
1

ABSTRACT

Microprocessors are becoming increasingly complex
and difficult to debug. Researchers are constantly looking
for new methods to increase the observability and control-
lability of microprocessors. This paper introduces a new
method to improve the observability of modern micropro-
cessors and thus simplifying the task of debugging them.
The method revolves around an observation circuit that
provides access to important internal signals without inter-
rupting the microprocessor execution. The output of the
observation circuit is ported to the output of the micropro-
cessor in order to easily detect various physical faults and
design errors. Experimental results show that physical
faults and design errors are detected faster using our
method. Moreover, several errors are detected by the
observation circuit without being detected by the micropro-
cessor outputs.

Keywords: Post-silicon verification, observability
improvements, microprocessors, design for debug.

1 INTRODUCTION

As microprocessors evolve, the number of transis-
tors they contain grows exponentially, significantly
increasing the complexity and burying signals deeper
and deeper within. This in turn makes microproces-
sors progressively difficult to debug [1]. Researchers
are constantly battling with this issue, looking for
ways to increase the observability and controllability
of microprocessors to make them more testable [2].
Methods, such as sample-on-the fly and JTAG [2][3],
have been introduced to make it easier to retrieve data
within the microprocessor. However, these methods
interrupt the execution flow in order to observe the
data. As an alternative we provide a way to check the

validity of internal signals without interrupting micro-
processor execution. This is achieved by incorporat-
ing a small observation circuit that is fed by the
signals desired to be monitored and porting the output
of the observation circuit to the output of the micro-
processor.

In order for our method to be feasible, we must be
selective when it comes to choosing the signals to be
monitored because the number of signals grows expo-
nentially with complexity. Tapping into all of the sig-
nals in the microprocessor would be unrealistic and
would significantly increase the total area of the
microprocessor or slow it down dramatically if at
speed testing is desired. In our experiments we focus
on monitoring control signals since they govern how
the data will be moved about and regulate the execu-
tion of the microprocessor. Nevertheless, our method
can be applied to any set of signals in the micropro-
cessor.

In the next section, we introduce the microproces-
sor used in our experiments, detailing the instruction
set architecture and the various hardware components.
We then discuss our observation circuit in Section 3
followed by our experimental results in Section 4.
Finally, we conclude the paper in Section 5.

2 MICROPROCESSOR USED

For our experiments, we used the “JAM” micro-
processor [4] and modified it to include a simple mon-
itoring circuit driven by the more influential control
signals in the microprocessor. JAM is a 32-bit 5-stage
pipelined microprocessor with a RISC architecture
that supports precise interrupts. The pipeline stages
are the generic instruction fetch (IF), decode (ID),
execute (EX), memory access (MEM), and write back
(WB). The JAM microprocessor uses a split memory

ON INCREASING THE OBSERVABILITY OF MODERN
MICROPROCESSORS

Hector Arteaga and Hussain Al-Asaad
Department of Electrical & Computer Engineering

University of California
Davis, CA, U.S.A.

2

architecture (separate instruction and data cache)
arranged in 64-bit wide words even though the
instructions and data are only 32-bits wide.

2.1 INSTRUCTION SET ARCHITECTURE
JAM is a 32-bit microprocessor that incorporates a

wide range of different instructions and several per-
mutations of the same instruction. It supports 22 dif-
ferent types of instructions and allows them to be
combined with up to 3 different immediate formats
(immediate, extended immediate, and displaced) in
which the 16-bit immediate value is extended to 32-
bits in different fashions. For example, there are sepa-
rate ADD instructions depending whether you want
the second operand to be the contents of another reg-
ister, the immediate value sign extended to 32-bits
(immediate), the 32-bit value in which the immediate
value consumes the 16 most significant bits and the
lower bits set to 0 (immediate extended), or the
immediate value multiplied by 4 and sign extended to
32-bits (displaced). Not every instruction has all 4
subtypes available. Overall, JAM supports 47 differ-
ent instructions requiring the opcode to be 6-bits long
(not every combination is a valid opcode). Figure 1
breaks down the immediate and register instruction
formats into the various components and Table 1
shows the supported instructions by the JAM micro-
processor.
Stalling. Multiply and load instructions are the only
instructions that stall the pipeline. The multiply
instructions take two 32-bit operands and computes a
64-bit result in 33 clock cycles using Booth’s encod-
ing algorithm (the first cycle is a setup cycle). Since
JAM is a 32-bit microprocessor, there are separate

multiply instructions to allow you to retain the most
significant or the least significant 32-bits of the result
as well as immediate and register formats of the
instruction. While the multiply is computing the
result, the pipeline is stalled at the execute stage to
prevent new instructions from entering the pipeline.

