
1

Abstract — With operational faults becoming
the dominant cause of failure modes in modern
VLSI, widespread deployment of on-line test
technology has become crucial. In this paper,
we present a non-concurrent on-line testing
technique via scan chains. We discuss the
modifications needed in the design so that it
can be tested on-line using our technique. We
demonstrate our technique on a case study of
a pipelined 8x8 multiply and accumulate unit.
The case study shows that our technique is
characterized by high error coverage, moder-
ate hardware overhead, and negligible time
redundancy.

INTRODUCTION

As the ratio of validation/test engineers to design
engineers approaching 3 to 1, the verification and
testing of the design of a computer chip is becom-
ing the most significant part in the chip’s overall
production. Before the present age of ever-shrink-
ing geometries, chip real estate was very expen-
sive. Sometimes, there was no room on a single
chip for all the desired functionality and therefore,
it was not uncommon to have a number of chips
delivering the needed functionality. Before silicon
was 'cheap', on-line (on-chip) testing would often
displace functionality and thus was only used for
devices where fail-safe fault-tolerant operation
was extremely important. Now that we are in the
era of system-on-a-chip, designers are trying to
use this newly won silicon by adding new functions
that support design-for-testability, design-for-
debug, and on-line testing. Furthermore, with tran-
sient and intermittent operational faults becoming
a dominant failure mode in modern VLSI, wide-
spread deployment of on-line test technology has
become crucial. Key benefits of on-line testing
include low-latency fault detection and correction,
fault effect localization, and fault tolerance [1].

In this paper, we present a new on-line testing
method that uses existing scan chains. The paper
is organized as follows. We first describe some
background on faults and testing methodologies.
We then present a general overview of the struc-
ture and operation of the circuit under test (CUT),
an 8-bit 8x8 multiply and accumulate unit. We then
describe the detailed design of the non-concurrent
on-line scan chain test module (OST) and its mon-
itoring program that controls its access to the CUT.
We finally present an evaluation of the OST imple-
mentation and discuss conclusions and possible
future work.

BACKGROUND

Faults are physical or logical defects in the design
or implementation of a device. Under certain con-
ditions, they lead to errors, that is, incorrect sys-
tem states. Errors induce failures, that is, a
deviation from appropriate system behavior. If the
failure can lead to an accident, it is a hazard.
Faults throughout the life of a digital system can be
classified into three groups: design, fabrication,
and operational faults. Design faults are made by
human designers or CAD software (simulators,
translators, or layout generators), and occur during
the design process. Fabrication defects result from
an imperfect manufacturing process. For example,
shorts and opens are common defects in manufac-
turing very large-scale integrated (VLSI) circuits.
Operational faults are caused by wearout or envi-
ronmental disturbances during normal operation of
the embedded system. Such disturbances include
electromagnetic interference, operator mistakes,
and extremes of temperature and vibration. Some
design defects and manufacturing faults escape
detection and combine with wearout and environ-
mental disturbances to cause problems in the field.

Operational faults are usually classified according
to their duration:

NON-CONCURRENT ON-LINE TESTING VIA SCAN CHAINS

Hussain Al-Asaad and Paolo Moore
Department of Electrical and Computer Engineering

University of California, One Shields Avenue, Davis, CA 95616-5294
Tel: (530) 752-5545

E-mail: halasaad@ece.ucdavis.edu

2

• Permanent faults remain in existence indefi-
nitely if no corrective action is taken. Many of
these are residual design or manufacturing
faults.

• Intermittent faults appear, disappear, and reap-
pear repeatedly. They are difficult to predict,
but their effects are highly correlated. Most
intermittent faults are due to marginal design or
manufacturing steps. The system works well
most of the time, but fails under atypical envi-
ronmental conditions.

• Transient faults appear and disappear quickly,
and are not correlated with each other. They
are most commonly induced by random envi-
ronmental disturbances.

On-line testing addresses the detection of opera-
tional faults, and is found in computers that sup-
port critical or high-availability applications. The
goal of on-line testing is to detect fault effects, that
is, errors, and take appropriate corrective action.
For example, in some critical applications, the sys-
tem is shut down after an error is detected. In other
applications, error detection triggers a reconfigura-
tion mechanism that allows the system to continue
its operation, perhaps with some degradation in
performance. On-line testing can be performed by
external or internal monitoring, using either hard-
ware or software; internal monitoring is referred to
as self-testing. Monitoring is internal if it takes
place on the same substrate as the circuit under
test (CUT); nowadays, this usually means inside a
single IC—a system-on-a-chip (SOC).

