
Abstract—On-line testing is fast becoming a basic fea-
ture of digital systems, not only for critical applica-
tions, but also for highly-available applications. To
achieve the goals of high error coverage and low error
latency, advanced hardware features for testing and
monitoring must be included. One such hardware fea-
ture is built-in self-test (BIST), a technique widely
applied in manufacturing testing.

We present a practical on-line periodic BIST method
for the detection of operational faults in digital sys-
tems. The method applies a near-minimal determinis-
tic test sequence periodically to the circuit under test
(CUT) and checks the CUT responses to detect the
existence of operational faults. To reduce the testing
time, the test sequence may be partitioned into small
sequences that are applied separately—this is espe-
cially useful for real-time digital systems. Several ana-
lytical and experimental results show that the
proposed method is characterized by full error cover-
age, bounded error latency, moderate space and time
redundancy.

1. Introduction

The field of digital systems has undergone a major revo-
lution in recent decades. Circuits are shrinking in physi-
cal size while growing both in speed and range of
capabilities. This rapid advancement is not without seri-
ous problems, however. Especially worrisome are veri-
fication and testing, which become more important as
the system complexity increases and time-to-market
decreases. The inadequacy of existing verification
methods is illustrated by the 1994 Pentium micropro-
cessor’s FDIV design error, which cost its manufacturer
(Intel) an estimated $500 million. The inadequacy of
existing testing methods is also illustrated by the 1990
breakdown of AT&T’s long distance network, which
cost AT&T around $75 million.

Due to the high cost of failure, verification and testing
now account for more than half of the total lifetime cost
of an integrated circuit (IC). Increasing emphasis needs

to be placed on finding design errors and physical faults
as early as possible in the life of a digital system, new
algorithms need to be devised to create tests for logic
circuits, and more attention should be paid to synthesis
for test and on-line testing. On-line testing requires
embedding logic that continuously checks the system
for correct operation. Built-in self-test (BIST) is a tech-
nique that modifies the IC by embedding test mecha-
nisms directly into it. BIST is often used to detect faults
before the system is shipped and is potentially a very
efficient way to implement on-line testing.

This paper focuses on on-line testing of digital hardware
using BIST. Section 2 discusses on-line testing for digi-
tal systems [1], including what to test for, and how and
when to test; it also gives a taxonomy of on-line hard-
ware testing methods. In Section 3, we review the most
common BIST method, which is typically used to test
for manufacturing faults, and discuss how it can be
applied to on-line testing. We then present a detailed
case study in Section 4.

2. On-Line Testing

Faults are physical or logical defects in the design or
implementation of a device. Under certain conditions,
they lead to errors, that is, incorrect system states.
Errors induce failures, that is, a deviation from appro-
priate system behavior. If the failure can lead to an acci-
dent, it is a hazard. Faults throughout the life of a digital
system can be classified into three groups: design, fabri-
cation, and operational faults. Design faults are made by
human designers or CAD software (simulators, transla-
tors, or layout generators), and occur during the design
process. Fabrication defects result from an imperfect
manufacturing process. Operational faults are caused by
wearout or environmental disturbances during normal
operation of the digital system. Such disturbances
include electromagnetic interference, operator mistakes,
and extremes of temperature and vibration. Some design
defects and manufacturing faults escape detection and
combine with wearout and environmental disturbances

ON-LINE BUILT-IN SELF-TEST FOR OPERATIONAL FAULTS

Hussain Al-Asaad and Mayank Shringi
Department of Electrical & Computer Engineering

University of California
One Shields Avenue, Davis, CA 95616-5294

Tel: (530) 792-7002
E-mail: halasaad@ece.ucdavis.edu

1

to cause problems in the field.

Operational faults are usually classified according to
their duration:

• Permanent faults remain in existence indefinitely if
no corrective action is taken. Many of these are
residual design or manufacturing faults. Those that
are not most frequently occur during changes in
system operation, for instance, after system start-up
or shutdown, or as a result of a catastrophic envi-
ronmental disturbance such as a collision involving
the product that contains the digital system.

• Intermittent faults appear, disappear, and reappear
repeatedly. They are difficult to predict, but their
effects are highly correlated. Most intermittent
faults are due to marginal design or manufacturing
steps. The system works well most of the time, but
fails under atypical environmental conditions.

• Transient faults appear and disappear quickly, and
are not correlated with each other. They are most
commonly induced by random environmental
disturbances.