The other instruction that stalls the pipeline is the
store instruction. The pipeline is stalled for one clock
cycle to avoid malicious writes to memory due to the
way the memory access unit and the memory is
implemented.

Multiply and store instructions automatically stall
the pipeline, but the pipeline can also be stalled when
certain hazards are detected. Stalling due to hazards is
minimized by the forwarding logic implemented in
the JAM’s datapath. However, the forwarding logic
does not guarantee that data will be available in every
situation. Load word (LW) hazards, which occur
when an arbitrary instruction immediately following
an LW instruction uses the results of the LW instruc-
tion, stall the pipeline for one cycle. Moreover,
branch instructions stall the pipeline when they
require unavailable data after they enter the ID stage
(where they are resolved). All other hazards are

Register Format Instruction

Opcode Destination
Register

Source
Register 1

Source
Register 2 00000000000

6-bits 5-bits 5-bits 5-bits 11-bits
31 25 20 15 10 0

Immediate Format Instruction

Opcode Destination
Register

Source
Register Immediate Constant Operand

6-bits 5-bits 5-bits 16-bits
31 25 20 15 10 0

Figure 1 Formats for register and immediate instructions in the JAM microprocessor.

Table 1 JAM’s supported instructions.
Arithmetic Logic Control Other

ADD AND CMP GET
ADDV OR JUMP PUT

MUL-Lo XOR SET TRAP
MUL-Hi RESET LW

SUB BEQ SW
SUBV BNE SHS, SHZ

3

avoided through the use of forwarding logic.
The JAM microprocessor also support traps and

interrupts, which also stall the pipeline, but they were
not used in our design and hence they are not covered
in this paper.

2.2 HARDWARE

The following is a list of various hardware units in
the JAM microprocessor.

• SRAM: The memory architecture used in the JAM
microprocessor is somewhat uncommon in that
the words are 64-bits long even though JAM is a
32-bit microprocessor. The memory is composed
of two SRAM arrays with each array composed of
eight 512K x 8-bit integrated circuits. The two
arrays are connected to form two 512K x 64-bit
units, which are used as the separate instruction
and data memory. The ability to enable or disable
each of the 8 ICs within the SRAM arrays is main-
tained, allowing access to half a memory line at a
time (32-bits). This feature also allows the reading
of any combination of 4 of the 8 ICs, but the JAM
microprocessor supports reading/writing to
aligned words only. The two least significant bits
of the address are always assumed to be 0.

• Memory Access Unit: The memory access unit
(MAU) controls access to and from memory.
There is one for each of the memory units
(Instruction and Data). It receives a 32-bit address
buss, 32-bit data buss, and three 1-bit control sig-
nals: read, write and reset. These signals are then
converted to the 19-bit address buss, eight chip
select bits and the output enable and write enable
signals required by the SRAM arrays. When read-
ing data, the full 64-bit memory word line is
presented to the MAU, but only 32-bits are for-
warded to the microprocessor depending on the
0th bit of the 32-bit address buss presented to the
MAU by the microprocessor. Similarly, the 0th bit
is used to decide which half of the word line is to
be written to on a write operation.

• Immediate Extension Unit and Register File: The
immediate extension unit is a simple unit that
serves the purpose of extending the 16-bit imme-
diate value to 32-bits in the different formats
supported. The lower 2-bits of the opcode decide
which format will continue on to see if it will be
used in the execute stage. If the immediate value
is not used, then the second operand will be one of

the 32 register values in the register file. The only
special register is R0 which always contains the 0
value. All other registers can hold any 32-bit
value.

