
1

ABSTRACT

Functional verification plays a key role in the design
verification cycle and the physical fault testing process.
There are several functional verification methods that gen-
erate tests for modules independent of their implementa-
tion; however, these methods do not scale well for medium
to large circuits. In this paper we introduce a new imple-
mentation-independent functional test generation tech-
nique that extracts a good set of functional vectors that are
characterized by a small number of neighbors. Two input
vectors of a function are considered neighbors if they pro-
duce the same output value of the function and the Ham-
ming distance between them is one. Our method can be
easily implemented and it generates tests by selecting input
vectors that have fewer neighbors among all input vectors.
Our experimental results demonstrate that our generated
tests are significantly better than random tests. Moreover,
our method can handle multiple-output circuits, and can be
easily scaled to target large designs.

Keywords: simulation, functional testing/verification,
logic circuits, implementation-independent testing.

1 INTRODUCTION
In the past decade, the research on testing and veri-

fication focused on designs with known implementa-
tions. Unfortunately, the implementation details are
sometimes left unknown to the designer; the designer
is given only a functional description of the compo-
nent, making it difficult to verify or test. Conse-
quently, the need for methods that can handle circuits
in terms of a functional model is increasing especially
for intellectual property circuits (IP), cores, and vir-
tual components [6].

The complexity of digital systems continues to rise
and the need for verification advances with it. It is
known that design verification can account for more
than half of the design cycle [10]. The process of
design verification attempts to guarantee that the
implementation meets the designer’s original specifi-
cations with no design errors. Simulation-based veri-
fication uses input test vectors to verify that the

design possesses the correct implementation. This
verification technique is the most commonly used in
industry today [9]. Functional verification is a simula-
tion-based method that probes into the behavior of a
design rather than its implementation.

Manufacturing Testing is also becoming more dif-
ficult with increased design complexity. The cost of
fault-oriented test generation is rising and functional
testing is becoming more attractive. It has been found
in [4] that functional testing can achieve about as
close to the coverage achieved by gate-level testing
within a margin of about 4 percent.

This paper focuses on functional test generation
methods for components independent of their imple-
mentation. This is both useful for design verification
and manufacturing testing. The design is considered
as a black box, but the functional behavior of the
design is given. The goal is to develop a method that
will obtain a small test set size, good physical fault
and design error coverage, and low overhead. The
paper is organized as follows: Section 2 gives an over-
view of previous work for functional verification and
testing. In Section 3, our new functional verification
method is introduced and described in greater detail.
Section 4 discusses the simulation results obtained for
various circuits. We then summarize our contributions
and propose future improvements in Section 5.
2 BACKGROUND

Deterministic test generation is an effective test
generation method that targets specific faults by
incorporating the knowledge of the design implemen-
tation. Academic deterministic test generators are
available, such as ATALANTA [7], that are able to
efficiently create compact test sets that provide good
fault coverage. Because of the added complexity in
the deterministic algorithm, the amount of time that it
takes to generate tests may take longer than other
methods, but the fault coverage in many cases is
greater. Since specific faults are targeted the test set
size generally is smaller than random methods.

Random test generation can be an efficient method
to produce tests. The implementation of a design is

A NOVEL FUNCTIONAL TESTING AND VERIFICATION TECHNIQUE
FOR LOGIC CIRCUITS

Hussain Al-Asaad, Ganesh Valliappan, and Lourdes Ramirez
Department of Electrical & Computer Engineering

University of California
Davis, CA, U.S.A.

2

not a factor when using random test generation. Tech-
niques used for test generation do not require that
every aspect of the design be known. For the DEC
Alpha 21264 processor, which is a highly out-of-
order, superpipelined processor, the chip verification
team used pseudo-random test generation as part of
the verification process. Because the design was so
complex, using pseudo-random test generation
allowed the verification engineers to focus on more
crucial areas of the design. The percentage of bugs
detected by pseudo-random tests resulted in 79 per-
cent of total bugs [11]. This shows that random test
generation does achieve a medium level of coverage.

