
ABSTRACT

A novel Markov model for the reliability prediction of
fault-tolerant non-homogenous VLSI and WSI multipipe-
line arrays is presented. The PEs of the array are assumed
to fail independently (with a constant failure rate) at differ-
ent moments and the transition rate between two different
error states is constant. A total system failure is reached
when the number of working pipelines becomes less than a
predetermined number Sm. Thus the reliability of the mul-
tipipeline array is defined as the probability of having S(t)
greater than or equal to Sm, where S(t) is the number of
survived pipelines at time t, and Sm is the minimum number
of survived pipelines that is needed for the multipipeline to
be considered in a working condition. In addition to pre-
dicting the reliability, the Markov model can be used in
design optimization to determine the best possible design
among multiple alternatives. Several experiments are con-
ducted that demonstrate the ability of the proposed Markov
model to predict the reliability and to evaluate various
design alternatives.

1  INTRODUCTION

A multipipeline array is a set of identical pipelines
each of which consists of several stages of processing
elements (PEs) that are separated from each other by
interconnection networks. While an individual pipe-
line is obviously a linear array, the entire architecture
can be seen as a rectangular array with a simplified
interconnection structure. A general model of multip-
ipelines is shown in Figure 1. Multipipelines are often
classified into two categories: Homogeneous and
non-homogenous. PEs in homogenous multipipelines
perform the same operation and hence they are per-
fectly identical. Although homogenous multipipelines
are rarely used, homogeneity can often be achieved at

the expense of extra hardware. In non-homogeneous
multipipelines, the different stages of a single pipeline
perform different operations and the PEs are therefore
different. So, in non-homogenous multipipelines the
homogeneity is found column-wise. Hereinafter, the
term “multipipelines” refers to non-homogeneous
multipipelines.

The simplest form of the multipipeline is a one
with feed-through connections and hence has no fault-
tolerant capabilities. The most complex form of the
multipipeline uses a crossbar interconnection network
between the stages. As the connectivity of the inter-
connection network increases, the hardware required
to implement the network increases which in turn
increase the probability of failure in the interconnec-
tion network. Hence, a balanced trade-off between the
degree of fault tolerance and the complexity of the
interconnection network need to be located.

Multipipelines are often used to perform parallel
pipelined operations with efficient performance. From
general purpose vector supercomputers to application
specific digital signal processing and cellular arith-
metic arrays, multipipelines are currently being used.
For example, they are currently being used in bit
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Figure 1  A general model of a multipipeline.
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serial digital signal processing arrays/transforms [1].
Very large scale integration (VLSI) and wafer

scale integration (WSI) technologies are most advan-
tageous when used to implement regularly structured
systems such as large arrays of identical processing
elements. As integration level increases and the sizes
of arrays grow larger, the possibility of a single fault
or multiple faults occurring in a VLSI or WSI array
increases. These faults can occur during the manufac-
turing process as well as during the operational life-
time of an array. If an array is not fault tolerant, the
failure of a single element can cause the entire array
to fail. On the other hand, the array might be able to
operate in a fault-tolerant reconfigurable structure,
where it is designed to tolerate some of the faults. For
example, in the presence of faults, the multipipeline
may be designed to recover k needed pipelines out of
N supplied ones. So, if a vector processor uses at least
six pipelines and eight of them are supplied, then a
fatal failure is reached when three out of the eight
pipelines are faulty. This restructuring of the array
can be performed at fabrication time to enhance yield
or during normal operation to improve reliability.

The problems of reconfiguring functional pipe-
lines out of an array with faults have received much
attention [1][2][3][4][5][6][7][8][9]. Some reconfigu-
ration algorithms assume fault-free switches and
interconnections. A multi-phase representative algo-
rithm is described in [2]. Each phase of the algorithm
consists of sequentially setting rows of switches. For
an  multipipeline array, N sequential phases are
required. Other algorithms consider switch and inter-
connect faults. The algorithm proposed in [8] does
not produce optimal results and is complex and diffi-
cult to be implemented distributively.