• Control Unit: The control unit resides in the ID
stage. It takes in the 6-bit opcode and outputs the
24 signals used to control the behavior of the
microprocessor. Many of the signals used by our
monitoring circuit are produced by the control
unit.

• Integer Unit/ALU: The integer unit is the main
engine of the execute stage, implemented as a
state machine. It contains the ALU as well as the
control logic needed to produce and forward the
appropriate result to the next stage. Since the mul-
tiply instruction is implemented using Booth’s
algorithm, the integer unit is responsible for stall-
ing the pipeline for the 33-cycles needed to
complete the multiply operation and is responsible
for controlling the data flow between iterations of
the multiply algorithm. A single cycle multiply
unit was not implemented due to area overhead
considerations. The ALU has the ability to per-
form only the more basic operations such as ADD,
SUB, shift, AND, OR, etc. Moreover, it is also
used to calculate the intermediate results of the
multiply operation.

3 OBSERVATION CIRCUIT

In order not to contribute too much area overhead
to the design, we decided to keep our observation cir-
cuit as simple as possible. To do this while maintain-
ing a high probability that an error will be propagated
to the output, we decided to implement our observa-
tion circuit as an XOR tree. This design assures than
any single error on one of the monitored signals is
propagated through the XOR tree and can be seen at
the XOR tree output. However, no guarantees can be
made when multiple errors are present at the monitor
circuit inputs. Thus, errors on signals that affect
numerous signals under observation may not be
detected due to aliasing. It is up to the designer to
choose the observed signals so that aliasing is mini-
mized.

Another element we took into consideration is the
pin-out count. Pin-out count is becoming increasingly
more constraint [1], so we restricted the output of our
observation circuit to a single bit. This increases the
importance of proper signal selection to minimize

4

aliasing since there is only one output where a fault or
design error can be detected. If pin-out is not a factor,
having more outputs can reduce aliasing and increase
the fault and design error coverage by the observation
circuit. It also shortens the depth of an XOR tree,
allowing it to compute its output signature faster.

For our experiments, we selected 50 different sig-
nals we deemed necessary to observe, which accumu-
lated to a total of 87 bits. These can be reduced to a
single bit using a seven stage XOR tree. Actually, a
seven stage XOR tree can reduce up to 128 bits down
to 1. So, we can expand our XOR tree without adding
delay if we find more signals to observe. However,
the lower signal count allows us to save some area as
fewer gates are required to do the job. Our monitor
circuit uses 89 2-input XOR gates total as apposed to
the 127 needed if we were to fully utilize the seven
stage XOR tree.

After implementing our XOR tree and verifying its
correct functionality, we duplicated the design and
treated one as the specification and the other as the
implementation. We then proceeded to inject single
stuck-line errors [6] into our implementation circuit
and observed the output of both circuits to determine
how soon the errors are detected using only our XOR
observation signal compared to when the error is
detected using the 212-bits of the microprocessor out-
put (data-buss, address-buss, and memory control
signals). We did this using two different elementary
programs, one consisting of mostly multiply opera-
tions and the other consisting of the more basic ALU
operations such as adding, shifting, and logic opera-
tions.

We further experimented with error detection by
checking both the XOR observation signal and the
212-bits of the microprocessor output. We compared
the obtained results to detecting errors using the
microprocessor outputs alone (without the XOR
observation signal). In this case, 500 clock cycles are
simulated using a random instruction sequence.

4 EXPERIMENTAL RESULTS

The experimental results for the multiply program
can be seen in Table 2 and that of the ALU program
in Table 3. For every fault/error in the tables, we
report the first clock cycle where the error is detected
using the monitoring XOR tree alone (XOR) and the
microprocessor outputs alone (CPU). If the fault/error
is not detected, an “ND” is reported in the tables. Sig-

nals with no detected errors by either the XOR or the
CPU are not reported in the tables.

The simulation results of the multiply and addition
programs demonstrate that our observation circuit
detected every error that was detected by observing
the 212-bits of the microprocessor output, usually
detecting it sooner. Our observation circuit also
detected errors not detected by the microprocessor
output. In the 220 different simulation runs per-
formed, only seven cases were noted where the error
propagated to the microprocessor output sooner than
propagating to the monitoring XOR tree output.

