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Abstract

Multipipelines are currently used in many areas such as signal processing and
image processing architectures as well as in general purpose vector computers.
These pipelines are formed of several stagek different functionalities. The
main objective of the multipipelines design is to reduce the effects of faults by
having fault-tolerant design. In this thesis we presentneav design for
multipipelines -- anew architecture, diagnosis, and reconfiguration algorithm.
The design is characterized by the unity length interconnect between the stages of
pipelines independent of the fault distribution, leaw hardware overhead
compared to other designs, and a number of survived pipelines comparable to

other approaches.
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Chapter 1
Introduction

Multipipelines are often used to perforparallel pipelinedoperations withefficient
performance. Theyare currentlyspanning manyareas from genergburpose vector
supercomputers to application specific digital signal processing arrays.

Very large scale integration (VLSI) and wafer scale integration (WSI) technologies are
most advantageous when usedirtpplement regularlystructuredsystems such as large
arrays of identical processing elements. As integrdgogl increases andhe sizes of
arrays grow larger, the possibility of a single fault or multiple faults occurring in a VLSI or
WSI array increases. These faults canurduring the operationdife time of an array, as
well asduring its manufacturingrocess. If an array isot fault tolerant, thefailure of a
single element can causiee entire array tdail completely. Orthe otherhand, thearray
might be able tmperate in a fault-tolerameconfigurablestructure, where tharray is
designed taolerate some of the fault3his can bedone by restructuring the array at
fabrication time to enhandbe yield or byreconfiguringthe array at rutime to improve
reliability.

The reconfiguration problem gipelinesout of the structure in the presencefatilts
has received muchttention in the lasyears[1-9]. A distributed algorithm forthis
purpose was described by [2]. The disadvantage of algatrithm is it can lead to
relatively longlinks between stages of th@pelines. This canetrease the performance

benefits ofputting thepipelines on a singl¥LSI or WSI chip,since multipipelinesre a



synchronous design where we mast the clock to accommodate the longisay of
interconnections among stages. Furthermsireee wedon't know a priori thdength @
interconnections between the stages of fhipelines, we mustimplement all
interconnections with powerful buffers capable of drivthg worstcase path between
stages of the@ipelines. This can impose very significamea, powerand delay penalties
on the design. Another disadvantage of the alayarithm is that it is10t sinple enough
to be implemented with little hardware and to be executed in a very short time.

On the otherhand, it is possible to ensure at design time that reconfigured
interconnections arprobabilisticallybounded [2,6]. Theew approach presented thms
thesis is characterized by a constant interconnection length between stages independent of
the fault distribution. It is also characterized by sisplicity -- little hardware andime

overhead.

1.1 Problem Statement

The objective oflesigning dault-tolerantmultipipeline is torecover, in the presence
of faults, k pipelineout of N suppliedones. Forexample, if avector processor uses at
least fourpipelinesand we supply eight of them, then a fdtalure isreached whefiive
out of the eightpipelinesare faulty. Thefollowing issues arise in designirtge fault-
tolerant multipipelines:

1- Architecture: The interconnection network between totumns of the

processing array shouslipport fault-tolerantapabilities. 1t should bsimple
enough so it doesot addpenalties onthe array performance. Also, the

interconnection length between stages should be minimized.



2- Diagnosis: This corresponds to detecting defects/faults in both the network and
the processinglements. The diagnosis algorithm should be simple so the
testing hardware is kept at a minimal.

3- Reconfiguration: The reconfiguration algorithm shayilce agoodharvest rate
and should have ainimal execution time. A siple algorithm is easy to
implement and it reconfigures the array in a short time.

The previous design @he multipipeline ischaracterized by aariable interconnection
length between stages dependentr@Tault distribution, complex switching elemehiat
forbidsthe assumption of fault-free switches, anaaiti-phase sequential reconfiguration
algorithm. On the other hand, the new design presented in this thesis guarantees a constant
length of interconnect between stages independetiteofault distribution. Thedesign
replaces theswitching element by a simplevo-input multiplexer, and has aarallel

distributed reconfiguration algorithm.

1.2 Thesis Overview

The thesis is organized as follows. In Chapter 2, the previous work in the émal-of
tolerant multipipelines is discussednd their drawbacks ar&lentified. The existing
reconfiguration algorithms and diagnoai® discussed idetail and aset ofexamples are
introduced to demonstrate their weaknesses. In Chapter 3, the new proposed architecture
as well as its implementation is described. The fault model asstimeeekrordiagnosis on
the new architecture, and the reconfiguratitgorithmsare also described this chapter.

In Chapter 4simulation is described in addition to comparison to prevapmoaches.

The comparison is performed from different points of viesiuding simplicity, efficiency,



area,locality, andreliability. In Chapter 5, the min accomplishmentsre described and

the directions of future research are identified.



Chapter 2
Background

This chapter starts bylescribing multipipelinesand their applications. Then, the
chapter describeshe previouswork in designing fault-tolerant multipipelines. This
chapter:

(1) Identifies the architectures used in multipipelines;

(2) Describes diagnosis methods on multipipelines;

(3) Describes reconfiguration algorithms found in the literature, and

(4) Identifies the weaknesses of the above.
2.1 Description of Multipipelines

A multipipeline is aset ofidentical pipelines each of whidwonsists of several stages.
While an individual pipeline is obviously a lineatray, the entire architecture candsen
as a rectangular array withsamplified interconnectionstructure.Multipipelines can be
classified into two categories:

1- Homogeneous: All stages of the pipelines perform the same function, hence the
processing elementgseperfectly identical, and a complete homogeneity of the
rectangular array exists. Although this case rarely happens, homogeneity can
exist at the expense of extra hardware.

2- Non-homogeneous: In this case the different stages of a single pipeline perform
different operations anthe processinglementsare thereforalifferent. Thus

5



the multipipeline isnot completely homogeneoubut homogeneity is found
column-wise
Hereinafter, the termimultipipeline' refers to non-homogeneounsultipipelines. A
multipipeline is modeled as aray of processing elemer(BEs)and is called an &M
multipipeline. An NkM multipipeline is aset of Nidentical pipelines each consisting of M
stages. The stages are separated from each other by an interconnection network. A general

model of multipipelines is shown in Figure 2.1.

P00

(x:uOé—HTIZ

2000
060

N
E
T
W
O
R
K

000G

—

Figure 2.1 A general model of multipipelines.

The simplest form ofthe multipipeline is one which does notconsider thefault

tolerance problem. An example of suchxd Bnultipipeline is shown in Figure 2.2.
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O O O
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Figure 2.2 A straight-through multipipeline.

As the connectivity of the interconnectioatwork ircreases, the hardware required to

implementthe network increses. Thisimplies anincrease inthe probability of failure.



Hence, a tradeoff should be seeked betweenithgleststraight-through pipeline and one

with a fully connected interconnection network.

2.2 Multipipeline Applications

Multipipelines have a wide variety of applications which cangbsuped into the
following areas: ComputersSignal processing, and lterativeellular arithmetic arrays.

Each of these areas will be described in the next sections.

2.2.1 Computers

In supercomputersnultipipelinesare often used to perform vector operations to
achieve efficienperformance. The functional block diagram of a moadeultiple-pipeline
vector computer [1] ishown in Figure 2.3. The instruction processing (IRU) fetches
and decodes scalar amelctor instructions. Scalar instructions are forwarded tschér
processor for execution. Theralar processoritself contains mitiple scalar pipelines.
After recognizingvector instructions by th&#PU, the vectornnstruction controller takes
over in supervising its execution such as scheduling different instructions to different
multipipelines.

Although multipipelines are more populanector supercomputersjultipipelines are
also recently introduced in personal computers [20]. The new processor, PENToOM,
Intel hastwo independent integgripelines which approximatelgouble the performance

of the 80486 processor.
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Figure 2.3 A typical functional block diagram of a multipipelined vector supercomputer.

2.2.2 Signal Processing

There aramanyapplications of multipipelines to signatocessing. These applications

include Bit serial digital signal processing (DSP) arrays and DSP transforms.

2.2.2.1 Bit serial Digital Signal Processing arrays

A typical interconnectiorstructurefound in DSP is the soalled multi-row arrays as

shown in Figure 2.4. In some instancal,the pipelinesare identical while individual

stages of a pipeline may be differentotherinstances, the pipeline stages iaentical. A



typical example of a circuit having exactly identi€dts is the convolvexhich performs

the function defined by:

Y(¥= _Nz‘olx( i)
2

where x[,K) is thejth input of thekth set, YK) is the output of théth set,and wi) are
fixed weights. Every pipeling contains the correspondifiged multiplicand w{) and it
multiplies its input terms xK) by this weight. The individual REof pipelinej contains the
fixed r-th bit of weight w(), i.e., w{,r). The cellr simply computes the partigfroduct
x(j,K)xw(j,r) and adds it to the partipfoducts generated by the other PEs of the pipeline.