There are five primary parameters to consider in
the design of an on-line testing scheme:

• Error coverage (EC): This is defined as the
fraction of all modeled errors that are detected,
usually expressed in percent. Critical and
highly available systems require very good
error detection or error coverage to minimize
the impact of errors that lead to system failure.

• Error latency (EL): This is the difference
between the first time the error is activated and
the first time it is detected. EL is affected by the
time taken to perform a test and by how often
tests are executed. A related parameter is fault
latency (FL), defined as the difference between
the onset of the fault and its detection. Clearly,
FL ≥ EL, so when EL is difficult to determine, FL
is often used instead.

• Space redundancy (SR): This is the extra hard-
ware or firmware needed to perform on-line

testing.
• Time redundancy (TR): This is the extra time

needed to perform on-line testing.
• Power overhead (PR): This is the extra power

needed to perform the on-line testing.

An ideal on-line testing scheme would have 100%
error coverage, error latency of 1 clock cycle, no
space redundancy, no time redundancy, and no
power overhead. It would require no redesign of
the CUT, and impose no functional or structural
restrictions on the CUT. Most on-line testing meth-
ods meet some of these constraints without
addressing others. Consideration of all the param-
eters discussed above in the design of an on-line
testing scheme can create conflicting goals. High
coverage can require high EL, SR and/or TR.
Schemes with immediate detection mini-
mize time redundancy, but require more hardware.
On the other hand, schemes with delayed detec-
tion reduce the time and space redun-
dancy at the expense of increased error latency.
Several proposed on-line testing techniques that
use delayed detection assume equiprobable input
combinations and try to establish a probabilistic
bound on the error latency [2]. This results in cer-
tain faults remaining undetected for a long time
because tests for them rarely if ever appear at the
inputs of the CUT.

To cover all of the fault types described earlier, two
different modes of on-line testing are employed:
concurrent testing which takes place during normal
system operation, and non-concurrent testing
which takes place during idle times or while normal
operation is temporarily suspended. These operat-
ing modes must often be overlapped to provide a
comprehensive on-line testing strategy at accept-
able cost.

Concurrent testing: Concurrent testing continu-
ously checks for errors due to transient or intermit-
tent faults whose effects disappear quickly.
However, concurrent testing is not by itself particu-
larly useful for diagnosing the source of errors, so
it is often combined with diagnostic software. It
may also be combined with non-concurrent testing
to detect or diagnose complex faults of all types.

A common method of providing hardware support
for concurrent testing, especially for detecting con-
trol errors, is a watchdog timer [3]. This is a
counter that must be reset by the system on a
repetitive basis to indicate that the system is func-
tioning properly. A watchdog timer is based on the

EL 1=()

EL 1>()

3

assumption that the system is fault-free—or at
least alive—if it is able to perform the simple task
of resetting the timer at appropriate intervals,
which implies that control flow is correctly travers-
ing timer reset points. Proper system sequencing
can be monitored to very high precision by guard-
ing watchdog timer reset operations with software-
based acceptance tests that check signatures
computed while control flow traverses various
checkpoints. More complex hardware watchdogs
can be constructed that implement this last
approach in hardware [3].

A key element of concurrent testing for data errors
is redundancy. For example, duplication with com-
parison (DWC) [4] can detect any single error at
the expense of 100% space redundancy. DWC
requires two copies of the CUT, which operate in
tandem with identical inputs. Their outputs are
compared and any discrepancy indicates an error.
In many applications, the high hardware overhead
of DWC is unacceptable. Moreover, it is difficult to
prevent minor variations in timing between dupli-
cated modules from invalidating comparisons. A
possible lower-cost alternative is time redundancy.
Critical operations can be executed more than
once, at diverse time points, and their results com-
pared. This technique is called double-execution
or retry. Transient faults are likely to affect only one
instance of the operation and can thus be
detected. Recomputing with shifted operands
(RESO) [4] achieves almost the same error cover-
age of DWC with 100% time redundancy but very
little space redundancy. However, the practicality
of double execution and RESO in on-line testing
for general logic circuits has not been demon-
strated. A third form of redundancy which is very
widely used is information redundancy, that is, the
addition of redundant (coded) information such as
a parity check bit [4]. Such codes are particularly
effective for detecting memory and data transmis-
sion errors, since memories and networks are sus-
ceptible to transient errors, however, coding
methods can also detect errors in data computed
during critical operations.