Another problem with known reconfiguration
algorithms is that the interconnection lengths of a
reconfigured array could become significantly longer
than the original array. This can decrease the perfor-
mance benefits of implementing the pipelines on a
single VLSI or WSI chip, since multipipelines are a
synchronous design where the clock is set to accom-
modate the longest delay of interstage connections.
Furthermore, since it is not possible to know a priori
the length of interstage connections in the pipelines,
then all interconnections need to be supported with
powerful buffers capable of driving the worst case
interstage paths. This can impose very significant
area, power, and delay penalties on the multipipeline

design. Due to the above, several reconfiguration
techniques ensure that interstage connections are
probabilistically bounded [1][2].

A major weakness of known reconfiguration algo-
rithms is that they are not simple enough to be imple-
mented with little hardware and to be executed in a
very short time, especially when the reconfiguration
is performed on-line during normal operation. For
example, the reconfiguration algorithm presented in
[3] achieves optimal solution based on finding the
maximum flow in a flow network but suffers from its
complexity and difficulty to be implemented in a dis-
tributed fashion.

As discussed above, previous designs of multip-
ipelines are characterized by variable interstage con-
nection length dependent on the fault distribution,
complex switching element that forbids the assump-
tion of fault-free switches, and multi-phase sequential
reconfiguration algorithms. A new design is pre-
sented in [11] that guarantees a constant and fault-dis-
tribution independent interstage length. The design is
characterized by its simplicity—the switching ele-
ment is replaced by a simple two-input multiplexer—
and has a parallel distributed reconfiguration algo-
rithm.

In general, the following issues need to be consid-
ered in designing efficient fault-tolerant multipipe-
lines:

• Architecture: The interconnection network
between the columns of the processing array
should support fault-tolerant capabilities. It
should be simple enough so it does not add penal-
ties on the array performance. Also, the interstage
path length should be minimized. 

• Diagnosis: The diagnosis algorithm that detect
defects/faults in both the network and the process-
ing elements should be simple so that the testing
hardware is kept at a minimal.

• Reconfiguration: The reconfiguration algorithm
should give good harvest rate and should be sim-
ple enough so that it can be easily implemented
and executed in a short time.

The reliability of a multipipeline design is calcu-
lated using Markov models. The PEs are assumed to
fail independently with a constant failure rate λ mea-
sured in failures per PE per unit time. A system fail-
ure is reached when the number of working pipelines
becomes less than a certain number Sm. Thus the reli-
ability is defined as , where

N M×

R t( ) Prob S t( ) Sm≥{ }=
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S(t) is the number of survived pipelines at time t, and
Sm is the minimum number of survived pipelines that
is needed for the multipipeline to be considered in a
non-fatal failure condition.

The rest of the paper is organized as follows. In
Section 2, we describe the details of the new Markov
model for multipipelines. In Section 3, we present an
evaluation of the reliability of several existing
designs using the new Markov model. 
2  NEW MARKOV MODEL

The Markov model for reliability prediction
requires two assumptions [1][15]: PEs fail indepen-
dently in different moments, and the transition rate
between two different error states of a system of PEs
(multipipeline) is constant.

To develop the model of the multipipeline, con-
sider first the simple case of a  multipipeline.
The Markov model for the multipipeline with Sm = 2
is shown in Figure 2. Each circle in that figure repre-
sents an ensemble of states that is represented by (α,
β), where α represents the number of survived pipe-
lines and β represents the number of faulty PEs. Ini-
tially, the multipipeline is in ensemble (4,0) and
finally, the multipipeline is in an ensemble (1, γ) ≡ F,
where γ > 2 and F is the fatal failure ensemble. There
are many states of the multipipeline that have 3 sur-
vived pipelines with 1 faulty PE. In fact, the ensem-
ble (3,1) has  states. On the other hand the
ensemble (4,0) has only one state.