The entire pipeline constitutes a serial multiplier implemented in a systolic way.

Input set number k

LJ Systolic Array of Multipliers
w0,00 w021 w02 w03)

®0 @ x(03) x(02 x01) x(0.,0) (2 ] .

w(1,0 w(l,1 w(1,2 w(1,3

X1kl @ @ @ x(1,2) x(11) x(1,0) .

w20 w21 w2 w23) Systolic

XK1 x2Kk2) © @ ® X2,1) X(2.0) . Adder

w(3,0)  w(3,1 w(3,2 w(3,3

X@B.k-1) x(3k2) X(3k3) @ ® @ X(3.0) (B ]
J/ -

Direction of data flow Y(0),Y(1), ...,Y(K)

Figure 2.4 A multipipeline for serial DFT.

2.2.2.2 DSP Transforms

The flow graphs ofDSP transformscan be mapped intonultipipeline arays to
increasdhroughput. Rlaysare inserted between stagedtawethe flow graphpipelined.
Some of these transforms are Fast Fourier Transform (FFT) andVedsdi-Hadamard

Transform (FWHT) [6].



2.2.3 lterative cellular arithmetic arrays

These arrays useery small combinational cells to buildighly parallel arithmetic
devices such as expandable multipliers and dividers. Smeeells are simple, the
overhead due to the interconnections added for fault-tolel@signs isnot negligible.

Hence, an extremely simple design of the interconnections is favorable.

2.3 Previous Work

The previouswork on fault tolerant multipipelines can be categorized into
architecture, diagnosis, and reconfiguration. Eacltheffollowing sections describe a

category of previous work on multipipelines.

2.3.1 Architecture

The popular designior fault-tolerantmultipipelinesare described if2,3,5,8,9]. A
multipipeline consists of several stages organized in rows and columns. The pipeline stages
are interleaved with switches fdoypassingthe faulty stages.This is shownfor a 4x4
multipipeline in Figure 2.5. The switchase programmed according to tiaelt pattern to
increasethe number of fault-free pipelines. A faultattern of the 44 multipipeline is
shown in Figure 2.6. WWen this faulpatternhappens in a non-fault tolerant desigththe
pipelines are faulty. While, by introducirige switches into the array, threet ofthe four
pipelines are recovered as shown in Figure 2.7.

The implementation of thigrchitecture il require the understanding of tfalowing
circuits: switching element&SE), switch programming logi€SPL), and testingircuitry
(T). These components are described in the following sections.

10
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Figure 2.5 A popular architecture for multipipelines.
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Figure 2.6 A multipipeline with a distributed fault pattern.

Figure 2.7 A reconfigured multipipeline under the fault pattern of Figure 2.6.

2.3.1.1 Switching elements

The function of a switching element is tmnnect itsterminals according to a

predefinedset of modes (states). The needadtching element ha®ur states ashown

11



in Figure 2.8. Sincéhe switchhas four distincistates,two control bits (@ andb) with
decoding are needed to choosstate.Thesetwo control bits are supplied bythe switch
programming logic. A CMOS circuit that realizes a switch with tretages is shown in

Figure 2.9 [2]. The circuit uses 10 transmisgiates to connect its foterminalsL, R, T,

andB.
T T
L (00— R L R
00-mode 01-mode
B B

10-mode 11-mode

N S O
L@?R

Figure 2.8 The four modes (states) of the switch.

An alternative design usethree controlbits (C1, C2, and C3) tceliminate the
decoding circuit. This design decreasd® number of transmissiorgates used (6
transmissiorgates) at thexpense of increased routing. As a result, the switch testing can
be done with less effort. Theesign ofthe switchusing three controlbits is shown in

Figure 2.10 [5,8-9].

12
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Figure 2.10 A CMOS circuit realizing the switching element using three
control bits [5,8-9].
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2.3.1.2 Switch Programming Logic

The switch programming logi€SPL) is responsiblefor programmingthe switches
according to the reconfiguration algorithm.typical relationship betweetine SPL and

otherarray elements is shown in Figuzel 1. Itsdetails Wil be described in théollowing

description.

al
N q\\

)

-

LFE L spLip) D
™D
LF RF
N | N
LAR RAR

Figure 2.11 The I/O to the Switch Programming Logic.

The SPL will be provided with:

- The status ofeft and rightPEs whethethey are faulty or healthy via

signalsLF (left faulty) andRF (right faulty).

- Two signals fronthe SPL in the rovabove it indicatingvhether the SPL
in an earlierow wants a left or righPE. Thesesignalsare left adoption
request signallAR) and right adoption request signRIAR.

On thebasis ofthesesignals andhe reconfiguration algorithm, the SPL computes the

following six control signals:

(1) the control bits andb for the switching element SE(i,));

(2) the adoption requests for the SPL in the row below it;

14




(3) thefictitious fault signals left fictitious faultLFF) and right fictitious fault
(RFF) for the left and right PEs respectively.

These fictitioussignalsare used for creatinfictitious faults inthe PEs. These PEs,
though healthy, cannot be utilized in building the fault free pipelines. FigliPeshows an
example of a fictitious fault. In thisase, either the PE "FF" or the one above it can be
used to fornthe uppempipeline. Oncehe upper one is selected, the PE "FFsaesrificed
because we have a singtack switch.Sacrificingthe PE can be done Hlfsabling the

testing circuit or the PE itself.

—O—

Faulty PE Q Healthy PE@ Fictitious Fault

Figure 2.12 An example where a fictitious fault is created.
2.3.1.3 Testing circuit
The testing circui(T) is responsibldor providingthe SPL with thestatus of thdeft
and rightPEs. If the PEs argelf-testing, then the circuit ay not berequired. Another

alternative is to have an externiasterwhich is responsibléor providingthe SPLswith

the test results. A fault in a PE results in that PE not included in any pipeline.

15



2.3.2 Diagnosis

Fault diagnosis is a perquisiter successful reconfiguration. Faultstire PEs are to
be located so thegre notused inbuilding the fault-freepipelines. Onthe otherhand,
faults in switching elements need to lmeated down to the interconnection link or
transistorlevel to optimally utilizefault-free PEs. Fault diagnosis on a reconfigurable
multipipeline normallyuses the boundary scan concept [8]. Boundary scan testing is a
technique that allowsne to accesall the primary inputs aneéutputs byconnecting them
into a shiftregister. A simple boundary scagllds shown in Figure.13. Theflip flops of
all cellsare connected together flrm a large shiftegister with a single scan port and
a single scamut port.This technique providethe internaltest ofeach single PE asell
as an externdestcovering the interconnect betwek® pads on the board or a wafer. In
an internatest, i.e., a PE testells atthe inputpins ofthe PEapplythe test patterns, and
those at the output pins of the PE capture the ougspbnses. In an exterriabt, i.e., an
interconnecttest, cells atthe outputpins of the PEs in stage are used tapply test

patterns, and those at the input pins of the PEs atistagmpture the test responses.

Mode control

Scan out
. —MUX :
Signal in 0 Signal og
1
MUX
Flip flop o—
q 1_
Shift
Clock Scanin

Figure 2.13 A simple boundary scan cell design.
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Boundary scan is used inveay thatthe input andoutputregisters in a PE can be
connected in a scachain. All scan chains inhe PEs of thesame column can also be
connected into a longer scahain. If each PE has distinct input anatputregisters, the
length ofthe chain isreduced byhalf by connecting them separately. In this casehaee
two scanlines per column of PEs. On the othdrand,all control registers in aolumn of
switch elements are connected into a shift register. Thus the switch setting information can
be shifted in through the chain.

Usingthe above scan design, itasident thathe PEs andwitching elements can be
tested separately. A fault in the PE leads to avoitfiagise of that PE @any pipeline and
hence it is no longer usable. A fatal fault in a switching element c#éusesimber of
recoverablepipelines to dcrease considerably. Thus in a switching elemitet fault
needs to be located down to tlegel of aconnection link or a transistor taptimally
utilize faulty switching elements.

This scan desigsupports thdollowing modes of opration: normal, scan, artdst
modes. In the normal mode of operation, the array performs its normal functicstahhe
mode allowsdata to beshifted in or responses to be shifted out. Té#& mode can be
divided intotwo submodes: external and internal. Inteesktprovides a means of testing
the internal logic ofthe PEs. Test patterns aapplied fromthe input register to the
internal logic inthe PE.The corresponding responses are latched irothput register.
The results can be shiftedit and verified. Internalestmayinclude defective PEest and
the entirecolumntest.Once a fault isletected in @olumntest, theindividual PEs in the
columnare tested to locate tHaulty one. Varioustechniques can be developed for an
internal test depending orhow test patterns are generai@mud how the responses are
verified.