Table 2 First clock cycle where errors on
control signals are detected by the multiply

program which ran for 200 clock cycles.

Signal
Stuck-at-0 Stuck-at-1
XOR CPU XOR CPU

cid_cmp 1 84 6 44
cid_bsel 1 ND 6 ND

ex_wb_dest_buf(0) 89 ND 1 ND
ex_wb_dest_buf(4) ND ND 1 ND
ex_wb_valid_buf 89 ND 1 2

wb_rw(0) 6 40 1 40
wb_rw(4) ND ND 1 40

mem_jump_trap ND ND 7 3
id_rb(0) 40 43 1 ND
id_rb(4) ND ND 1 43
if_zero ND ND 2 1

wb_rw(0) 6 40 1 40
wb_rw(4) ND ND 1 40

idex_in.cex_bsel 3 6 1 43
idex_in.cex_regsel(0) ND ND 1 ND
idex_in.cex_regsel(1) 1 ND ND ND
idex_in.cex_aluop(0) 1 6 5 43
idex_in.cex_aluop(2) ND ND 1 43

cex_valid_res 1 43 6 ND
cex_valid_reg ND ND 1 ND

idex_in.cm_write 6 41 1 3
idex_in.cm_read 86 122 1 5
cm_valid_mem 1 40 6 ND
cm_valid_reg ND ND 1 ND

idex_in.cwb_sel ND ND 1 40
idex_in.cwb_enable 1 40 6 80

cid_beq ND ND 6 3
exmem_reg.cm_write 41 1 1 1

5

There were 28 test cases where the monitoring XOR
tree output detected the error while the microproces-
sor output did not and many other cases where the
monitoring XOR tree output detected the error signif-
icantly sooner.

These results demonstrate a good performance by
our observation circuit when many of the important
control signals are directly fed into the monitoring
XOR tree. However, when errors are injected in the
datapath, the performance of our observation circuit
decreases. An experiment was performed where the
monitoring circuit remain unchanged (monitoring
important control signals), but the errors were
injected within the ALU and Immediate Extension
Unit of the microprocessor. The results for this run
can be seen in Table 4. In this run, the monitoring
XOR tree output took significantly longer to detect
the errors and in four cases failed to detect errors
detected by the microprocessor outputs.

If detecting errors in datapath is of a primary inter-
est, then we can feed datapath signals to the monitor-
ing XOR tree of the microprocessor. Another solution

is to incorporate other “mini” XOR trees in each of
the units in the microprocessor and feeding the out-
puts of the mini XOR trees to the major monitoring
XOR tree, thus feeding datapath signals indirectly.
This would allow the individual units of the micro-
processor to be observed in a similar fashion to the
control unit.

Our final experiment aimed at comparing the error
detection by observing the following signals: (i) the
microprocessor outputs and the XOR observation sig-
nal and (ii) the microprocessor outputs only. We used
a random instruction sequence and ran the simulation
for 500 clock cycles. The resulting improvement due
to the embedding of an observation circuit in the
JAM microprocessor is shown in Table 5. The results
demonstrate a significant improvement of error
detection using an XOR observation circuit. The
embedding of an XOR observation circuit in the JAM
microprocessor enabled us to detect 40 errors not
detectable by the microprocessor outputs. Moreover,
errors are detected earlier by using an observation cir-
cuit. On average, an error is detected 10 cycles earlier

Table 3 First clock cycle where errors on control
signals are detected by the addition program

which ran for 200 clock cycles.

Signal
Stuck-at-0 Stuck-at-1
XOR CPU XOR CPU

cid_cmp 1 ND 5 12
ex_mc_finished ND ND 1 ND

wb_rw(0) 10 6 1 7
ex_mc_finished ND ND 1 ND

id_rb(0) 3 11 1 10
id_rb(4) 3 ND 1 11
if_zero ND ND 2 1

wb_rw(0) 10 6 1 7
idex_in.cex_bsel 2 4 1 ND

idex_in.cex_regsel(1) 1 ND 4 8
idex_in.cex_multop ND ND 1 ND

cex_valid_res 1 11 4 ND
cex_valid_reg 4 ND 1 ND

idex_in.cex_psw_enable 4 ND 1 3
cm_valid_mem 1 12 4 14
cm_valid_reg 4 ND 1 ND

idex_in.cwb_sel 4 ND 1 6
cid_bsel 1 ND 10 ND

Table 4 First clock cycle where errors in the
datapath are detected by the multiply program

which ran for 200 clock cycles.