Resent research emphasize that transient errors
pose a major barrier to robust system design. A
system’s susceptibility to such errors increases in
advanced technologies, making the incorporation
of effective protection mechanisms into chip
designs essential. A new design paradigm pro-
posed in [5] reuses design-for-testability and
debug resources to eliminate such errors.

Non-concurrent testing: This form of testing is
either event-triggered (sporadic), time-triggered
(periodic), or activated via a test scheduling algo-
rithm. Event-triggered testing is initiated by key
events or state changes in the life of a system,
such as start-up or shutdown, and its goal is to
detect permanent faults. It is usually advisable to
detect and repair permanent faults as soon as pos-
sible. Event-triggered tests resemble manufactur-
ing tests. Any such test can be applied on-line, as
long as the required testing resources are avail-
able. Typically the hardware is partitioned into
components, each of which is exercised by tests
specific to that component.

Time-triggered testing is activated at predeter-
mined times in the operation of the system. It is
often done periodically to detect permanent faults
using the same types of tests applied by event-trig-
gered testing. This approach is especially useful in
systems that run for extended periods, where no
significant events occur that can trigger testing.
Periodic testing is also essential for detecting inter-
mittent faults. Such faults typically behave as per-
manent faults for short time intervals. Since they
usually represent conditions that must be cor-
rected, diagnostic resolution is important. Periodic
testing can identify latent design or manufacturing
flaws that only appear under the right environmen-
tal conditions. Note that time-triggered tests are
frequently partitioned and interleaved, so that only
part of the test is applied during each test period.

As noted above, for critical or highly available sys-
tems, it is essential to have a comprehensive
approach to on-line testing that covers all
expected permanent, intermittent, and transient
faults. In recent years, built-in self-test (BIST) has
emerged as an important method for testing manu-
facturing faults, and it is increasingly promoted for
on-line testing as well. BIST is a design-for-test-
ability technique that places the testing functions
physically with the CUT, as illustrated in Figure 1.
In normal operating mode, the CUT receives its

Error

X Z

Figure 1 Generic BIST scheme.

Control

Test
Response

monitor
generator

TG

Mux

RM

S Circuit under test
CUT

4

inputs X from other modules and performs the
function for which it was designed. In test mode, a
test pattern generator circuit TG applies a
sequence of test patterns S to the CUT, and the
test responses are evaluated by a response moni-
tor RM. In the most common type of BIST, test
responses are compacted in RM to form (fault) sig-
natures. The response signatures are compared
with reference signatures generated or stored on-
chip, and the error signal indicates any discrepan-
cies detected.

BIST can be used for non-concurrent, on-line test-
ing of the logic and memory parts of a system [6].
It can readily be configured for event-triggered
testing, in which case, the BIST control can be tied
to the system reset so that testing occurs during
system start-up or shutdown. BIST can also be
designed for periodic testing with low fault latency.
This requires incorporating a testing process into
the CUT that guarantees the detection of all target
faults within a fixed time. We next describe our on-
line BIST technique using scan chains.

ON-LINE TESTING VIA SCAN CHAINS

Circuit under test: The CUT for our case study
is an 8-bit 8x8 multiply and accumulate unit
(MAC). MAC units are commonly used in many
important DSP filtering and frequency transforming
functions. The CUT uses distributed arithmetic to
perform multiplication based on a look-up table
scheme. It computes the arithmetic sum of prod-
ucts or vector dot product much needed in matrix
manipulation calculations.

The arithmetic sum of products that defines the
response of linear, time-invariant networks can be
expressed as:

where y(n) is the response of network at time n,

xk(n) is the kth input variable at time n, and Ak is
the weighting factor of kth input variable that is
constant (time-invariant) for all n.

In filtering applications, the constants (Ak) are the
filter coefficients and the variables (xk) are the prior
samples of a single data source (for example, an
analog to digital converter). In frequency trans-
forming – whether the discrete Fourier or the fast
Fourier transform – the constants are the sine/
cosine basis functions and the variables are a
block of samples from a single data source. Exam-
ples of multiple data sources may be found in
image processing [7].