The externatest is to test thewitching elements ahe reconfigurable multipipelines.
The function ofthe switching element irthe jth column of switches itested byloading

17



test patterns into the outpregisters of the PEs in th& column, applying them to the
switching elements, and capturitite testresponses in the input registers in thdxth
column. The responses can be shiftetland verified. Thehreebits ofthe switch control
registers should bset beforeapplyingthe test patterns to trewvitching elements under
test. This information is shifted intdhe controlbit registerssince these registers are
connected in &hain. A fault inthe switch control registers can tetected through the
path. Faults iswitch control registers can be toleratedobyviding redundancy in switch
control registers. Irthis way we need multiplexers to select between swatmhirol
registers.

If there is nofault in the switching elementhe switching element is reconfigurable to
any ofthe four switchstates. If there is fault in the switch, the switcimight be able to
reconfigure to some of the states of thalt-free element. Thus in external testing, we

locate faults down to a connection link or a transistor to utilize a faulty element.

2.3.3 Reconfiguration

After locating thefaults inthe array, a reconfiguration of the array is performed. If the
diagnosis is distributed, thethe PEs Wl have their status flip-flops continuously
reflecting theirstates. On the othéand, if thediagnosis ifostdriven, therthe hostwill
perform the testing in the simplest form of a periodic basis in a semi-concurrent way.

An optimal algorithm -- an algorithm which findlse maximumnumber of pipelines --
is always favorable tdhe utilization of the hardware, buthis shouldnot be on the
expense of addingoo much hardware or wastingoo much time in executing the
algorithm.

An algorithm for programminghe switcheswvhich does not take into account the
faults in the switches or interconnections is described in [2]. dlgerithm works in

18



phases. At the beginning of each phase, each SPL tests the PEs surroundisgnipdesl
the left adoption request (LAR) and the right adoption request (RAdalssent by the
SPL above it. Based othis information,the SPL sets thewitching element into the
appropriate state, generate the adopsignals tothe SPL below it, and creatéstitious
faults if necessary.

The switches are programmed according to Figutd. A '*" in the lowerleft (lower
right) cornerindicates an adoptiorequest for deft (right) PE. A " in the left (right)
side of the box indicates a fictitious fault created by the SPL to the left (right).

Each phase in the switcprogramming consists of setting rows of switches
sequentially, according tthe table in Figur®.14. Nphases are required to extract as
many non-faulty pipelines as possible. In egahase, theop row of switches is first
programmedyvhich isthen followed bythe programming othe secondow of switches,
and followed bythe thirdrow, and soon. This programming islone on théasis of the
permanent faults andhe fictitious faults created in the previous phase. The

reconfiguration algorithm can be written as follows:

Algorithm 2.1

begin
do N times {
for i=1 to N sequentially do
[Jj reset LAR (0,)) /* No adoption request */
0j reset RAR(O,j)* for the first row */
for j=1 to (M-1) in parallel do{
program the switch(i,j) according to Figure 2.14.
}

end

On the othehand, reconfiguringhe array by taking care daults in switches and

interconnects is currently under investigation many researchers. The algorithm
19



presented by [9] isharacterized by its complexity, unoptimality, ahe difficulty to be
implemented in a distributed wafnother algorithm based dmding the maximum flow
in a flow network is presented in [3}yhich ischaracterized by its optimalitgomplexity
(O(MxN)>73), and thedifficulty to be implemented in distributed way. An optimatimple

distributed algorithm is a goal which has not been reached yet.

Switch Programming

Adoption Requests PE status SPLandPEs
LAR RAR Left Right After Programming
No No Good Good @
No No Good | Faulty _\@’_ X

No No Faulty Good X

No No Faulty Faulty X X

No Yes Good Good X

No Yes Good | Faulty °_'¢‘— X

No Yes Faulty Good X _@_

No Yes Faulty Faulty X X

Yes No Good Good N ]

Yes No Good Faulty

Yes No Faulty Good X _‘é.‘_°
Yes No Faulty Faulty X _'.é — X

Yes Yes Not Possible

Figure 2.14 The truth table of a SPL.
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2.3.4 Examples

An examplefor reconfiguringmultipipelines using Algorithn2.1 is shown below in

Figure 2.15.
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Figure 2.15 A reconfiguration example.

Another example whichshows that thdéength ofthe interconnection couldecome
manytimes longer thathe fault-free case after a reconfiguration is shown in FigLré.
In this figure, the switch in the first row is programmed to set the right adoption request to
the switch in the secondw. The switch in the second (thirddw is programmed to set
the right adoption request to the switch in the third (fouxtk) and to create &ctitious
fault inthe PE to thdeft of the switch. The switch in the fourtbw is programmed in a
similar way tothe switch in thdirst row. After programmingthe switches, théength of
the interconnect between thest stage in thdirst row and the second stage in the fourth

row is approximately four times the length of the fault-free case.
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Figure 2.16 Length of interconnect depends on fault distribution.

2.4 Summary

The weaknesses of theultipipeline designs described in thchapter can be
summarized as follows:

1- The additional hardware tsupportreconfiguration isnot small enough for
faults in that part of the hardware to be negligible.

2- The interconnections of the reconfiguredltipipeline have lengthdependent
on the fault distribution. This leads tahe slowing of the clock to
accommodate the worst case delay. So, the array performance is degraded.

3- No simple optimal distributed algorithm is known to us for reconfiguring the
array in the presence of faults in the PEs and switching elements.

4- The design presented in tldbapter improveshe yield in the manufacturing

phase asvell asthereliability in the on-time phase. Thus, tbesign is general
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to the point that it isiot optimized for certairdomain or applicatiorywhich

leads to wasted resources.
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Chapter 3
New Design

In this chapter a newdesign of faulttolerant multipipelines will bepresented. A
detailed description W/ be given for this new architecture withissues in its
implementation, error diagnosis under different fault models, and reconfiguration

algorithms.

3.1 Architecture

A new architecture for a fautblerantmultipipelines is described in thtkesis. The
emphasis is on itsimplicity and a constant interconnection length between stagegeH

the architecture shown in Figure 3.1 fod3nultipipeline is developed.
M
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X
M M
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' X X
M
(=) bH
X
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e pie
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M
—() he.
X
M M
o) EHG—
B :

Figure 3.1 The new architecture for the multipipeline.
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As shown in Figure 3.1, multiplexeese placed between stagestase inputs from
two previous stages artteliversone of them tdhe next stage. It islear from Figure 3.1
that all the interconnects are of equigngth except forthe wraparound ones. By
reordering the PEs, wean makeall the interconnections into equahgths as we i see

in the next section.

3.2 Implementation

The goal ofimplementingthe multipipeline is togetrid of the long wraparound ives
by making them equal tilhve other interconnects. LEte a function mapping eatdyical
PE in thelogical architecture to its correspondipysical implementatioand let (a,b) be
the indices of a PE irthe logical architecture and (x,y) be thadices inthe physical
implementation. Theoordinates a and x are thertical indices running from 0 tN-1.
On the othehand, b and y are the horizontadlices running from 0 to M.. Hence, we
have @ p )DET - & y) Thelogical architecture of Figur&.1 ismapped to thehysical
implementation shown in Figure 3.2. It is easy verify that all the transformed

interconnects are of equal length. The mapping function and its proof are described below.

ey

G
)

xc3
(xczj(xcggca

%

é
xc3

Figure 3.2 The physical architecture for the multipipeline.
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Theorem 3.1:

The transformation defined below guarantees a constant length of interconnect.

[ 2a If b is even, N is even, sa(N-2)/2,
0 2a If bis even, Nisodd, s(N-1)/2,
O 2N-1-2a If bis even, Niseven, aN-2)/2,
0 2N-1-2a Ifbiseven, Nisodd, a(X-1)/2,
x =0 2a+l If bis odd, Niseven, sa(N-2)/2,
0 2a+l If bisodd, Nisodd, s(N-3)/2,
O 2N-1-(2a+1) Ifbisodd, Niseven, aN-2)/2,
0 2N-1-(2a+1) Ifbisodd, Nisodd, a>(N-3)/2.
y =b

Proof:

We prove thdirst case andll the others can be proved insemilar way. Consider the
case when b is even, N is even, al(&l-2)/2. The PE X(a,b) in thiegical architecture
receives input fromPEs A(a,b-1) and B[(a-1) mod N,b-1]. On tbther hand, it sends
output to PE<C(a,b+1) and D[(a-1) mod N,b+1Jisingthe above transformation, Will
be mapped to X'(2a,b). b is even b-1 and b+1 aredd [ A(a,b-1) wil be transformed
to A'(2a+1,b-1) and C(a,b+1)ilivbe transformed to C'(2a+1,b+Ijwo cases argoing

to be considered:

case 1a# 0.