The first fault in the multipipeline leads to the loss
of one pipeline as shown in Figure 2. The second
fault in the multipipeline could lead to losing another
pipeline if the first and second faults occurred in PEs

of the same column. Otherwise, no additional pipe-
line is lost. In general, after the first fault, a second
fault may or may not lead to a pipeline loss.

Consider the most general case of  multip-
ipeline where a fatal failure is reached when the num-
ber of survived pipelines is less than Sm. By
inspection, the ensembles in the Markov model are as
follows:

one fault-free ensemble which has a single state
 ensembles each has  fault-

free pipelines
 ensembles each has  fault-

free pipelines
...

 ensembles each has  fault-free
pipelines

....
 ensembles each has Sm

fault-free pipelines
 fatal failure ensembles

Hence, the total number of ensembles of the Markov
model is:

If M = N, then ST will be O(N3). This shows the rapid
growth of complexity of the Markovian modeling.
Initially in the Markov model, the multipipeline is in
ensemble (N, 0) and finally, the multipipeline is in an
ensemble (Sm – 1, γ) ≡ F, where γ > (N – Sm). In gen-
eral, each ensemble of the Markov model can be rep-
resented as shown in Figure 3.

From each ensemble (p, f) of the Markov model,
there exists q transitions (PE failures) to other ensem-
bles of which r lead to a pipeline loss. Since the prob-
abilities of failure of the PEs are constant, equal, and
independent, then the rate of pipeline failures from
ensemble (p, f) is the number of live PEs ( )
times the PE failure rate (λ) times the transitional
fraction  (Fv). The transitional fractions Fv

', Fh
',

4 3×

Figure 2  Markov model for a 4x3 multipipeline.
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Fv, and Fh are important parameters that become
increasingly burdensome to obtain analytically as N
increases. For small number of PEs, enumerating the
states and grouping them into ensembles leads to
finding the actual values of the transitional fractions.
For medium and large number of PEs, the enumera-
tion technique is not practical. Hence, simulation is
used to determine the transitional fractions. The tran-
sitional fraction Fv

' is the fraction of PE failures
which lead to a pipeline loss while the multipipeline
is in the ensemble (p + 1, f – 1). Similarly, Fv is the
fraction of PE failures which lead to loss of a pipeline
in the ensemble (p, f). On the other hand, Fh' is the
fraction of PE failures which do not lead to a pipeline
loss in the ensemble (p, f – 1). Similarly, Fh is the
fraction of PE failures which do not lead to a pipeline
loss in the ensemble (p, f). Let  be the proba-
bility of being in ensemble (a, b). Then the following
equation relates the ensembles in Figure 3.

Ensemble (p, f) should be provided by Fh' and Fv' in
order to determine the probability of being in it at
time t + ∆t. Note that this probability is independent
of Fv and Fh because .

To get the transitional fractions Fv' and Fh' for each
ensemble, a simulation procedure is used. For each
ensemble, two variables Nv and Nh are defined. In
ensemble (p, f), Nv(p, f) is the number of times the
ensemble is visited from ensemble (p + 1, f – 1) and
Nh(p, f) is the number of times the ensemble is visited
from ensemble (p, f – 1). Each time the ensemble is
visited either Nv(p, f) or Nh(p, f) is incremented. The
simulation procedure of getting Fh' and Fv' is thus as

shown in Figure 4.
To verify that the values of Fv' and Fh' determined

using the above procedure converge to their respec-
tive exact values, the transitional fractions are derived
manually for the case of  multipipeline with

. The Markov model for the multipipeline is
shown in Figure 5. Since the sum of the transitional
fractions going out from an ensemble sums to 1, com-
paring the vertical transitional fractions calculated to
that determined by simulation is sufficient. Table 1
shows the exact values of the transitional fractions as
well as the simulation values with their error percent-
age. The simulation is done using 1000 and 5000 iter-
ations. It is clear that as the number of iterations
increase, the simulation values tend to their corre-
sponding exact values. From Table 1, we can see that
the maximum percentage error is 1.06% with 5000
iterations. Hence, using simulation to get the transi-
tional fractions is sufficient for determining the reli-
ability of the multipipelines.

p + 1, f – 1

p – 1, f – 1

p, f – 1 p, f + 1p, f 

λ N M f– 1+×( )× Fh
′×

λ N M f–×( )× F× v

λ N M f– 1+×( )× Fv
′× λ N M f–×( )× F× h

Figure 3  General Markov model for an ensemble.