The MAC is fed a matrix row of eight 8-bit samples
in a 64-bit word d (corresponding to x in the above
equation) and it outputs a 12-bit result (corre-
sponding to y in the above equation) after 4 clock
cycles. It has three control signals: a clk signal, a
reset signal and a load signal. Two ROMs (rom_a
and rom_b) serve as the distributed arithmetic
look-up tables (DALUTs) containing the matrix
coefficients Ak. The block diagram for the MAC is
presented in Figure 2.

On-line scan chain test module (OST): Scan
chain testing is used to test sequential logic cir-
cuits by partitioning them into a series of combina-
tional logic blocks separated by scan chain
registers. This segmenting allows for controllability
of inputs and observability of outputs of the combi-
national logic blocks that otherwise would be inac-
cessible within the internals of the CUT. Our OST
that we describe next is fundamentally a form of
BIST.

The OST performs an on-line scan test of a
selected CUT. The test vectors are fed into the
OST from the data bus of an external memory
module. The OST then scans the test vector bit-
by-bit into specialized scan registers in the CUT.
After the complete test vector is scanned into the
chip and the OST is granted control of the CUT by
an OST monitor program running on the operating

y n() Akxk n()
k 1=

K

∑=

Figure 2 Block diagram for pipelined MAC unit.

DALUT
rom_a

DALUT
rom_b

Accumulator
& shifters

Output
buffer

Bit
selection

logic

Control

d(63:0)

clk
reset
load

result(11:0)

Pipeline
register

5

system, a 1-cycle mode switch occurs. During the
mode switch, the data bits in the scan registers are
swapped with the data bits in the CUT’s normal
operation registers. This effectively takes the CUT
‘off-line’ for a single cycle so that the scanned-in
test vector can drive the data/control paths. The
state of the CUT is saved during this swap so that
after the 1-cycle scan testing operation, the state is
reinstated. In addition, the OST drives all input
lines except the clock into the CUT. Immediately
after mode switch, all output generated by the CUT
during the mode switch is saved in result registers
for later comparison with expected data patterns
stored and read out from another external memory
module. Thus, the OST borrows the CUT from nor-
mal operation during test mode and ‘returns’ it
when the test mode is completed. After that, the
OST compares the experimental values with
expected values and asserts a status line if a mis-
match occurs. It is up to an OST monitor program
to take any appropriate action(s). A block diagram
of the OST is presented in Figure 3.

The OST is organized into two functional sections.
The scan functional section is responsible for
reading out all inputs to the CUT (combinational
inputs and scan chain test vectors) from the scan
memory module and shifting the test vector into
the scan chain of the CUT. The second section,
the compare section, is responsible for reading the
expected or ‘golden’ values from the compare
memory, comparing it to the experimental values
from the CUT generated during the mode context
switch and driving the status line high if a mis-
match occurs.

For every register that would normally appear in

the architected design of the CUT, a reg_pair is
substituted. A reg_pair is two registers that each
has an input side multiplexer whose selection bit is
driven by the mode signal. These multiplexers
drive the data lines of their respective registers.
When mode = 1, the values in the d_reg and
scan_reg are swapped so that the machine state is
saved in the scan_reg and the data/control paths
of the CUT are driven by the ‘scanned-in’ test vec-
tor now residing in the normal operational d_reg.
This allows for a context switch of only one cycle.

The OST is serviced by two ROM memory mod-
ules. The 64Kx256 s_mem module provides all the
input stimulus and test vectors needed for the
CUT. It returns, on the 256-bit s_mem_data bus,
the 73-bit scan chain test vector and CUT inputs
indexed by the 16-bit memory address generated
by the s_pc program counter. In like manner, the
64Kx128 c_mem module contains all the expected
results correlated with both the scan chain test
vector and CUT outputs. It returns, on the 128-bit
c_mem_data bus, the data word indexed by the
16-bit memory address generated by the c_pc pro-
gram counter.

Each of the data buses from the memory modules
is fed into multiplexer. The multiplexer has the
same number of inputs as there are bits in the
scan chain, 73 in the case of the MAC. A subset of
s_mem_data, appropriately sized to the length of
the scan chain for the CUT, is fed into the s_mux.
The output of the s_mux supplies the OST output
signal scan_in which feeds the scan chain into the
CUT. The remaining bits of s_mem_data (used to
supply the off-chip stimulus during the testing of
the CUT) are fed into the CUT input multiplexers.

inputs

Figure 3 Block diagram of on-line scan chain testing.