O<a <NO amodN = a. (3.2)
O<a-l<a<N (a-1) mod N = a-1. (3.2)
a-1 <aand & (N-2)/20 (a-1) < (N-2)/2. (3.3)
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Using (3.3) in thetransformation above, B[(a-1) mod N,b=BJa-1,b-1) is mapped to
B'[2(a-1)+1,b-1}B'(2a-1,b-1) and D[(a-1) mod N,b+D(a-1,b+1) is mapped to D'[2(a-
1)+1,b+1kD'(2a-1,b+1).

In Figure3.3 below, we see thphysical implementation of ax4 multipipeline. Each
PE has a physical index ithe upperside and a logical index e lower side. It i€lear
from this Figure that Xgetsinputs from A' and B' and seralitputs to Cand D' (take

X'(2,2) as an example).

m
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/W\/ﬁ w X w w

Figure 3.3 The physical implementation of the multipipeline for the case of N is even.

case 2a =0.
a=00 (a-1) mod N = N-1. (3.4)
2N > N[O 2N-2 > N-20 2(N-1) > N-20 N-1 > (N-2)/2. (3.5)

Using (3.5) in the transformation, B[(a-1) mod N,b-1]=B[N-1,b-1ill e mapped to
B'[2N-1-(2(N-1)+1),b-1]=B'(0,b-1) and D[(a-1) mod N,b+1]=D[N-1,b+1ijl\we mapped
to D'[2N-1-(2(N-1)+1),b+1]=D'(0,b+1). It is also clear from Fig®& that X' getsnputs
from A" and B' and sends outputs to C' and D' (take X'(0,2) as an example).

Q.E.D.
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3.3 Diagnosis

Fault diagnosis ithe detection and location tdulty elements so reconfiguration can
be performed over the array. Tthagnosis algorithm should end by knowihg status --
faulty or healthy -- of alPEs in themultipipelines. Diagnosis in multipipelinepends on
the fault model assumed. lall the fault modelsthe reconfiguration control iassumed
fault-free due to itsimplicity. Diagnosis in multipipelinesould be distributed or host

driven. Each of these will be described in the next sections.

3.3.1 Distributed Diagnosis

To perform a distributed diagnosthe status of the PE must determined by aelf
testing circuit. Thenodified structure of anodule, which includethe PE of a non-fault-
tolerantmultipipeline, isshown in Figure 3.4. The multiplexer, self testing circstifitus
flip flop F, and interconnectionsre assumed to be fault free. With this fault model, a
distributed runtime auto-reconfiguration can ibglemented easilyThe reconfiguration

algorithm is implemented with hardware in the control circuitry.

—3| control [S

<« —>
M >
N Y —_ >
X 7
— ey L
e
Testing %
Circuit

Figure 3.4 Simple module structure.
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The control circuit obtains thgtatus of theneighboringPEs byusing somecontrol
signals(to be described later in sectio®.4.1) and the status of itRE. Based onthis
information andhe reconfiguration algorithm, the control circuit decides what iatst
and sets thenultiplexer toget therequired input anéhformsthe fourneighbors with its

decision. The reconfiguration algorithm is described later in section 3.4.

3.3.2 Host Driven Diagnosis

In most of the cases tmultipipeline is driven by &ost,henceerror diagnosis can be
assigned tahe host. Vith the help ofthe hostfaults in interconnections can detected.
So, diagnosis can be performed according to whetherobitheassumption of fault-free

interconnections is retained.

3.3.2.1 Fault-Free Interconnections

With the interconnectiondeing fault free, the module structure ofFigure 3.4 is
modified to handle the host control of the status flip-flops. This calobe by connecting
all the statuslip flops of a column oPEs in ascan path format. Thaodified structure is
shown in Figure 3.5.

The host Wi perform thefollowing sequence obperationsapply test vectors to the
multipipeline, read themultipipeline response, decide on tlstatus of the PEs, set the
statusflip flops of the PEs according to th&iagnosis results, anfihally activate the

execution of the reconfiguration algorithm.
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Figure 3.5 The module structure under host driven diagnosis with fault-free

interconnections.

3.3.2.2 Faulty Interconnections

To be able tdest for theinterconnections, a bypassing interconnection ftioeinput
of the PE to itoutput issupplied as shown in Figure 3.6. An additional demultiplexer at
the output of the PE iherefore needed. Also, we nemb statusflip flops, FU and FD,
per PE.The contents oflip flop FU will be propagated to the upper input PE of the
previous stageyhile FD will be propagated to the lower input PE of the previous stage.
A fault in the module shown in Figur8.6 is represented by theo statusflip flops
according to Table 3.1.

The hostperforms thdollowing sequence obperationsapplytest vectors to test the
interconnections in theultipipeline,read themultipipelineresponseapplytest vectors to
test the PEs in theultipipeline,read themultipipelineresponse, decide on tlséatus of
the PEs and interconnections, set the status flip flops of the PEs accordindiagtiosis

results, and finally activate the execution of the reconfiguration algorithm .
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Figure 3.6 The module structure under host driven diagnosis with faulty interconnections.

y

Table 3.1Values of FU and FD for different faults.

Type of Fault Status of FU | Status of FD

No fault Good Good
PE is fauly Bad Bad
MUX is faulty Bad Bad
DEMUX is faulty Bad Bad

Line a is fauly Bad Good
Line b is fauly Good Bad
Line c is fauly Bad Bad
Line d is fauly Bad Bad

Line e is fauly Good Good
Line fis fauly Bad Bad
Line g is faulty Bad Bad
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The diagnosis afhe multipipelineends by setting thstatusflip flops according to the
testing results. Aftetthat, areconfiguration of themultipipeline is rformed. The

reconfiguration of the multipipeline is discussed in the next section.

3.4 Reconfiguration

After locating thefaults inthe array, a reconfiguration of the array is performed. If the
errordiagnosis is distributedhe self-testing circuits concurrenttgst the PEandset the
statusflip-flops according to théestresults. If a fault igletected, an auto-reconfiguration
is initiated. Orthe otherhand, if theerrordiagnosis isostdriven, therthe hostperforms
the testing in thesimplest form of a periodic basis in a semi-concurrent way. If a fault is
detected, the hosinitiates the reconfiguration. The reconfiguratioalgorithm is
implemented with hardware in the control part of a module. The reconfiguration control of
a module communicates witine four neighboringPEs byusing somecontrol signals

which are described in the next section.

3.4.1 Control

Each module othe multipipeline communicates witlts nearestwo neighbors from
the previous stage and its neardsto neighbors of the following stage. The
communication betweeany two modules is done bwsing two control signals. The
control signals between the modules are shown in Figure 3.7.

The module X receivesno input requestsignals from modules A and B. It can
acknowledge one of these requeastyy since a moduleanonly be inone pipeline at a

time. Onthe otherhand, module X receivethe status oimodules C and D bysing
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acknowledge signals. Based @ reconfiguratioralgorithm andhe itsstatus,module X
will requestirom either C or D to béhe next stage of the @jine passinghrough X by

using the request signals. The 1/O control signals to the module are:

Stage i-1  Stage i Stage i+1

Figure 3.7 Reconfiguration signals between modules.

|_REQ_U (I_REQ_D) This signal isghe input request signal to tmeodule
from the upper (downjnodule inthe previous stage. this signal isasserted,
then themodule is requested to be engaged in a pipg@assingthrough the
upper (down) module in the previous stage.

O_REQ_U (O_REQ_D) This signal isthe output request signélom the
module tothe upper (downjnodule inthe next stage. this signal isasserted,
then the PE requestsom the upper (down)nodule inthe next stage to be
engaged in a pipeline passing through the module.

I_ACK_U (I_ACK_D): This signal isthe input acknowledgement request
signal to themodule fromthe upper (downjmodule inthe next stage. this
signal is negated, then the upper (dowrgdule inthe next stage accepts the

request from the module, else it is rejected.
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O_ACK_U(O_ACK_D): This signal isthe outputacknowledgemensignal
from the module tothe upper (down)nodule inthe previous stage. this
signal is negated, then tineodule acceptthe requestrom the upper (down)
module in the previous stage, else the request is rejected.
Each stage in pipeliner will determine what ishe previous stagel in the pipeline
and what is the next stagel in the pigline by usinghe reconfiguration algorithm. The

reconfiguration algorithm will be discussed in the next section.

3.4.2 Algorithm

The reconfiguration algorithm is executed dymodules in parallelFor the case of
distributed diagnosis with one status flip flop, the algorithm can be summarized as follows.