P a b,( ) t( )

dP p f,( ) t( )
dt

---------------------- λ N M f–×( )× P p f,( ) t( )×–  +=

λ N M f–× 1+( )× Fv
′ P p 1+ f 1–,( ) t( )× F′

h+ P p f 1–,( ) t( )×[ ]×

Fv Fh+ 1=

Repeat 1000 times
Initialize the multipipeline to fault-free state
Repeat

Generate a fault
Move to the corresponding ensemble
Increment either Nv or Nh

Until fatal-failure
Until done
for all ensembles do begin

Fv' = Nv(p,f) / [(Nv(p+1,f-1)+Nh(p+1,f-1)]
Fh' = Nh(p,f) / [(Nv(p,f-1)+Nh(p,f-1)]

end

Figure 4  A simulation algorithm to determine 
the transitional fractions.

3 3×
Sm 1=

Figure 5  The transitional fractions in the Markov 
model for a 3x3 multipipeline.
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3  SIMULATION RESULTS

We compute the reliability of the following multip-
ipeline designs:

• NEW: The most recent multipipeline design pre-
sented in [11].

• OLD: The classical multipipeline design used by
Gupta et al. in [2].

• MIN: A straight through non-fault tolerant design.
• MAX: A design with crossbar interconnections

between stages.
To evaluate the reliability of these designs using

the Markov model, simulation experiments are per-
formed over an  multipipeline. The reliability is
defined to be the probability of being in a non-fatal
failure state at time t. The results of this simulation
are shown in Figure 6, Figure 7 and Figure 8. In Fig-
ure 6, the reliability of the NEW multipipeline is plot-
ted for different values of Sm. It is clear (trivial) that
as Sm decreases, the reliability increases. From Figure
7 and Figure 8, we can see that NEW design has a
good reliability compared to OLD design especially
when Sm is large (i.e., when we have small amount of
hardware redundancy). Also, we can see that both
NEW and OLD are far better than the straight-
through multipipeline MIN.

Another way for comparing the reliability is by
comparing the mean time to failure (MTTF). The
results of simulation on the  multipipeline are
shown in Figure 9. In this figure, the MTTF of the

NEW design approaches that of OLD design for large
values of Sm. In fact, when Sm = 7, the MTTF for
NEW, OLD, and MAX are equal.

In summary, a novel Markov model for the reli-
ability prediction of general fault-tolerant multipipe-
lines is derived and a simulation procedure to
determine the transitional fractions using this model
is presented. The model can be used to determine the
best possible design among multiple alternatives.
Several experiments are conducted that demonstrate

Table 1  A comparison of the transitional 
fractions determined by simulation to their 

corresponding exact values.
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FV1 1.0000 1.0000 0.0000 1.0000 0.0000
FV2 0.2500 0.2492 0.3200 0.2506 -0.2240
FV3 0.1429 0.1388 2.8400 0.1435 -0.4780
FV4 0.5714 0.5692 0.3900 0.5721 -0.1140
FV5 0.2407 0.2323 3.5062 0.2382 1.0595
Fv6 1.0000 1.0000 0.0000 1.0000 0.0000
FV7 0.4439 0.4383 1.2621 0.4404 0.8003
FV8 0.6842 0.6783 0.8638 0.6784 0.8492
Fv9 1.0000 1.0000 0.0000 1.0000 0.0000
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Figure 6  The reliability of an 8x8 NEW 
multipipeline with a 0.1 PE failure rate.
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the ability of the new Markov model to predict the
reliability and to evaluate various design alternatives.
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