On-line testing addresses the detection of operational
faults, and is found in computers that support critical or
high-availability applications. The goal of on-line test-
ing is to detect fault effects, that is, errors, and take
appropriate corrective action. For example, in some
critical applications, the system is shut down after an
error is detected. In other applications, error detection
triggers a reconfiguration mechanism that allows the
system to continue its operation, perhaps with some
degradation in performance. On-line testing can be per-
formed by external or internal monitoring, using either
hardware or software; internal monitoring is referred to
as self-testing. Monitoring is internal if it takes place on
the same substrate as the circuit under test (CUT); now-
adays, this usually means inside a single IC—a system-
on-a-chip (SOC).

There are four primary parameters to consider in the
design of an on-line testing scheme:

• Error coverage (EC): This is defined as the fraction
of all modeled errors that are detected, usually
expressed in percent. Critical and highly available
systems require very good error detection or error
coverage to minimize the impact of errors that lead
to system failure.

• Error latency (EL): This is the difference between
the first time the error is activated and the first time
it is detected. EL is affected by the time taken to per-
form a test and by how often tests are executed. A

related parameter is fault latency (FL), defined as
the difference between the onset of the fault and its
detection. Clearly, FL ≥ EL, so when EL is difficult
to determine, FL is often used instead.

• Space redundancy (SR): This is the extra hardware
or firmware needed to perform on-line testing.

• Time redundancy (TR): This is the extra time
needed to perform on-line testing.

An ideal on-line testing scheme would have 100% error
coverage, error latency of 1 clock cycle, no space
redundancy, and no time redundancy. It would require
no redesign of the CUT, and impose no functional or
structural restrictions on the CUT. Most on-line testing
methods meet some of these constraints without
addressing others. Consideration of all the parameters
discussed above in the design of an on-line testing
scheme can create conflicting goals. High coverage can
require high EL, SR and/or TR. Schemes with immedi-
ate detection minimize time redundancy, but
require more hardware. On the other hand, schemes
with delayed detection reduce the time and
space redundancy at the expense of increased error
latency. Several proposed on-line testing techniques
that use delayed detection assume equiprobable input
combinations and try to establish a probabilistic bound
on the error latency [10]. This results in certain faults
remaining undetected for a long time because tests for
them rarely if ever appear at the inputs of the CUT.

To cover all of the fault types described earlier, two dif-
ferent modes of on-line testing are employed: concur-
rent testing which takes place during normal system
operation, and non-concurrent testing which takes
place while normal operation is temporarily suspended.
These operating modes must often be overlapped to
provide a comprehensive on-line testing strategy at
acceptable cost.

Non-concurrent testing: This form of testing is either
event-triggered (sporadic) or time-triggered (periodic),
and is characterized by low space and time redundancy.
Event-triggered testing is initiated by key events or
state changes in the life of a system, such as start-up or
shutdown, and its goal is to detect permanent faults. It
is usually advisable to detect and repair permanent
faults as soon as possible. Event-triggered tests resem-
ble manufacturing tests. Any such test can be applied
on-line, as long as the required testing resources are
available. Typically the hardware is partitioned into
components, each of which is exercised by tests spe-
cific to that component.

Time-triggered testing is activated at predetermined

EL 1=()

EL 1>()

2

times in the operation of the system. It is often done
periodically to detect permanent faults using the same
types of tests applied by event-triggered testing. This
approach is especially useful in systems that run for
extended periods, where no significant events occur
that can trigger testing. Periodic testing is also essential
for detecting intermittent faults. Such faults typically
behave as permanent faults for short time intervals.
Since they usually represent conditions that must be
corrected, diagnostic resolution is important. Periodic
testing can identify latent design or manufacturing
flaws that only appear under the right environmental
conditions. Note that time-triggered tests are frequently
partitioned and interleaved, so that only part of the test
is applied during each test period.

Concurrent testing: Non-concurrent testing cannot
detect transient or intermittent faults whose effects dis-
appear quickly. Concurrent testing, on the other hand,
continuously checks for errors due to such faults. How-
ever, concurrent testing is not by itself particularly use-
ful for diagnosing the source of errors, so it is often
combined with diagnostic software. It may also be
combined with non-concurrent testing to detect or diag-
nose complex faults of all types.