If the module X instagei is faulty then themoduledoes notacknowledge any

of the requestsfrom modules A and B instage i-1. Similarly if both

acknowledgement signals fratme two nearest modules C and Dtbke next stage

i+1 arehigh, there wll be noacknowledgment. On thetherhand ifthe module X

in stage is healthy and at leashe of the acknowledgemesignals from modules

C and D in stager1 is low, a pipeline passing through the module X in stagn

be formed. The module acknowledges one request, if it exists, to module A or B in

stagei-1 with a higher priority assigned tbe uppemodule A. The module also

requestfrom one of thetwo modules C and D istagei+1 to be engaged in the

pipeline with priority to the upper module C.

The algorithm can be described in a simple Pascal code as follows:
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ALGORITHM 3.1
IF (F=1) OR ( (I_ACK_U=1) AND (I_ACK_D=1)) HEN
BEGIN
O_ACK _U:=1;
O_ACK_D:=1;
END
ELSE
BEGIN
IFI_REQ_U=1 HEN
BEGIN
O_ACK D:=1;
O_ACK_U:=0;
END;
IFI_REQ_U=0 HEN
O_ACK_D:=0;
IF(I_REQ_U=1) OR (I_REQ_D=1)HEN
BEGIN
IFI_ACK_U=0 THEN
BEGIN
O_REQ_U:=1;
O_REQ_D:=0;
END
ELSE IFI_ACK D=0 HEN
BEGIN
O_REQ_U:=0;
O_REQ_D:=1;
END;
END;
END;

On the otherhand if we havetwo statusflip flops representinghe state, the

reconfiguration algorithm is modifieslightly. If theflip flop FU isset, thermodule X in

stagei cannot acknowledge the requésim the uppemodule A instagei-1. If the flip

flop FD isset, thermodule X cannot acknowleddlee request from the lowanodule B

in stage-1. The algorithm can be described in a simple Pascal code as follows:
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ALGORITHM 3.2
IF (FU=1) THEN
O_ACK U:=1
IF (FD=1) THEN
O_ACK D:=1
IF ((FU=1) AND (FD=1)) OR ((I_ACK_U=1) AND (I_ACK_D=1)) HEN
BEGIN
O_ACK U:=1
O_ACK D:=1
END
ELSE
BEGIN
IF(I_REQ_U=1) AND (FU=0) FEN
BEGIN
O_ACK_D:=1;
O_ACK_U:=0;
END;
IF(I_REQ_U=0) AND (FD=0) FEN
O_ACK_D:=0;
IF((I_REQ_U=1) AND (FU=0)) OR
((_REQ_D=1) AND (FD=0))FEN
BEGIN
IFI_ACK_U=0 THEN
BEGIN
O_REQ_U:=1;
O_REQ_D:=0;
END
ELSE IFI_ACK D=0 HEN
BEGIN
O_REQ_U:=0;
O_REQ_D:=1;
END;
END;
END;

We conjecture that the reconfiguratialgorithmsare optimal inthe sense dfinding

the maximum number of recoveredpipelines inthe presence ofaults for the new
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architecture presented in thiahapter.This conjecture is based on runniting algorithms
and examining their outputs many times. The algorithmsare very simple to be

implemented in simple combinational logic circuits.

3.5 Examples

An example on using AlgorithiB.1 toreconfiguremultipipelines withthe assumption
that faultsareonly in the PEs is shown iRigure 3.8. The’Es marked X aréaulty. The
bold linesare the active ones after the reconfiguration. It is clearAlgatithm 3.1 finds

the best solution.

Figure 3.8 A reconfiguration example using Algorithm 3.1.

A similar result using Algorithm 3.2 with faults occurring in both the interconnects and
the PEs is shown ifrigure 3.9. The PE marked with X faulty and the dotted
interconnections are also faulty. It is clear that Algorithm 3.2 finds the best solution.
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Figure 3.9 A reconfiguration example using Algorithm 3.2.

After describingthe new design, arevaluation of this design is needed. The
comparison between the nel@sign andhe design presented @hapter 2 is the topic of

the next chapter.
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Chapter 4
Simulation and Comparison

The following figures of merit[10] are suggested fagvaluating a reconfiguration
schemeSimplicity, efficiency area, andlocality. Simplicity refers to the executiotime
of the reconfiguration algorithm. A simpkdgorithm requires ahort executiontime.
Efficiency refers to spare use. Aefficient schemavastes none overy few sparecells
and, thusachieves a very highrraysurvivability and harvest. Area refers to the overhead
of the added interconnect and reconfiguration circuitry. Low-overtsehémes are
desirable because a largdicon area increasethe probability of havingmore defective
elements. Locality means that physicaérconnections betwedogically adjacentells in
a reconfigured array should haw@nimal lengths. It determinethe maximum delay in
signal propagation, therefore limiting the clock rate at which the array can operate.

These figures of merit agell as reliabilityare used ithis chapter to compatbe new
design to the design presented in Chapter 2. The following labels are used:

1- HIM:  The design presented in this thesis.

2- GUPTA: The design presented in [2] and reviewed in Section 2.3.

3- MIN:  The straight-through p&line design which is aon fault-tolerant

design. MIN represents the lower boundiofiplicity, areaefficiency,
and reliability.
4- MAX: The design wherehe interconnection network between stages is

complete, i.e., every PE stagei is connected to every PE stage
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i+1. This desigrepresents the upper bound of area effidiency. It
represents also the upper boundrafability if the interconnections

are assumed fault free.

4.1 Simplicity

Both algorithms presented (HIM and GUPT#gve fast execution times because they
areimplemented irhardware, but the HJMIgorithm is simpler. This is based tre fact
that HIM's algorithm is a parallel distributed algoritivhere each PE performs the
reconfiguration in parallevithout any sequence of reconfiguratioWhile GUPTA's
algorithm needs a sequence of reconfiguration phases as shown in Chaptetiop: rolae
of PEs isfirst reconfigured, followed byhe reconfiguration of the secomdw of PEs,
which is inturn followed by the third row, and soon. According to Chapter 3, the
execution of HIM's algorithm is done parallel. So, HIM's algorithmdoes notneed
sequencingontrol logic -- circuits to activate reconfiguration phasesvhile GUPTA's

algorithm needs such logic.

4.2 Efficiency

To compare theefficiency of HIM's design to GUPTA's design, a simulation is
conducted on an 8x@wltipipeline. Faultsareassumed to be randomly distributedhin
the multipipeline withthe interconnectionassumed to be fault-free. The expeatadthber
of recovered pipelines, normalized to the total numbgipElines supplied, iplotted as a
function of F (fraction of faultyPEs) as shown ifigure 4.1. From this figure, we can

conclude that GUPTA's design has a better performance than that of HIM's design if F is
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greater than 0.1. In the case of riime operation, F idess than0.1 [18], so both

algorithms have almost equal performance for run time operations.
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Figure 4.1 The expected number of survived pipelines normalized to the supplied number
of pipelines versus the fraction of faulty PEs.

4.3 Area

The third figure of merit ishe area overhead addedearly, HIM's design hdess
overhead than that of GUPTA's design. This is due to the following:

1 - The use of a multiplexer (2 T-gates) rather than a switch (10 T-gates).

2 - HIM's algorithm has no sequenciogntrol logic -- circuits tocontrol the

execution of the reconfiguration phasegjile GUPTA's algorithm needs such

logic.
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4.4 Locality

The largest advantage of HIM's desigver GUPTA'sdesign is inthe locality
characteristic. In HIM the distance betweey consecutive stages is always constant; in
GUPTA's design the length is dependent on fault distribution. This locality characteristic is

forced by the physical architecture, independent of the reconfiguration algorithm.

4.5 Reliability Evaluation

In this sectionthe reliability of HIM design is compared to that of GUPTA's design.
The reliability is calculated usingMarkov modelsfor an 88 multipipeline.The PEs are
assumed tdail independently with @onstantfailure rate A measured in failureper PE
per unittime. A system failure hasccurredwhen the number of workingpipelines
becomes less than a certain nunfygr Thus the reliability is defined as follows:

R(t) = Prob { S(t® S},
where S(t) is the number of survived pipelines at time t, gnt $heminimumnumber of
survived pipelines that iseeded for thanultipipeline to beconsidered in a non-fatal
failure condition.

Before calculatingthe reliability of the multipipelines, the Markov model of the

multipipelines needs to be described.
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4.5.1 Markovian Modeling

The Markovmodelfor reliability predictionrequirestwo assumption$6,18] : PEfail
independently in different moments, atieé transitionrate betweentwo different error
states of a system of PEs (multipipeline) is constant.