Several functional test generation methods have
been proposed. In [4], Akers presented a method that
creates a Universal Test Set (UTS) for a logic net-
work. The generated tests are independent of the
implementation and target stuck-at-faults in the logic
implementation of AND/OR trees. In his study, Akers
shows that for AND/OR networks a UTS can be gen-
erated that detects not only all single stuck-at faults,
but all multiple stuck-at faults as well. In generating a
UTS, Akers suggests that each vector be compared
bit-by-bit to another vector. Depending on the com-
parison between the bits, the vector is either added to
the test set or dropped. This method can be easily
implemented, however, it has two main disadvan-
tages: (i) enumerating all input combinations to gen-
erate a UTS is not feasible for large circuits and (ii)
the UTS may contain excessive number of tests,
sometimes all input combinations.

Abadir and Reghbati [1] and later Chang et al. [5]
developed functional test generation methods based
on Binary Decision Diagrams (BDDs) [3]. The
behavior of the design is represented using BDDs and
a fault model is introduced that changes the structure
of BDDs. BDDs were used for test generation
because of their relative implementation indepen-
dence, computational ease, and simple data struc-
tures. Their research demonstrated that
comprehensive tests can be produced and the test set
can be further simplified if some structural details are
known [5]. The generated test sets provided perfect
fault coverage for stuck-at faults in several imple-
mentations. The major disadvantages of functional
verification with BDDs is its inability to obtain good
coverage for lower level faults and that it cannot be
applied to large circuits.

In the next section, we introduce our method,
Boundary Testing (BT). The method lies somewhere
in between deterministic test generation and random
test generation in terms of its test set size and cover-
age. Deterministic test generation may obtain smaller
test sets than BT, but may take more CPU time.
Deterministic test generation needs the design details

while BT does not. BT achieves smaller test sets and
better coverage than random test generation as we
demonstrate later in the paper.
3 NEW METHOD

The new BT method is advantageous when details
of the design are not given to the designer. The ease
of generating tests makes it an ideal method for test-
ing and verification of combinational circuits. It
focuses on the functional description of a component
rather than its structural implementation.

The input vectors of a single-output function z are
partitioned into the on-set {α0, α1,....}, where z = 1,
and the off-set {β0, β1,...}, where z = 0. An input
combination is denoted as αi when it is in the on-set
and βi when it is in the off-set. An n-bit input vector
αi (or βi) is a neighbor to another n-bit vector αj (or
βj) if the Hamming distance between the vectors is
one. Therefore to obtain a neighbor of an n-bit input
vector αi (or βi) one bit is complemented. Each n-bit
vector αi (or βi) can have from zero up to n-neigh-
bors. Finally, when comparing vectors to one another,
N denotes the number of neighbors that a vector has.

The focus of BT is the number of neighbors N for a
particular vector. We hypothesize that a vector with
fewer neighbors should detect more physical faults
and design errors than a vector with more neighbors.
Consequently, selecting input vectors with fewer
neighbors should achieve better fault/error coverage.

In general the simplest way to obtain a BT is to
create a Karnaugh-map representation of the compo-
nent. Once a K-map is created it is easy to determine
N for each vector. The test set is comprised of vectors
with the least number of neighbors for both α and β.
We illustrate the test generation process for BT using
the majority circuit shown in Figure 1. The number of
neighbors N are shown as the superscripts of the on-
set (α) and off-set (β) values. In this case input vec-
tors {000,111} both have three neighbors. The
remaining input vectors {001, 010, 011, 100, 101,
110} have only one neighbor. After comparing vec-
tors {011, 101, 110, 111} that are in the on-set, vector
{111} is eliminated. Likewise {000} is eliminated
from the vectors that are in the off-set. The vectors
that remain in α and β are combined to form the test
set {001, 010, 011, 100, 101, 110}. These vectors

00 01 11 10

0

1

AB
C

03 01

01 11 11

0111

13

Figure 1 The K-maps for (a) a majority circuit and
(b) a multiplexer circuit.

00 01 11 10

0

1

XY
S

02 01

02 11 01

1112

12

(a) (b)

3

detect all the stuck-at-faults for the majority circuit,
which results in complete coverage for this circuit. In
this example, it can be easily seen which vectors
should be in the test set. However, in more complex
circuits, the process can be more complicated. Defin-
ing a cut-off can become more involved when the dis-
tribution of N is spread out. The general conditions
for determining which vectors are in the test set are
summarized below.