A common method of providing hardware support for
concurrent testing, especially for detecting control
errors, is a watchdog timer [7]. This is a counter that
must be reset by the system on a repetitive basis to indi-
cate that the system is functioning properly. A watch-
dog timer is based on the assumption that the system is
fault-free—or at least alive—if it is able to perform the
simple task of resetting the timer at appropriate inter-
vals, which implies that control flow is correctly tra-
versing timer reset points. Proper system sequencing
can be monitored to very high precision by guarding
watchdog timer reset operations with software-based
acceptance tests that check signatures computed while
control flow traverses various checkpoints. More com-
plex hardware watchdogs can be constructed that
implement this last approach in hardware [7].

A key element of concurrent testing for data errors is
redundancy. For example, duplication with comparison
(DWC) [5] can detect any single error at the expense of
100% space redundancy. DWC requires two copies of
the CUT, which operate in tandem with identical
inputs. Their outputs are compared and any discrepancy
indicates an error. In many applications, the high hard-
ware overhead of DWC is unacceptable. Moreover, it is
difficult to prevent minor variations in timing between
duplicated modules from invalidating comparisons. A
possible lower-cost alternative is time redundancy.
Critical operations can be executed more than once, at

diverse time points, and their results compared. This
technique is called double-execution or retry. Transient
faults are likely to affect only one instance of the opera-
tion and can thus be detected. Recomputing with shifted
operands (RESO) [5] achieves almost the same error
coverage of DWC with 100% time redundancy but very
little space redundancy. However, the practicality of
double execution and RESO in on-line testing for gen-
eral logic circuits has not been demonstrated. A third
form of redundancy which is very widely used is infor-
mation redundancy, that is, the addition of redundant
(coded) information such as a parity check bit [5]. Such
codes are particularly effective for detecting memory
and data transmission errors, since memories and net-
works are susceptible to transient errors, however, cod-
ing methods can also detect errors in data computed
during critical operations.

For critical or highly available systems, it is essential to
have a comprehensive approach to on-line testing that
covers all expected permanent, intermittent, and tran-
sient faults. In recent years, BIST has emerged as an
important method for testing manufacturing faults, and
it is increasingly promoted for on-line testing as well.

3. On-Line Deterministic Built-in Self-Test

BIST is a design-for-testability technique that places
the testing functions physically with the CUT, as illus-
trated in Figure 1. In normal operating mode, the CUT
receives its inputs X from other modules and performs
the function for which it was designed. In test mode, a
test pattern generator circuit TG applies a sequence of
test patterns S to the CUT, and the test responses are
evaluated by a response monitor RM. In the most com-
mon type of BIST, test responses are compacted in RM
to form (fault) signatures. The response signatures are
compared with reference signatures generated or stored
on-chip, and the error signal indicates any discrepan-
cies detected.

Four primary parameters must be considered in devel-
oping a BIST methodology for digital systems; these
correspond with the design parameters for on-line test-

Error

X Z

Figure 1 Generic BIST scheme.

Control

Test
Response
monitor

generator
TG

Mux

RM

S Circuit under test
CUT

3

ing techniques discussed earlier in Section 2.

• Fault coverage: This is the fraction of faults of
interest that can be exposed by the test patterns pro-
duced by TG and detected by RM.

• Test set size: This is the number of test patterns pro-
duced by the TG, and is closely linked to fault
coverage: generally, large test sets imply high fault
coverage. However, for on-line testing, test set size
must be kept small to reduce FL and EL.

• Hardware overhead: The extra hardware needed
for BIST is considered to be overhead. In most dig-
ital systems, high hardware overhead is not
acceptable, as discussed earlier.

• Performance penalty: This refers to the impact of
BIST hardware on normal circuit performance such
as its worst-case (critical) path delays. Overhead of
this type is sometimes more important than hard-
ware overhead.

BIST can be used for non-concurrent, on-line testing of
the logic and memory parts of a system [8][9]. It can
readily be configured for event-triggered testing, in
which case, the BIST control can be tied to the system
reset so that testing occurs during system start-up or
shutdown. BIST can also be designed for periodic test-
ing with low fault latency. This requires incorporating a
testing process into the CUT that guarantees the detec-
tion of all target faults within a fixed time. We next
describe how periodic BIST is used for combinational
and sequential circuits.

3.1 Combinational Circuits

On-line BIST is usually implemented with the twin
goals of complete fault coverage and low fault latency.
Hence, the TG and RM are generally designed to guar-
antee coverage of specific fault models, minimum hard-
ware overhead, and reasonable test set size.
Consequently, the use of deterministic tests is often the
most attractive option for on-line testing.