To develop themodel ofthe multipipeline, consider firsthe sinple case of a 43
multipipeline. The Markovmodelfor the multipipeline with $7=2 is shown in Figurd.2.
Each circle in that figureepresents aensemble obtates. Eaclensemble isepresented
by (a,B), wherea represents th@umber of survived pipelineand B represents the
number of faultyPEs. Initially, the multipipeline is in ensembl¢4,0) and finally, the
multipipeline is in an ensemble ¢)5(F), wherey is any numbesuch thaty >2. There are
many states of thanultipipeline that have 3 survived pipelines with 1 fadtey. Infact,
the ensemblg3,1) has MkN states. On the othérandthe ensemblg4,0) has only one

state.
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The first fault inthe multipipeline leads to losingne pigline as shown in Figuré.2.
The second fault ithe multipipelinecould lead to losingnother pigline if the first and
second fault®ccurred in PEs of theame column. Otherwiséhe secondault will not
lead to losing a pipeline. In generafter thefirst fault, a faultmay or maynot lead to
losing a pipeline.

Consider the mogieneral case of KN multipipelinewhere a fatafailure is reached
whenthe number of survived pipelines is led®nSy, By inspection, thensembles in the
Markov model are as follows:

one fault-free ensemble which has a single state.

1*(M-1)+1 ensembles each has N-1 fault-free pipelines.

2*(M-1)+1 ensembles each has N-2 fault-free pipelines.

k*(M-1)+1 ensembles each has N-k fault-free pipelines.

(N-Sp*(M-1)+1 ensembles each hag,$ault-free pipelines.
(N-Sp)*(M-1)+1 fatal failure ensembles.

Hence, the total number of ensembles of the Markovian model is :
ST =1+ 1*(M-1) + 1 + 25(M-1) + 1 + 3*(M-1) + 1+. . .+ k*(M-1) + 1 +. . .+ (N-
Sm)*(M-1) + 1+ (N-Sp)*(M-1) +1
= (M-1){1+2+...+(N-Sp)}+(N-Sp)+1+(N-Sp)*(M-1)+1
= (M-1)*(N-Sp)*(N-Sp+1)/2 + (N-Syp)+(N-Sp)*(M-1)+2
= (N-Sp)*{(M-1)*(N-S y+1)/2 + M} + 2
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If M=N, then Sy will be O(NB). This showsthe rapidgrowth of complexity of the
Markovian modelinglnitially in the Makov model, thenultipipeline is in ensemble (N,0)
andfinally, the multipipeline is in an ensemble 451,y)=(F), wherey is any number such
thaty >(N-Sy). In general, eacensemble othe Markovmodel can be represented as
shown in Figure 4.3.

From eaclensembldp,f) of the Markov model, therexistsq transitiong(PE failures)
to otherensembles of whichlead to a loss of a pipeline. Sinte probabilities of failure
of the PEs are constant, equal, amdependent, then thete of pigline failures from
ensemblgp,f) is thenumber of livePEs (NkM-f) times the PEfailure rate Q) times the
transitional fractiorr/q (Fv). The transitional fractions Fv', Fh', Fv, anddfk important
parameters that become ingsengly burdensome to obtaamalytically as N increases. For
small number ofPEs,enumeratinghe states and groupirigem into ensembles leads to
finding the actualvalues ofthe tramsitional fractions.For mediumand large number of
PEs, theenumeration technique ot practical. Hence, fomediumand large numbers of
PEs,simulation isused to determinthe trangional fractions. The transitional fraction Fv'
is the fraction of PHailures which lead to loss of a pipeline whiltee multipipeline is in
the ensemblgp+1,f-1). Similarly, Fv isthe fraction of PHailures which lead to loss of a
pipeline whilethe multipipeline is inthe ensemble(p,f). On the othehand, Fh' is the
fraction of PE failures which dootlead to loss of a pipeline whitee multipipeline is in
the ensembldp,f-1). Similarly, Fh isthe fraction of PHailures which danot lead to loss
of a pipeline whilehe multipipeline is inthe ensembl€p,f). Let R, p(t) be the probability
of being in ensembléa,b). Then thdollowing equation relates thensembles in Figure
4.3.

dPy,q (1) '
—(dp';) =-A(NXM-f) B o (O + A (NXM-f+1)[Fv' P, ) (8 FR' R ) (D]
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Ensemblgp,f) should be provided byh' and Fv' irorder todeterminethe probability
of being in ensembl@,f) attime t+At. Note thathis probability is independent of Fv and

Fh because Fv+Fh=1.

A (NXM-f+1)Fv!

)\(NxM-f+1)Fh' > A (NxM-f)Fh o i

A (NxM-f)Fv

Figure 4.3General Markovian model for each ensemble.

To get the trasitional fractions Fv' and Ffor eachstate, asimulation is performed.
For each ensembléwo variables Nv and Nharedefined. In ensembl@,f), Nv(p,f) is the
number of times the ensemble is visited from ensemble (p+1,f-1) and Nh{phgnismber
of timesthe ensemble is visited from ensemigfef-1). Eachtime the ensemble is visited
either Nv(p,f) or Nh(p,f) is incremented. Tipeocedure of getting-h' and FVv' is then

written as follows:

Repeat 1000 times
Initialize the multipipeline to fault-free state.
repeat

Generate a fault

Move to the corresponding ensemble.
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Increment either Nv or Nh
Until fatal-failure
Until done
for all ensembles do
Fv' = Nv(p,f) / [(Nv(p+1,f-1)+Nh(p+1,f-1)]
Fh' = Nh(p,f) / [(Nv(p,f-1)+Nh(p,f-1)]

endfor

The code written for getting the parameters Fv' and Fh' is listed in Appendix A.

To verify that the values of Fv' and Fh' determined usitige above procedure
converge to their respective exact valudéle tramsitional fractions are derived
theoretically forthe case of 8 multipipeline with §=1. The Markovmodel for the
multipipeline isshown in Figure 4.4. Sindbe sum ofthe trangional fractions going out
from an ensemble sums to 1, comparing the vertical transitional fractions calculttat to
determined by simulation is sufficient. Tadld shows the exagtlues ofthe transitional
fractions, values determined by simulation, apercentage error bywsing values
determined by simulation instead thie exactvalues. Thesimulation isdoneusing 1000
and 5000 iterations. It is clear that as thanber of iterations increasthe simulation
values tend to their corresponding exact values.

From Table 4.1, we can see tltaé maximumpercentage error is 1.06%4th 5000
itaerations. Hence, usingimulation to get the tansitional fractions is sufficient for
determining the reliability of the multipipelines.

The derivation of the exact values of the transitional fractions for<BerBiltipipeline

IS given in Appendix B.
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Table 4.1Comparison between the transitional fractions determined by simulation and
their corresponding exact values.

Simulation | Simulation Percentage errqr Percentage efror
Transitional Exact values values by using values by using valug¢s
Fractions values using 100p  using 50p0  determined frpm determined from
iterations iterations 1000 iterations 5000 iterations
Fv1 1 1.0000 1.0000 0.0000 0.0000
Fv2 1/4 0.2492 0.2506 0.3200 -0.2240
Fv3 1/7 0.1388 0.1435 2.8400 -0.4780
Fv4 a/7 0.5692 0.5721 0.3900 -0.1140
FV5 13/54 0.2323 0.2382 3.5062 1.0595
FVv6 1 1.0000 1.0000 0.0000 0.0000
Fv7 91/205 0.4383 0.4404 1.2621 0.8003
Fv8 13/19 0.6783 0.6784 0.8638 0.8492
FV9 1 1.0000 1.0000 0.0000 0.0000

=@

\lfvz \I/FV4 \l/Pves

(1919209 =55 (2)

\lfVB \I/FVS \l/FV? \lfvs \I/FVQ

O & O O ¢

Figure 4.4 The transitional fractions in the Markovian model forx& &ultipipeline.

Based on the Markovmodel developedthe reliability of the multipipelines is

computed. The results are discussed in the next section.
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4.5.2 Results

To access theeliability of HIM's design and that of GUPTA's, a simulation is

performed over an>8 multipipeline. The reliability is defined to behe probability of

being in a non-fatal failuretate attime t. The results of thisimulationare shown in
Figure 4.5, Figure 4.6 and Figure 4eépectively. In Figure 4.%hereliability of the HIM
multipipeline isplotted fordifferent values of §, It is clear (trivial) that as g decreases,
thereliability increaseskrom Figure4.6 and 4.7, we can see that HIM design hgead
reliability compared to GUPTA's desigispecially when § is large (i.e., when whave
smallamount of hardware redundancy). Also, we can see that both HIM and GUPTA are

far better than the straight-through multipipeline.