• If Nαi > Nα then αi can be eliminated, where αi
represents an input combination in the on-set and
Nα is the cut-off parameter for the on-set.

• If Nβi > Nβ then βi can be eliminated, where βi
represents an input combination in the off-set and
Nβ is the cut-off parameter for the off-set.

In the majority circuit example the cut-off parame-
ters are Nα = 1 and Nβ = 1. Therefore after checking
the vectors in the on-set and the off-set, all vectors
with one neighbor or fewer are included in the test
set. Setting the cut-off parameters to three will
include all input vectors and clearly it is not the best
test set possible.

Another example of applying BT to a multiplexer
circuit is shown in Figure 1. In this example the α
vectors are {011, 110, 111, 100} and the β vectors are
{000, 001, 010, 101}. For the α vectors, the vectors
with the least number of neighbors are {011, 100}. In
β the vectors that remain in the test set are {010,
101}. Combining the α vectors and β vectors results
in vectors {011, 100, 010, 101}. Again BT has
obtained complete (100%) stuck-at fault coverage of
the circuit using a minimum test set.

Achieving small test sets as well as good coverage
is important in test generation. To achieve small test
sets the BT algorithm must be modified. In the small
examples of Figure 1 it was apparent which test vec-
tors should be included in the test set, but it is not
clear how to extract the test vectors when complex
components are targeted. The distribution of neigh-
bors was very conveniently clustered into groups in
the previous examples. For larger circuits, the distri-
bution may not be as well defined, therefore the cut-
off parameters need to be determined. We next
describe a concrete method that defines the cut-off
parameters for simple single-output circuits. Larger
single-output circuits are also explored. Finally multi-
ple-output circuits are discussed.
Single-output circuits: Once it was discovered that
BT generated good test sets for simple circuits,
selecting good cut-off parameters becomes an impor-
tant goal. Good cut-off parameters will ensure that an
excessive number of redundant vectors will be
avoided. To determine the best cut-off parameters,
several simple circuits were explored. Different com-
binations of tests were used to explore where the best

values for the cut-off parameters. For the circuit with
the K-map shown in Figure 2(a), we simulated the
test sets resulted from BT using every combination of
Nα and Nβ. For this circuit, the vectors in the on-set
had only one or two neighbors, but the off-set had
vectors with one, two, three or four neighbors. In the
table shown in Figure 2(c), the columns and rows cor-
respond to the various values of the cut-off parame-
ters. For example, the stuck-at coverage of the test set
in (row 1, column 1) corresponds to cut-off Nα= 1
and Nβ = 1 and hence the test set includes all vectors
that have one neighbor. The coverage that those vec-
tors achieve is 66.7%. The table shows the fault cov-
erage of the circuit for each combination of the cut-
off parameters Nα and Nβ. In this example, there is a
limit where N for α and β achieves a maximum of
100% fault coverage; adding more vectors does not
change its coverage. In previous examples, the cut-off
parameters were the same. This example shows that
they need not be always the same. The optimal cut-
off for α is one and for β is three. Therefore all vec-
tors in α with one neighbor and all vectors in β with
three or fewer neighbor are included in the test set.

The cut-off parameters must be determined for α
and β separately because the distribution of α’s and
β’s in a function will alter their cut-off independently.
In the table shown in Figure 2(b), the first column is
the number of neighbors N and the second and third
columns are the corresponding number of vectors that
have N neighbors. For example, the first row shows
that four vectors in α and one vector in β have one
neighbor. One way to define the cut-off parameters as
the weighted average among the vectors of the on-set
and those of the off-set and then rounded up to the
nearest integer. So, we get Nαave = 2 and Nβave = 3
for the circuit in Figure 2.

We have applied BT with an average for the cut-
off parameters to several circuits and we have
obtained complete stuck-at fault coverage. Our BT
method is described in the flowchart shown in Figure
3. The method works well for small components.
When components become too complex, an alterna-
tive way is to combine random test generation with

00 01 11 10
CD

AB

11

12

02

03

03

0403

03

02

11

11

03

11

01

03

0300

01

11

10

f A B C D, , ,() ABC BCD ACD+ +=

Nα
1 2

Nβ

1 66.7 66.7
2 87.5 87.5
3 100 100
4 100 100

Figure 2 A four-input circuit: (a) K-map, (b) vector
distribution, and (c) fault coverage.