We model an operational fault as , where f is
a stuck-at fault and D is the duration of existence of f.
For example, a permanent operational fault is modeled
as , which is equivalent to the classical stuck-
at fault f. The duration of intermittent and transient
operational faults is assumed to be large enough for
these faults to be detected. In the rest of this paper, we
assume that operational faults are modeled as stuck-at
faults with large duration of existence.

We now analyze on-line deterministic BIST for combi-
national circuits. Assume that we have a complete test
set T = {t1, t2,..., tq} for the set of stuck-at faults F = { f1,

f2,..., fm}. Testing is overlapped with normal operation
as shown in Figure 2. Since every period P is divided
into k clocks of normal operation and l clocks of test-
ing, then the time redundancy of this on-line determin-
istic BIST scheme is . In our analysis, we consider
the case of l = 1, where time redundancy is minimum.

On-line deterministic BIST has low hardware overhead
which can be as small as 5% of the CUT as we show
later in Section 4. It has little time redundancy and a
deterministic bound on the worst case fault latency. It
can achieve 100% error coverage with little design
effort. On-line deterministic BIST guarantees the detec-
tion of errors within a given period of time as shown by
the following lemma.

Lemma 1 If the test set T is minimal, then the worst
case fault latency Lmax is .

Proof: If T is minimal, then there exist a fault fi that is
detected by exactly one test tj. If this is not the case, then
if we remove a test from T, no fault will become
undetectable by T, which contradicts the minimality of
T. If fi occurs in the same clock where test tj is applied,
then fi will not be detected until tj is applied again.
Hence, the fault latency for fi is .

The above lemma gives the worst case fault latency,
however, the average fault latency is well below

. This is due to the fact that most faults in
F are detected by more than one test of T. For the case
of stuck-at faults, an experiment was conducted to
determine the average number of tests detecting a given
fault from the set of stuck-at faults F using a minimal
complete test set for F generated by the ATPG tool
ATALANTA [6]. It turned out that in the ISCAS-85
benchmark circuits [4], an average of 20% of the tests
detect an arbitrary fault of F . Also, we found that there
are faults in F that are detected by most tests of T. A
rough estimate of the fault latency that is independent
of the order of applying the tests is given by,

where r is the average number of tests detecting a given

OF f D,()

OF f ∞,()

Normal operation Testing

Time

k clocks

P

Figure 2 Overlapping of testing and normal oper-
ation on the CUT.

l clocks

Normal operation Testing

k clocks

P

l clocks

l k⁄

1 k 1+() T+

1 k 1+() T+

1 k 1+() T+

Lavg
1 k 1+() T+

r
-------------------------------- T

r
------ k 1 T+

r
---------------+ σk ρ+= = =

4

fault. The results obtained using the above equation are
shown in Table 1.

The actual average fault latency is dependent on the
order of tests during test application. So, we can get
smaller fault latency by reordering the tests in the test
sequence. Trying to find the best order of tests in the
test sequence out of the possible orderings is
computationally expensive and is often impossible.
Therefore, heuristics need to be developed to determine
a near-optimal ordering. In addition to ordering the
tests, we conjecture that repeating certain tests from T
reduces the fault latency. If the tests that detect large
number of faults are repeated, then the average fault
latency will decrease, however, the worst case latency
may increase.

3.2 Sequential Circuits

We now analyze on-line deterministic BIST for
sequential circuits. Assume that we have a complete
test sequence S = {t1, t2,..., tq} for the set of stuck-at
faults F = {f1, f2,..., fm}. Testing is overlapped with nor-
mal operation similar to the case of combinational cir-
cuits. Since every period is divided into k clocks of
normal operation and l clocks of testing, then the time
redundancy of this on-line deterministic BIST scheme
is . Since partitioning of the test sequence may not
be possible in some cases, we consider the case of l = q,
where the total test sequence is applied in one burst.
On-line deterministic BIST guarantees the detection of
errors within a given period of time. In fact the worst
case fault latency Lmax is . However, the average
fault latency is well below the above limit. An experi-
ment was conducted to determine the average fault
latency for the ISCAS-89 benchmark circuit s27 [3].

We first generated a complete test set sequence of 20
test vectors that detect all 32 stuck-at faults in the s27
circuit using a sequential ATPG tool. With l = 20, the
worst case fault latency is k + 40. We then computed
the average fault latency for every stuck-at fault and
then averaged the result over all faults. We assume that
a fault have equal probability of occurrence in any
clock cycle that is independent of the mode of opera-
tion (testing or normal). The average fault latency for
the s27 benchmark circuit was computed manually as
follows:

The above equation implies that the average fault
latency for s27 is approximately one-half of the maxi-
mum fault latency.