206+

Feliakil

Figure 4.5The reliability of an 88 HIM multipipeline with a PE failure rate of 0.1
failures per unit time.
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Figure 4.6 The reliability of an 88 multipipeline with a PE failure rate of 0.1 failures per
unit time and with &, = 6.
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Time
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Figure 4.7 The reliability of an 88 multipipeline with a PE failure rate of 0.1 failures per
unit time and with &, = 4.
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Anotherway for comparing theeliability is by comparing themean time to failure
(MTTF). The results osimulation onthe 8&8 multipipelineare shown in Figurd.8.
According to that Figure, the MTTF fJM's design approaches that of GUPTdésign

for large values of §. In fact, when §=7 we have MTTRiMv=MTTFgupTA=MTTFpMax .

The code written for obtaining the reliability and the MTTF is listed in Appendix A.

14
121
104
M
T 8
T
F 6
4
2,
8 7 6 5 4 3 2 1
Sm as defined in section 4.5
—o- GUPTA —— HJM
- MAX —%=  MIN

Figure 4.8 The Mean Time to Failure in units of time of ar88nultipipeline with a PE
failure rate of 0.1 failures per unit time.

4.6 Effect of M and N

One of the questions that need to be addressed is whaieatieof increasing N or
M on the expectechumber of survived pipelines normalized tive total number of

pipelines? To get an answer for this questisimulationsare carried byarying M, N, and
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P - probability of failure of &#E. The results of thsimulationare shown in Figurd.9.

From this figure we can get the following conclusions:

1- as theprobability of failure of a PHP) increases foifixed N and M, the
number of survived pipelines decreases.

2- as M increases fdixed values of Nand P, thenumber of survived pipelines
decreases.

3- as N increases fdixed values of Mand P, the fraction ddurvived pipelines
tends to a constant limit after N becomes twice M.

0.9

08 /_J‘g_wﬁ-—"-'-'ﬂm-_-

0.7

0.6

o 0 o0 —O0—0—0—0—0_o 00
— XXX — XX XXX XX —X—X—X

— ®— M=3P=01 — O M=4P=01 —* — M=5P=0.1
— > M=3P=02 — & M=4P=02 — % — M=5P=0.2
“ — & — M=3P=03 —°— M=4P=03 —X— M=5P=0.3
X—— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The number of pipelines N

To emphasize othe fact that theield - number of survived pipelines normalized to

Figure 4.9The fraction of survived pipelines for HIM design.

the totalnumber of pipelines - is relativelgonstant, theyield is plotted for M=8 and

different values of N and P as shown in Figdr&0. According to that figure, we can

determinethe number of pipelinesneeded for certain requirementdssume that a

52



supercomputer (S)ses an 88 multipipeline.(S) will reach to a fatdhilure if lessthan 8
pipelines are fault-free. Assume also that the probability of failure of a PE is 0.15. Thus we
need tofind how many pipelines weshould supply to have at least 8 of them working.
From Figure 4.10, we can see that for P=0.15yigld is60%. Hence, waeed tasupply

at least (8/0.6)13 pipelines to have 8 of theworking. So, Figure4.10can be used as a

design aid for the fault-tolerant multipipelines.

— T N=4
— ®— N=6
—X— N=8
—<%— N=10
—%— N=12
— & N=14
—*— N=16
—xX— N=18

—&— N=20

T T T T T T T X—X—X‘X
0 005 01 015 02 025 03 03 04 045 05 055 06 065 07 075 0.8 |0.85
T he probability of failure ofa PE

Figure 4.10Expected yield (percentage of surviving pipelines) of a8 Multipipeline.

The code written to obtain Figure 4.9 and 4.10 is listed in Appendix A.
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4.7 Summary

In this chapter, themultipipeline desigrpresented in Chapter 3 is compared to the
design presented by [2Many figures of meritare used as thbasis of comparison:
Simplicity, Efficiency Area, Locality, andReliability. In the reliability evaluation, Markov
models were developed and simulation is performed to get the results. The effect of M and

N is studied also in this chapter.
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Chapter 5
Concluding Remarks

The thesis started with an introduction to multipipelines and their application. Then the
problem of fault-toleranmultipipelines is identified. IfChapter 2, the previousork on
fault-tolerantmultipipelines ispresented withemphasis orarchitecture, diagnosis, and
reconfiguration. In Chapter 3, the HIM desigvhich is the focus ofthis thesis, is
described with emphasis on implementation, diagnosis, and reconfigurat©nagrer 4,
the newdesign is comparedjsing many figures of merit, to a well-known design
presented by [2]. In this lasthapter, theaccomplishmentslone in this thesis i be

summarized, and directions for future research will be given.

5.1 Accomplishments

A new desigrfor fault-tolerantmultipipelines has been giveihe design isimpler
than otherdesigns presented ithe literature. It is characterized by itsity-length
interconnect that is independent of thelt distribution, less area overhead compared to
other designs, comparable efficiency for runtime operationgandreliability and MTTF
especially when the hardware redundancy is small.

The accomplishmentsvithin this design, can be summarized as follows: A new
architecture for anultipipeline; a mapping algorithm from logicatchitecture tghysical

implementation taetrid of the wraparound connectsycing all interconnects to have a
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unit-length;a diagnosis paradigm which giveéee architecture of the P&epending on the
fault model assumed; a new reconfiguration algoritbmthe fault-tolerant mitipipeline
design whenthe interconnections arassumed fault-free, and another omeen the
interconnections could bdaulty; a Markov model for the general fault-tolerant
multipipeline problemandfinally a simulationprocedure to getansitional fractions used

in the Markov model of multipipelines.

5.2 Future Research

The following are suggested as directions for further research.

Testing As described in Chapter 3, self-testingtbé PEscan lead to distributed
reconfiguration of multipipelines. Atudy is needed fdmding the mostsuitable self-test
technique for multipipelines.

Architecture Another interesting extension of tleork in this thesis is have PEs
perform more than one functidfor example, a PE can be reconfigured to be placed in
stage 2 or stage 5 in a pipeline). The questions that arise are:

a-How we should arrange the PEs in the physical structure.
b-How the PEs are interconnected.
c-What is the reconfiguration algorithm.

Failure Probability A complete study of theprobability of failure of PEs,
interconnections, and switches is needed. Thishelp infurther evaluatinghe reliability
under faulty PEs, interconnections, and switches at the same time.

Mathematical Modelingin Chapter 4, theffect of M and N orthe survived number
of pipelines isstudied. We can conclude that the curves in Figut8, representssangle

curve.This could be an indication dfie presence of an equation of that curve. In other
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words, we can say that the number of survippelines is directly mportional to N.This

can also be verified from 4.9. Aanalyticalstudy is needed tsupport thesimulation

results.

Optimality. In Chapter 3, the conjecture that the reconfiguraigorithm is optimal

is given. A mathematical proof or disproof is needed for that conjecture.
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Appendix A

The Turbo Pascal Code

In this appendixthe programs used in Chapter 4 are listed. The programs are written
in Turbo Rascal versior6.0 byBORLAND International. The programs require an IBM
PC or compatible toun. The programs that shaexamples need also a VGilisplay to

be executed.

A.1 Units Used

In this section, the units used by other programs are listed.

A.1.1 The Nodes Unit

UNIT NODES;
{THIS UNIT IS USED BY HJM DESIGN}
INTERFACE

{FAULTY=1 NONFAULTY=0}
{REQUEST=1 NOREQUEST=0}

TYPE NODE=OBJECT {PE DESCRIPTION }
X,Y:INTEGER; {POSITION OF PE }
STATEIINTEGER; {STATE OF PE}
PASS:BOOLEAN;

{ CONTROL SIGNALS }
LREQ_U,LREQ_D:INTEGER;
RREQ_U,RREQ_D:INTEGER;
LACK_U,LACK_D:INTEGER,;
RACK_U,RACK_D:INTEGER;

{ METHODS OF OBJECT }
PROCEDURE INIT;

FUNCTION GET_LREQ_U:INTEGER,;
FUNCTION GET_LREQ_D:INTEGER,;
FUNCTION GET_RREQ_U:INTEGER;
FUNCTION GET_RREQ_D:INTEGER;
FUNCTION GET_LACK_U:INTEGER;

58



FUNCTION GET_LACK_D:INTEGER;
FUNCTION GET_RACK_U:INTEGER;
FUNCTION GET_RACK_D:INTEGER;
PROCEDURE SET_LREQ_U(A:INTEGER);
PROCEDURE SET_LREQ_D(A:INTEGER);
PROCEDURE SET_RREQ_U(A:INTEGER);
PROCEDURE SET_RREQ_D(A:INTEGER);
PROCEDURE SET_LACK_U(A:INTEGER);
PROCEDURE SET_LACK_D(A:INTEGER);
PROCEDURE SET_RACK_U(A:INTEGER);
PROCEDURE SET_RACK_D(A:INTEGER):
PROCEDURE SETXY(A,BIINTEGER);
PROCEDURE SETSTATE(S:INTEGER);
FUNCTION GETSTATE:INTEGER;
PROCEDURE UPDATE;