N α’s β’s
1 4 1
2 1 2
3 0 7
4 0 1

(a) (b) (c)

4

the algorithm. The BT described previously focused
on small circuits where the number of neighbors can
be easily identified using K-maps. The next step was
to generate test vectors for larger circuits where it is
often tedious to identify the number of neighbors for
all input combinations. Therefore instead of mapping
out a circuit and calculating Nave, the test generation
process is simplified. To generate test sets for larger
input circuits the same principle was followed, the
least number of neighbors for a given test vector pro-
vides better coverage than one with more neighbors.
The difference in generating a test set was, instead of
computing Nave for the α and β, to randomly generate
a vector and replace it with one of its neighbors that
has fewer neighbors. Random vectors are generated
until the test set reaches the required fault coverage.
This can be described as follows:

• For a test set V and a random vector , v can
be replaced by a neighbor vi if vi has less neigh-
bors than v.

A tree diagram can be used to determine if a vector
need to be replaced. Figure 4(a) shows a typical tree
diagram for a single-output circuit with n-inputs. The
first vector v is randomly generated and is the root of

the tree. All neighbors of v are traversed and checked
for fewer neighbors. The value in parenthesis indi-
cates the output value in response to the test vector.

We applied the randomized BT method described
above for a sixteen-input two-level circuit with the
function . To
illustrate the test generation process, the circuit was
first simulated with {1010011100111000} as the first
randomly generated vector, v. This test vector has
fourteen neighbors and is in α. Of these fourteen
neighbors only four vectors {v1 =
1010011100111100, v2 = 1010011100101000, v3 =
0010011100111000, v4 = 1010111100111000} have
fewer neighbors (thirteen neighbors) than v. These are
better choices for the test set than v since they have
fewer neighbors. Shown in Figure 4(b) is the tree dia-
gram for v. Each vector with thirteen neighbors, {v1,
v2, v3, v4}, obtained a coverage of at least 10.345%,
whereas v obtained a coverage of only 6.897%. This
was verified by simulating the circuit using FSIM [8]
to determine the coverage of each vector. We further
investigated whether vectors that had more neighbors
compared to v would result in less fault coverage. An
input combination with sixteen neighbors resulted in
a coverage of 3.448%, which verifies our premise.

The above search for a better vector in the tree
looked at nodes up to a depth of 1. The next step that
was taken was to continue investigating the neighbors
of the newly found test set by looking in the tree up to
a depth of 2. In the above example, test vectors {v1,
v2, v3} each had children with thirteen or more neigh-
bors, which indicates that none of them could be
replaced. On the other hand v4 had two children with
twelve neighbors therefore v4 could be removed and
replaced by either v4-1 = 1010101100111000 or v4-2 =
1010110100111000. These two vectors had coverage
of at least 13.793%, whereas v4 resulted in 10.345%.
This process can be repeated in the tree for a depth of
3 or more until no more vectors are found that has
less number of neighbors than any vector in the test
set. The question that is encountered while generating
the test set is, what should be done when there are
several test vectors with fewer neighbors? The exam-
ple before traversed through each neighboring vector,
but when there are too many to choose from it is diffi-
cult to determine what route to take since different
routes in the tree can give you better or worse results.
To make it easy to generate test sets it would be best
to specify the maximum depth allowed during the
search of the tree. Once all the paths have been tra-
versed the vector with the least number of neighbors
is chosen. If there are many vectors with the same
number of neighbors then any one of them should be
added to the test set. Adding all of them may result in
too many redundant vectors.

Figure 3 Flowchart of BT for single-output circuits
using an average.

DoneN Y

Y

N

Y

N

Y

N

Include vector in test set

Generate vector vi

Is vi in the on-set?

Nαi > Nαave?

Nβi > Nβave?