Control

in_mux

d_reg

scan_

mode
en

CUT
(reg-pair inside CUT)

reg

mode

+

s_pc
s_pc_en

data

addr

s_mem

s_mux

sel

scan_in

result

res_reg

c_mux

+

c_pc
c_pc_en

data

addr

c_mem

sel

scan_out

res_reg_en

valid

status
1

0

1

0

clk
reset

grant

6

In like manner, a scan chain length subset of
c_mem_data is fed into the c_mux multiplexer,
whose output is later used in the comparison logic.
Both multiplexers use the same sel signal gener-
ated by the control unit.

The output of c_mux (a single bit selected from
bits 0-72 of the c_mem_data) is XORed with the
OST input scan_out generated by the scan chain
in CUT after a mode context switch. The remaining
bits of c_mem_data (containing the expected
‘golden’ values for the MAC output) are XORed
with the contents of res_reg. These two ‘intermedi-
ate’ XORed results are then ORed together and
fed into a two-input AND gate along with the valid
signal. The valid signal is asserted high for 73
clock cycles after a mode context switch signifying
that the compare operation is indeed valid rather
than garbage comparisons. The output of this AND
gate is the active high OST output status. The sig-
nal status is driven high when an error has been
detected. It is left to the OST monitoring program
in the operating system to monitor this assertion
and perform any subsequent actions.

The control unit has three inputs: a clock signal,
clk, a reset signal, reset and an active high grant
signal. The grant and reset signals are generated
from an OST monitor running in the operating sys-
tem controlling the CUT. When either a key event
occurs or a preset period of time elapses, the OST
monitor asserts the grant signal to alert the OST
that the CUT can be ‘borrowed’ for scan testing.

The control logic loop consists of basically two 73
clock cycle blocks, the scan block and the com-
pare block. These two blocks are separated by a
single cycle mode context switch, which is trig-
gered if the grant signal is asserted after the input
data (off-chip stimulus vector and scan chain test
vector) is fully loaded in during the scan block.
After the mode context switch in which mode goes
from a value of 0 to 1 and back to 0, the second 73
clock cycle block, the compare block, begins. Also,
during the mode context switch, the res_reg_en
signal is asserted so that the normal operational
output of the CUT is captured for later comparison.

During the first cycle of the scan block, the c_pc is
incremented via assertion of the c_pc_en signal so
that the c_mem memory module can drive the
c_mem_data bus with the next values needed dur-
ing the compare block. At the last cycle of the scan
block, the grant signal is polled. Only when the sig-
nal is asserted does the mode context switch

occur. Also, the write enable signal, en, for the
s_reg registers in the scan chain is deasserted
after the scan chain test vector is fully loaded. This
prevents erroneous unwanted shifting during grant
signal polling or during the mode context switch.

During the mode context switch, the CUT is the
only module performing a useful function. The
OST waits during this cycle. During the other parts
of the control loop, the two 73 clock cycle blocks,
the control unit synchronizes and cycles the selec-
tion bits of the two memory data bus selection mul-
tiplexers through the values 0 to 72, selecting the
appropriate bits from their respective memory
module data buses. This cycling is temporarily
suspended during polling of the grant signal and
the mode context switch.

After the mode context switch, the compare block
begins with the assertion of the valid signal. Also,
the scan chain write enable signal en is asserted
allowing the scan chain to be loaded. Though the
scan chain is capable of being loaded, the s_pc
has not yet fetched the next test vector. During the
first cycle of the compare block, the s_pc is incre-
mented via assertion of the s_pc_en signal so that
the s_mem_data bus can have the next values
needed during the next scan block in the next iter-
ation of the control loop.

Operating system OST monitor: An OST
monitor program running in the operating system
controls the assertion of the grant signal that signi-
fies the CUT’s availability for testing, and drives
the reset signal for the OST. It is the responsibility
of the monitor to take any subsequent action if the
OST status signal is ever asserted.

The OST monitor can be programmed to assert
the grant signal when key events occur (event-trig-
gered OST operation). An obvious choice for an
event that appears in the key event list is when the
CUT is idle. In addition, if certain regions of the
program running on the CUT have a high inci-
dence of errors associated with it, the OST monitor
can be programmed to assert the grant signal dur-
ing appropriate times in this error-prone operating
region of the CUT.

The OST monitor can also be programmed to peri-
odically assert the grant signal allowing the OST
access to the CUT (time-triggered OST operation).
This would assure that the OST tests the CUT
once every predetermined interval.