Signal
Stuck-at-0 Stuck-at-1
XOR CPU XOR CPU

--ALU SIGNALS--
ALU_NOP(0) ND ND 6 6
ALU_NOP(2) ND ND ND 40
ALU_ADD(0) 6 6 ND ND
ALU_ADD(2) ND ND 6 6
ALU_SUB(0) ND ND 80 40
ALU_SUB(2) ND ND 80 40

cin 80 40 80 40
b_in(0) 80 40 85 40

b_in(31) 80 46 80 46
--IMM_EXT SIGNALS--

mode(0) 44 5 ND ND
mode(1) 45 44 ND 5
imm(15) 44 44 80 5

im(0) ND 40 80 40
im(31) ND ND 80 40

r(0) ND 40 80 40
r(31) ND ND 40 40

6

if the microprocessor is augmented with an observa-
tion circuit. Moreover, if the error is in the control
unit, then it is detected 58 cycles earlier.

5 CONCLUSION

The monitoring XOR tree provides an excellent
view of the internal signals of the microprocessor. By
observing a single signal (the XOR tree output), we
can achieve close to the fault and design error cover-
age obtained by observing the entire microprocessor
output signals. However, this requires that all signals
we desire to check be directly fed into the observation
circuit. This is not feasible for a large number of sig-
nals as the size of the monitoring circuit would
become too large. By observing only a subset of the
signals, we can check for correctness of certain
aspects of the microprocessor such as the control
logic in our example.

On the other hand, if we observe both the XOR
tree output and the traditional microprocessor out-
puts, we can detect errors that cannot be detected
using the microprocessor outputs alone in addition to
detecting errors earlier.

It is obvious that the observation circuit imposes
additional area to the design, however, the area over-
head is often small and there is no need to interrupt
the microprocessor execution during the monitoring
of the internal signals.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No.
0092867.

REFERENCES

[1] A. Irion, G. Kiefer, H. Vranken, H.J. Wunder-
lich, “Circuit partitioning for efficient logic BIST
synthesis”, Proc. Design Automation and Test in
Europe, 2001, pp. 86-91.

[2] Y. Xu et al., “Advanced topics of DFT technolo-
gies in a general purposed CPU chip”, Proc.
International Conference on ASIC, 2003, pp.
1179-82.

[3] M.S. Abadir, T.M. Mak, and Li-C. Wang, “Tuto-
rial 15: Validation and verification of high-
performance microprocessors: Common chal-
lenges and solutions”, Proc. International Test
Conference, 2003.

[4] J.E. Thelin, A. Lindstrom, and M. Nordseth,
Concert’02 Architecture Specification and
Implementation, March 2002, (http://
www.etek.chalmers.se/~e8mn/web/jam/).

[5] H. Al-Asaad and J. P. Hayes, “ESIM: A multi-
model design error and fault simulator for logic
circuits”, Proc. IEEE VLSI Test Symposium,
2000, pp. 221-228.

[6] D. Van Campenhout, H. Al-Asaad, J. P. Hayes,
T. Mudge, and R. Brown, “High-level design
verification of microprocessors via error
modeling”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 3, No. 4,
pp. 581-599, October 1998.

[7] H. Al-Asaad and J. P. Hayes, “Logic design ver-
ification via simulation and automatic test pattern
generation”, Journal of Electronic Testing: The-
ory and Applications, Vol. 16, No. 6, pp. 575-
589, December 2000.

Table 5 JAM’s error detection improvement due to the embedding of an observation circuit.
The overall processor
including control unit

The control
unit only

Total number of injected errors 2772 54
Number of detected errors 2054 54

Errors detected at the XOR observation circuit
output but not at the microprocessor outputs 40 13

The average number of cycles for an error to be detected
at the XOR observation output or microprocessor outputs 76 24

The average number of cycles for an error to be detected
at the microprocessor outputs 86 82