Calculate Nave for α and β

Sufficient coverage?

v V∈

Figure 4 Tree diagram for single-output circuits:
(a) general case and (b) an example.

v (output)

v1 (output) v2 (output) vn (output)....

v (1)

v1 (1) v2 (1) v3 (1) v4 (1)

v4-1 (1) v4-2 (1)

(a)

(b)

ABP FGE IHJP DCKM NLA+ + + +=

5

Finally when all the paths are explored, one vector
(the one with the least number of neighbors) can
replace the randomly chosen vector, v. If no vector
has fewer neighbors than v, then v is kept in the test
set and is not replaced. In the example above, if the
maximum depth allowed is 2, then v4-1 or v4-2 will
replace v since it has less neighbors than any of the
other vectors {v1 …v4}. After v is exhausted another
random vector is generated and the same process is
repeated. Random vectors are generated until the
required coverage is met.

An interesting question is what is maximum depth
allowed to be used during the search process of the
tree diagram. There is a trade-off here between the
quality of the vector and the time needed to compute
the good vector. Although we may obtain better vec-
tors with larger depth, the computational needs
become more expensive.
Multiple-output circuits: In dealing with multiple
outputs, the exact flow that was implemented for sin-
gle-output components cannot be followed since each
input vector will not necessarily produce the same
value for all outputs. The single output case could be
used if tests were generated for each output indepen-
dently, but may result in an excessive number of
uninteresting test vectors.

In order to effectively handle multiple-output cir-
cuits, we need to further refine our neighbor defini-
tion. We classify the following two types of
neighborhood:

• Complete: An n-bit input vector is a neighbor to
another n-bit vector if the Hamming distance
between the vectors is one and all the outputs of
the circuit are identical.

• Partial: An n-bit input vector is a neighbor to
another n-bit vector if the Hamming distance
between the vectors is one and some of the outputs
of the circuit are identical. This definition of a
neighbor is less strict and hence it leads to search-
ing a larger input vector space.

A weight must be defined for each input vector of
a multiple-output circuit. The weight is a measure of
the vector quality and it is used in the selection pro-
cess of good vectors. It is obvious that the weight of a
vector v for the case of complete neighborhood is the
number of neighbors of v. For partial neighborhood,
we consider the following methods:

• M1: The weight is defined as the average of the
number of neighbors among the matching outputs.

• M2: The weight of a vector is the number of
matching output bits amongst all the neighbors
divided by the number of locations in which there
is a matched bit.

In general the flowchart shown in Figure 5 is exe-
cuted for multiple-output circuits for the search depth

of 1. Note that the weight computation of vectors in
the replace function in the flowchart is different for
complete and partial neighborhoods. Similar flow-
charts can be used for larger search depths.
4 SIMULATION RESULTS

In this section, BT is compared to random test gen-
eration since both of these methods can be used for
implementation-independent components.
Single-output circuits: In finding a test set for sin-
gle-output circuits, it was shown that a cut-off could
be determined from calculating an average. This
worked well, achieving good coverage of the circuit.
The test set was minimal when dealing with small cir-
cuits and the BT method is relatively simple to imple-
ment. The method became more complex when
dealing with larger circuits, often producing large
number of vectors.

The BT algorithm was modified to generate tests
for larger circuits as follows. First, random vectors
are generated and then any random vector that has a
neighbor with fewer neighbors is replaced. This
method is quite easy to implement and works well.
Although redundant vectors are introduced a high
coverage can be achieved. Shown in Table 1 are the
simulation results for several small four-input cir-
cuits. As demonstrated by the table, BT achieves bet-

Figure 5 Flowchart of BT for multiple-output circuits.

Done
Y

N

Return

Y
N

Generate random vector v

w = Replace (v)

Add w to test set

Sufficient coverage?

Find output of v

Find a neighbor q of v

Compute weight for q

All neighbors done?

Set w to the vector with
the least weight among v
and all of its neighbors

Table 1 Results for 4-input single-output circuits.

Circuit Random BT
Coverage Test set size Coverage Test set size

Ex1 100 15 100 10
Ex2 87.5 10 95.83 10
Ex3 82.76 10 96.55 10
Ex4 86.96 9 100 9
Ex5 100 14 100 10
Ex6 97.30 15 97.30 9
Ex7 100 11 100 8

6

ter or, in some cases, equal coverage compared to
random test generation. Moreover, the test set size is
less than or equal to that of random test generation.
Hence, BT obtains better results when compared to
random test generation. It is interesting to note that in
Ex2 and Ex3 only two vectors are replaced and in
Ex4, Ex5, and Ex7 only one vector is replaced by
using BT. So few vector substitutions are made and as
a result BT is able to achieve nearly 10% better cov-
erage than random and the test set is reduced to about
35% in some cases.

