 24 11.54 25.19
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cess of global fault collapsing is to take the middle
ground between global and local fault collapsing. In
this process, we take a complex library module and par-
tition it into smaller modular components. We then per-
form global fault collapsing for each of the components
using EGFC-HYB so that we end up with a list of the
remaining faults that characterize each of the compo-
nents. Note that we can perform the exact global fault
collapsing on the components in parallel on different
computers and hence produce the fault collapsing
results faster. We finally combine the collapsed fault
lists of components to produce an approximation of the
globally collapsed fault list of the overall module.

To illustrate the advantage of partitioning the
design, assume that an arbitrary large module is parti-
tioned into k components each with  faults, where
n is the number faults in the large module. Instead of
analyzing  fault pairs, AGFC or EGFC-
HYB needs to analyze  fault pairs
for each module. So, the overall number of fault pairs
that need to be analyzed is approximately the total
number of fault pairs divided by k2. Hence, a signifi-
cant speedup in fault collapsing can be achieved as a
result of partitioning the design.

It may be the case that the execution time of AGFC,
EGFC-BDD, or EGFC-HYB is longer than the ATPG
applied on a non collapsed fault list. So, where is the
advantage of using the fault collapsing? The collapsed
fault list is computed once for every library module and
it can be stored with the module in the design library.
For large designs with multiple modules from the
design library, the faults of the modules can be added
together to form the fault list of the overall design.
ATPG execution time for large designs with multiple
modules will eventually surpass the execution time of
fault collapsing for the individual modules.
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Figure 6  (a) M’s characteristics & summary of fault simulation results for (b) EGFC-BDD, (c) AGFC, & (d) EGFC-HYB.

Possible Faults   = 400
Existing Faults   = 239
Redundant Faults  = 26
Faults Removed via Equivalence = 2
Faults Removed via Dominance = 129
Remaining Faults  = 82
Total Execution Time = 8143.63

Total Random Packets = 291
Possible Faults   = 400
Existing Faults   = 239
Redundant Faults  = 26
Remaining Faults  = 80
Total Execution Time = 6.80

Total Random Packets = 291
Possible Faults   = 400
Existing Faults   = 239
Redundant Faults  = 26
Total Pairs = 22578
    0-pairs = 20
    1-pairs = 368
    2-pairs = 960
    3-pairs = 21230
Verified Pairs = 143
Remaining Faults  = 82
Total Execution Time = 457.81

Gates = 200
==================================
  Gtype Ngates Mxfin Mxfout
==================================
  nand 3 5 1
  and 29 5 1
  nor 12  4 8
  or 2 3 1
  xor 8 2 2

inpt 14 0 5
  from 115  1 1
  not 7  1 10
  buff 10  1 1
==================================
Levels = 12
Inputs = 14
Outputs = 6
Stems = 37

(c) AGFC(a) M’s Characteristics

(b) EGFC-BDD

(d) EGFC-HYB
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