The above discussion of on-line deterministic BIST
demonstrate that it can achieve 100% error coverage,
deterministically bounded error latency, and small time
redundancy. Moreover, the performance penalty due to
BIST is limited to the extra delay of the multiplexers at
the inputs of the CUT. The area overhead of on-line
deterministic BIST can be made relatively small as we
show next in the case study.

4. Case Study—Multiply-Add Unit

In this section, we apply our on-line deterministic BIST
method to a multiply-add unit (MAU). The high-level
model and some implementation details of the target

-bit MAU are shown in Figure 3 [2]. The MAU is
composed of a cascaded sequence of carry-save adders
followed by a carry-lookahead adder in the last stage.
This design is scalable and faster than a normal multi-
ply-add unit where the last stage is a ripple-carry adder.
Table 2 shows a possible test sequence of size 20 for

-bit MAU [2]. This test sequence can be easily
extended to -bit MAU, resulting in a test set of
size .

A scalable test generator TG for -bit MAU is
shown in Figure 4. A scalable response monitor RM for

-bit MAU is shown in Figure 5. The BIST hard-
ware overhead for various values of n for the MAU is
shown in Table 3. The hardware overhead of the over-
all BIST is less than 10% for a -bit MAU.

From the above case study, we can conclude that on-
line deterministic BIST for the MAU guarantees 100%
coverage of stuck-at faults, bounded error latency, low
hardware overhead, low time redundancy, and negligi-
ble performance penalty.

Table 1 Statistics about deterministic test sets for
stuck-at faults and the average fault latency in on-

line deterministic BIST.
C

ir
cu

it Test
set
size
|T|

Fault
set
size
|F|

No. of tests detect-
ing a given fault

Average (r) Max σ ρ

c17 5 22 1.82 4 2.75 3.30
c432 46 520 5.41 42 8.50 8.69
c499 52 750 18.62 51 2.80 2.85
c880 47 942 9.33 45 5.04 5.15

c1355 85 1566 23.25 83 3.66 3.70
c1908 115 1870 27.47 113 4.19 4.22
c2670 106 2630 21.87 106 4.85 4.90
c3540 152 3291 20.96 149 7.25 7.30
c5315 106 5291 17.35 105 6.11 6.17
c6288 35 7710 12.37 32 2.83 2.91
c7552 199 7418 34.97 198 5.69 5.72

Lavg σk ρ+=

T 1–()!

l k⁄

2l k+

Lavg s27() k2 54.68k 688.75+ +
2k 40+

--=

n n×

4 4×
n n×

4n 4+

n n×

n n×

32 32×

5

5. Discussion

We have presented on-line deterministic periodic BIST
and demonstrated that it is attractive approach to detect
operational faults that arise in the field. We have also

P0P1P2P3P4P5P6P7

S0S1S2S3

S4

S5

S6

S7

C0C1C2C3

A0A1A2
A3

B0

B1

B2

B3

Cin
Cout

Sin
Cin

Bin

Ain

Sout

Cout

S A B C

CinCout

n

11

Array cell

Overall function

A0A1A2
A3

A0A1A2
A3

A0A1A2A3

CoutP = S + A × B + C + 16 × Cin

P

Figure 3 High-level model for the multiply-add unit.

nn2n

2n

Carry-lookahead adder

Table 2 Complete and near-minimal scalable test
sequence for the multiply-add unit.

Test # A3B3C3S7S3 A2B2C2S6S2 A1B1C1S5S1 A0B0C0S4S0 Cin

1 11100 11100 11100 11100 1
2 11100 11100 11100 11000 1
3 11100 11100 11000 11101 1
4 11100 11000 11101 11101 1
5 11000 11101 11101 11101 1
6 00011 00011 00011 00011 0
7 00011 00011 00011 00111 0
8 00011 00011 00111 00010 0
9 00011 00111 00010 00010 0

10 00111 00010 00010 00010 0
11 10100 10100 10100 10100 1
12 10100 10100 10100 10000 1
13 10100 10100 10000 10101 1
14 10100 10000 10101 10101 1
15 10000 10101 10101 10101 1
16 01011 01011 01011 01011 0
17 01011 01011 01011 01111 0
18 01011 01011 01111 01010 0
19 01011 01111 01010 01010 0
20 01111 01010 01010 01010 0

FF0

DC0

....