Table 2 shows the simulation results for larger cir-
cuits. The same response that was seen in the small
input cases carried on to the larger circuits. The test
set size is greatly reduced by BT. In the first two com-
ponents, there is a reduction of about 50% in the
number of test vectors and for the carry out (c4 of a 4-
bit ripple carry adder) component the savings is 12%.
The coverage for random test generation and BT is
the same for the MUX and carry out components, but
the 16-input circuit achieves 17.2% increased cover-
age with BT. For these components, BT achieves
equal or better coverage and less test vectors than
random test generation.
Multiple-output circuits: For the multiple-output
circuits, the procedure shown in Figure 5 is followed.
We first applied the method M1 described in the pre-
vious section to small components. The method
worked well for the components that were tested.
Shown in Table 3 are two different components, the
adder and the adder-subtractor. Each component was
simulated using different implementations. The first
version of the adder-subtractor uses ripple-carry logic
and the second version uses carry-lookahead logic.
Here again we see similar results as in the single-out-
put case. Both methods, random and BT, achieve
100% coverage for the circuits considered. The dif-
ference here is that the test set for BT is always
smaller. For the first three components in Table 3, BT
is able to reduce the test set size by about 35%. In the

last component, BT reduces the test set size consider-
ably by 75%. Again the results indicate that BT is
able to significantly reduce the test set size.

In order to illustrate the effectiveness of BT for
multiple-outputs on large circuits, a C++ CAD tool
was developed. The input to the tool is the netlist file
of the benchmark, the number of random vectors and
the search depth. The tool generates the test set for
the circuit and gives the outputs in terms of 2 sets of
files: the original vector set and the improved vector
set using BT. FSIM [8] was used to find the fault cov-
erage of the generated tests.

The ISCAS-85 netlist files were used as input to
the tool. Data was collected for 5 to 70 vectors being
applied on the circuit. Moreover, the data was col-
lected for varying search depths on some circuits. It
should be noted that the obtained data for various
depths for the same circuit were a result of different
runs and hence the initial vectors considered were
different in each case. So, the random vectors
obtained for depth 1 and those of depth 3 should not
be compared based on their fault coverage values.

We first look at the experimental results obtained
when a complete neighborhood is enforced. We look
closely at the ISCAS-85 benchmark c1908. The
c1908 circuit consists of 33 inputs and 25 outputs.
The tool was run on the circuit and better vectors cap-
tured at every interval of 5 from 5 to 70 random vec-
tors for depths of 1 and 3. The graphs showing the
fault coverage as a function of the number of vectors
for both depths are shown in Figure 6. After applying
BT on the circuit for a depth of 1, the fault coverage
gain was as high as 4.5%. However, for a depth of 3,
the gain in fault coverage was noted to be a maximum
of 11.76% and had an average gain of 9.88% as com-
pared to 2.74% for depth 1. In other words to achieve
a fault coverage of say 70%, using BT for depth = 1
we need only around 23 vectors but normally would
have needed 28 vectors. For depth = 3 and for a fault
coverage of 70%, we would have needed 48 vectors
with the random test set but 14 vectors using BT.

It is evident from the graphs that BT has increased
the fault coverage. Also, as the depth is increased, we
see an increase in the fault coverage gain. This may
not be valid for all depth as after some depth, all the
possible input vectors would have been covered.

The experimental results for all the ISCAS-85
benchmark circuits show that BT performed up to 5%
better than random test generation for all circuits. The
improvement is not significant sometimes due to the
fact that vectors with complete neighborhood are
often rare in these ISCAS-85 circuits. So, we experi-
mented using the method M2 where a partial neigh-
borhood is assumed. The results obtained by BT
show an improvement of up to 12% in fault coverage.

Table 2 Results for single-output components with
large number of inputs.