7

EVALUATION AND CONCLUSIONS

To evaluate our on-line scan testing technique, we
need to examine the following basic parameters:
error coverage, error latency, time redundancy,
space redundancy, and power overhead.

Error coverage is an artifact of the test vector gen-
erator program and the error model used to test for
particular faults. So, we can easily achieve high
error coverage by selecting a good test set. Of
course, we need to select the smallest test set size
since the test set and the CUT response to it need
to be stored in the memory modules needed by
our OST. So, a smaller test size implies less space
redundancy and power overhead.

Error latency depends both on the frequency
(scheduling) of the testing and the duration of it.
So, if tests are done more frequently, the error
latency will be decreased.

The specialized reg_pair module was designed so
that the OST would only borrow the CUT for one
clock cycle. The reg_pair allowed the CUT
machine state to be saved so that the operation in
progress could be reinstated rather restarted after
the testing. After the scan chain was shifted 73
clock cycles into the CUT and a one clock cycle
mode context switch, it took 73 clock cycles for the
comparison operation. So, although we need 147
total clock cycles for one test vector to be pro-
cessed, only one clock cycle is taken from normal
operation. So, the time redundancy is negligible.

A reg_pair is substituted for every normal opera-
tional register originally architected in the CUT.
This adds an extra register and two 2-to-1 1-bit
multiplexers for every original register. In the case
of the MAC, an additional 73 registers and 146
multiplexers were added. For the OST implemen-
tation, the hardware needed is 69 registers, 67
logic gates and 2 ROM memory modules
(64Kx256 and 64Kx128). Although the amount of
extra hardware seems moderate in our case study,
it decreases as the size of the CUT increases.

With the extra hardware needed for the OST oper-
ation, we definitely need extra power. The power
overhead is directly related to the space redun-
dancy. However, the peak power of the overall sys-
tem (CUT and OST) can be the same as the
original system (CUT alone) if the CUT power is
cut-off when the OST is working and vice versa.

We have demonstrated the feasibility of bringing
scan chain testing on-line. The particular imple-
mentation in this demonstration provided a simple
straightforward design. It had high error coverage,
moderate hardware overhead, and negligible time
redundancy.

Possible future improvements on the implementa-
tion of non-concurrent on-line scan chain testing
include a pipelined design to overlap the compare
block of a test vector with the scanning in of the
next test vector. This will decrease the time neces-
sary for all test vectors to be executed by 50%. In
addition, multiple scan chains can be used to
decrease the time needed for shifting in the test
vectors at the expense of additional cost of I/O
pins. Finally, the OST can be used to diagnose
and locate the errors. The test vectors need to be
grouped in such a way the OST monitor program
is able to associate the program counter values of
the OST with particular logic regions of the CUT.

REFERENECES

[1] R. Karri and M. Nicolaidis, “Online VLSI test-
ing”, IEEE Design & Test of Computers, Vol.
15, No. 4, pp. 12 - 16, Oct.-Dec. 1998.

[2] K. K. Saluja, R. Sharma, and C. R. Kime, “A
concurrent testing technique for digital cir-
cuits”, IEEE Transactions on Computer-Aided
Design, Vol. 7, pp. 1250-1259, Dec. 1988.

[3] A. Mahmood and E. McCluskey, “Concurrent
error detection using watchdog processors—
A survey”, IEEE Transactions on Computers,
Vol. C-37, pp. 160-174, Feb. 1988.

[4] B. W. Johnson, Design and Analysis of Fault
Tolerant Digital Systems, Addison-Wesley,
Reading, Massachusetts, 1989.

[5] S. Mitra et al., “Robust system design with
built-in soft-error resilience”, IEEE Computer,
Vol. 38, pp. 43-52, Feb. 2005.

[6] B. T. Murray and J. P. Hayes, “Testing ICs:
Getting to the core of the problem”, IEEE
Computer, Vol. 29, pp. 32-45, Nov. 1996.

[7] Xilinx Inc., “The role of distributed arithmetic in
FPGA-based signal processing”, http://
www.xilinx.com/appnotes/theory1.pdf.

[8] H. Al-Asaad, B. T. Murray, and J. P. Hayes,
“On-line BIST for embedded systems”, IEEE
Design and Test of Computers, Vol. 15, No. 4,
pp. 17-24, November 1998.

[9] J. Savir, “On-line and off-line test of airborne
digital systems: a reliability study”, Proc. Inter-
national Test Conference, 2000, pp. 35-44.