H

FF1

DCn – 1FFn

T

Test generator TG

E

S2n – 1
Sn – 1

Cin

Cn – 1
Bn – 1
An – 1

S0

Sn

C0
B0
A0

Q0

Q1

Qn

Figure 4 Test generator for the n × n-bit
multiply-add unit.

Q

Qi

Qi + 1 Si

Sn + i

Ci

Bi

Ai

H E

H E

DCi circuit

Table 3 Hardware overhead for BIST in the n × n-
bit multiply-add unit.

Circuit
module

Hardware overhead %
n = 4 n = 8 n = 16 n = 32 n = 48 n = 64

TG 18.6 9.1 4.5 2.3 1.5 1.1
RM 10.3 4.4 1.9 0.9 0.6 0.4

Overall
BIST 66.0 34.5 17.8 9.1 6.1 4.6

6

presented a detailed case study that shows the effi-
ciency and feasibility of this approach. We have
achieved 100% fault coverage, bounded error latency,
low hardware overhead, and small time redundancy.
The time redundancy of on-line BIST can be reduced
by applying the tests to CUT while it is not being used.
In this case, the testing becomes aperiodic. If several
components of a digital systems are not fully utilized,
aperiodic testing becomes more attractive. An applica-
tion where utilization may be very low is embedded
controllers—a typical embedded controller takes no
action if the outside sensors’ values remain unchanged.
In such application, the controller can be tested during
the idle time in the system. Pipeline structures is
another example where aperiodic deterministic BIST is
applicable. For this case, an idle detector need to be
designed to watch the system and determine if the pipe-
line is not being used in a given clock cycle. If that hap-
pens, then a test is applied to the pipeline and the result
is picked up after l clocks where l is the number of
stages in the pipeline. In safety critical applications that
demand an upper bound on the error latency, waiting
for idle times may not be a good option. Instead, the
system may be briefly stopped from normal operation
to perform the required tests. Our future research is
centered on exploring on-line aperiodic and determinis-
tic testing in complex high-level designs such as micro-
processors.

Acknowledgments

The research presented in this paper was supported by
the Office of Vice Chancellor for Research at the Uni-
versity of California, Davis.

References

[1] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “On-
line BIST for embedded systems”, IEEE Design
and Test of Computers , Vol. 15, No. 4, pp. 17-24,
November 1998.

[2] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Scal-
able test generators for high-speed datapath
circuits”, Journal of Electronic Testing: Theory
and Applications , Vol. 12, Nos. 1/2, pp. 111-125,
February/April 1998. (Reprinted in M. Nicolaidis,
Y. Zorian, and D. K. Pradhan (editors), On Line-
Testing for VLSI, Kluwer, Boston, 1998.)

[3] F. Brglez, D. Bryan, and K. Kozminski, “Combi-
national profiles of sequential benchmark
circuits”, Proc. International Symposium on Cir-
cuits and Systems, 1989, pp. 1929-1934.

[4] F. Brglez and H. Fujiwara, “A neutral netlist of 10
combinational benchmark circuits and a target
translator in fortran”, Proc. International Sympo-
sium on Circuits and Systems, 1985, pp. 695-698.

[5] B. W. Johnson, Design and Analysis of Fault Tol-
erant Digital Systems, Addison-Wesley, Reading,
Massachusetts, 1989.

[6] H. K. Lee and D. S. Ha, “On the generation of test
patterns for combinational circuits”, Dept. of Elec-
trical Engineering, Virginia Polytechnic Institute
and State University, Tech. Rep. 12-93, 1993.

[7] A. Mahmood and E. McCluskey, “Concurrent
error detection using watchdog processors—A
survey”, IEEE Transactions on Computers, Vol.
C-37, pp. 160-174, February 1988.

[8] B. T. Murray and J. P. Hayes, “Testing ICs: Get-
ting to the core of the problem”, IEEE Computer ,
Vol. 29, pp. 32-45, November 1996.

[9] M. Nicolaidis, “Theory of transparent BIST for
RAMs”, IEEE Transactions on Computers, Vol.
45, pp. 1141-1156, October 1996.

[10] K. K. Saluja, R. Sharma, and C. R. Kime, “A con-
current testing technique for digital circuits”, IEEE
Transactions on Computer-Aided Design , Vol. 7,
pp. 1250-1259, December 1988.

Figure 5 Response Monitor for the n × n-bit
multiply-add unit.

P [2n – 1: n + 1]

P[n: 1]

P [0]

Cout

E

H

Q0

C
om

pa
ra

to
r

Error

Response monitor RM

Expected
output

generator

CUT
outputs

7