Circuit Random BT
Coverage Test set size Coverage Test set size

8-to-1 Multiplexer 100 165 100 72
16-input circuit 79.31 >600 96.55 267

Adder-c4 100 93 100 82

Table 3 Results for multiple-output components
using method M1.

Circuit
Random BT

Coverage Test set
size Coverage Test set

size
ripple carry adder 100 28 100 18

carry-lookahead adder 100 64 100 42
adder-subtractor RC 100 28 100 17
adder-subtractor CL 100 93 100 24

7

5 DISCUSSION
BT has proven to have several good qualities. It

generates test vectors that achieve good fault and
design error coverage. The cut-off parameter is intro-
duced and implemented using an average for the on-
set and off-set. Random test generation was incorpo-
rated to BT and showed to give good results for large
single-output circuits. To handle multiple-output cir-
cuits, we introduced a modified BT process that
achieves good fault and design error coverage. In
summary, the characteristics of BT are:

• It generates up to 35% fewer vectors in a test set
when compared to random test generation.

• It achieves up to 55% better coverage compared to
random test generation.

• In BT, a vector that is replaced by another with
fewer neighbors often achieves better coverage.

• It can be applied to testing or design verification.
• It is implementation independent.
• It is easy to be implemented.
BT has shown to generate good test sets, but can

be greatly improved with slight modifications. Tar-
geting specific faults can improve the performance of
BT and hence achieve a higher degree of coverage
and smaller test sets.

Moreover, combining BT with deterministic test
generation is an attractive option. BT can be used
until a desired coverage was achieved then the
remaining faults could be targeted using deterministic
test generation.

One of the weaknesses of BT is its dependence on
random vectors. By locating “good” vectors (vectors
with fewer neighbors) the test set would benefit sig-
nificantly. More research is needed to determine the
good seeds.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No.
0092867.

REFERENCES

[1] M. S. Abadir and H. K. Reghbati, “Functional
test generation for digital circuits described using
binary decision diagrams”, IEEE Transactions
on Computers, Vol. C-35, pp. 375-379, April
1986.

[2] S. B. Akers, “Universal test sets for logic net-
works”, IEEE Transactions on Computers, Vol.
C22, pp. 835-39, September 1973.

[3] S. B. Akers, “Functional testing with binary deci-
sion diagrams”, Proc. International Conference
on Fault Tolerant Computing, 1978, pp. 75-82.

[4] S. A. Al-Arian, “Functional level ATPG and
fault coverage”, Proc. SOUTHEASTCON, 1991,
pp.104-108.

[5] H. P. Chang, W. A. Rogers, and J. A. Abraham,
“Structured functional level test generation using
binary decision diagrams”, Proc. International
Test Conference, 1986, pp. 97-104.

[6] H. Kim and J. P. Hayes, “Realization-indepen-
dent ATPG for designs with unimplemented
blocks”, IEEE Transactions on Computer-Aided
Design, Vol. 20, pp. 290-306, February 2001.

[7] H. K. Lee and D. S. Ha, “On the generation of test
patterns for combinational circuits”, Dept. of
Electrical Engineering, Virginia Polytechnic
Institute and State University, Rep. 12-93, 1993.

[8] H. K. Lee and D. S. Ha, “An efficient forward
fault simulation algorithm based on parallel pat-
tern single fault propagation”, Proc.
International Test Conference, pp. 946-55, 1991.

[9] D. Moundanos and J. A. Abraham, “Abstraction
techniques for validation coverage analysis and
test generation”, IEEE Transactions on Comput-
ers, Vol. 47, pp. 2-14, January 1998.

[10] C. Pixley et al., “Commercial design verification:
methodology and tools”, Proc. International Test
Conference, pp. 839-48, 1996.

[11] S. Taylor et al., “Functional verification of mul-
tiple-issue, out-of-order, superscalar alpha
processor-The DEC Alpha 21264 microproces-
sor”, Proc. Design Automation Conference,
1998, pp. 638-43.

Figure 6 Fault coverage as a function of the number of vectors for the circuit c1908.

45

50

55

60

65

70

75

80

85

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Vectors

Fa
ul

t C
ov

er
ag

e

40

45

50

55

60

65

70

75

80

85

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Vectors

Fa
ul

t C
ov

er
ag

e

Depth = 1 Depth = 3