FUNCTION GETCODE:INTEGER;
FUNCTION NOCHANGE:BOOLEAN;

END;

IMPLEMENTATION

PROCEDURE NODE.INIT;
{ INITIALIZE THE PE }
BEGIN
X:=0;
Y:=0;
STATE:=0;
PASS:=FALSE;
LREQ_U:=0;
LREQ_D:=0;
RREQ_U:=0;
RREQ_D:=0;
LACK_U:=0;
LACK_D:=0;
RACK_U:=0;
RACK_D:=0;
END;

{ GET FUNCTIONS }

FUNCTION NODE.GET_LREQ_U:INTEGER;
BEGIN

GET_LREQ_U:=LREQ_U;
END;

FUNCTION NODE.GET_LREQ_D:INTEGER;
BEGIN

GET_LREQ_D:=LREQ D;
END;

FUNCTION NODE.GET_RREQ_U:INTEGER;
BEGIN

GET_RREQ_U:=RREQ_U;
END;

FUNCTION NODE.GET_RREQ_D:INTEGER;
BEGIN

GET_RREQ_D:=RREQ_D;
END;

FUNCTION NODE.GET_LACK_U:INTEGER;
BEGIN

GET_LACK_U:=LACK_U;
END;

FUNCTION NODE.GET_LACK_D:INTEGER;
BEGIN

GET_LACK_D:=LACK_D;
END;
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FUNCTION NODE.GET_RACK_U:INTEGER;
BEGIN

GET_RACK_U:=RACK_U;
END;

FUNCTION NODE.GET_RACK_D:INTEGER;
BEGIN

GET_RACK_D:=RACK_D:;
END;

{ SET PROCEDURES }

PROCEDURE NODE.SET_LREQ_U(A:INTEGER);
BEGIN

LREQ_U:=A;
END;

PROCEDURE NODE.SET_LREQ_D(A:INTEGER);
BEGIN

LREQ_D:=A;
END;

PROCEDURE NODE.SET_RREQ_U(A:INTEGER);
BEGIN

RREQ_U:=A;
END;

PROCEDURE NODE.SET_RREQ_D(A:INTEGER);
BEGIN

RREQ_D:=A;
END;

PROCEDURE NODE.SET_LACK_U(A:INTEGER);
BEGIN

LACK_U:=A;
END;

PROCEDURE NODE.SET_LACK_D(A:INTEGER);
BEGIN

LACK_D:=A;
END;

PROCEDURE NODE.SET_RACK_U(A:INTEGER);
BEGIN

RACK_U:=A;
END;

PROCEDURE NODE.SET_RACK_D(A:INTEGER);
BEGIN

RACK_D:=A;
END;

PROCEDURE NODE.SETXY(A,B:INTEGER);
BEGIN

X:=A;

Y:=B;
END;

{ UPDATE THE STATE OF THE PE }

PROCEDURE NODE.UPDATE;
VAR P_LREQ U,P_LREQ D,P_LACK_U,P_LACK_D,
P_RREQ_U,P_RREQ_D,P_RACK_U,P_RACK_D,
P_STATE:INTEGER;
BEGIN
P_LREQ U:=LREQ U:
P_LREQ D:=LREQ D:
P_LACK _U:=LACK_U;
P_LACK_D:=LACK_D;
P_RREQ_U:=RREQ_U;
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P_RREQ_D:=RREQ_D
P_RACK_U:=RACK_U;
P_RACK_D:=RACK_D;
P_STATE:=STATE

IF (RACK_U=1) AND (RACK_D=1) THEN
STATE:=1;

IF STATE=1 THEN
BEGIN
LACK_U:=1
LACK_D:=1
END
ELSE
BEGIN
IF LREQ_U=1 THEN
BEGIN
LACK_D:=1
LACK_U:=0;
END;

IF LREQ_U=0 THEN
LACK_D:=0

IF (LREQ_U=1) OR (LREQ_D=1) THEN
BEGIN
IF RACK_U=0 THEN
BEGIN
RREQ_U:=1
RREQ_D:=0;
END
ELSE
IF RACK_D=0 THEN
BEGIN

END;

IF (P_LREQ_U=LREQ_U) AND (P_LREQ_D=LREQ_D) AND (P_LACK_U=LACK_U) AND
(P_LACK_D=LACK_D) AND (P_RREQ_U=RREQ _U) AND (P_RREQ_D=RREQ_D) AND
(P_RACK_U=RACK_U) AND (P_RACK_D=RACK_D) AND (P_STATE=STATE) THEN
PASS:=TRUE

ELSE
PASS:=FALSE;

END;

{ RETURN THE CODE }

{CODE =1 CONNECTED TO UPPER PE }
{CODE =2 CONNECTED TO DOWN PE }
{CODE =3 NOT CONNECTED}

FUNCTION NODE.GETCODE:INTEGER;
BEGIN
IF (RREQ_U=1) AND (RACK_U=0) THEN
GETCODE:=0
ELSE
IF (RREQ_D=1) AND (RACK_D=0) THEN
GETCODE:=1
ELSE
GETCODE:=2
END;

{ RETURN IF PE DOESNOT CHANGE STATE }
FUNCTION NODE.NOCHANGE;
BEGIN

NOCHANGE:=PASS;
END;
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{ SET STATE PROCEDURE }

PROCEDURE NODE.SETSTATE(S:INTEGER);
BEGIN

STATE:=S;
END;

{ GET STATE FUNCTION }

FUNCTION NODE.GETSTATE:INTEGER;
BEGIN
GETSTATE:=STATE;
END;
END.

A.1.2 The Plot Unit

UNIT PLOT;
{ THIS UNIT IS USED BY THE RELIABILITY PROGRAM }

INTERFACE
USES GRAPH,CRT,;

CONST NMAX=10;
MMAX=10;

TYPE MATRIX=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF INTEGER;
VECTOR=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF REAL;

VAR DATAM:FILE OF MATRIX;
DATAF:TEXT;
CODE,RATESH,RATESV:MATRIX;
RELIAB,NRELIAB:VECTOR;
MTTF:ARRAY[1..NMAX] OF REAL,;
COLOR:ARRAY[1..NMAX] OF INTEGER;
FACT:INTEGER,
FREQUENCY:INTEGER;

PROCEDURE SETFACT(X:INTEGER);

PROCEDURE INIT(M,N:INTEGER);

PROCEDURE ITERATE(M,N:INTEGER;LEMBDA,DELTA,MAXTIME:REAL);
PROCEDURE LOAD(FILNAME:STRING);

PROCEDURE PRINT(N,X,Y:INTEGER);

IMPLEMENTATION
{ SET THE SCALE FACTOR }

PROCEDURE SETFACT(X:INTEGER);
BEGIN

FACT:=X;
END;

{INITIALIZE THE RELIABILITY }

PROCEDURE INIT(M,N:INTEGER);
VAR ILJINTEGER;
BEGIN
FOR 1:=0 TO N*(M-1) DO
FOR J:=0 TO N+1 DO
BEGIN
RELIAB[I,J]:=0;
RATESH][I,J]:=0;
RATESVII,J]:=0;
CODE]1,J]:=0;
END;
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RELIAB[L,1]:=1;
NRELIAB:=RELIAB;
FOR J:=1 TO N+1 DO
FOR I:=1 TO 1+(M-1)*(J-1) DO
CODE[1,J]:=1;
CODE[N*(M-1),N+1]:=0;
END;

{ PERFORM THE ITERATIONS TO GET THE RELIABILITY }

PROCEDURE ITERATE(M,N:INTEGER;LEMBDA,DELTA,MAXTIME:REAL);
VAR TIME, TEMP,SUMP,SUMC:REAL;

1,J,K:IINTEGER,

SCALE:REAL;

BEGIN

ASSIGN(DATAF,'C:\PROGRAM\TP\THESIS\PIPE8X8.DAT');
RESET(DATAF);
APPEND(DATAF);
SCALE:=FACT/DELTA,;
SETCOLOR(WHITE);
LINE(5,450,5,50);
LINE(5,450,635,450);
TIME:=0;
FOR I:=1 TO N DO
MTTF[I]:=0;
REPEAT

IF (ROUND(TIME/DELTA) MOD FREQUENCY)=0 THEN
WRITE(DATAF, TIME:9:5,CHR(9));
FOR K:=1 TO N DO
BEGIN
SUMP:=0;
SUMC:=0;
FOR I:=1 TO N*(M-1)-1 DO
FOR J:=1 TO K DO
IF CODE[l,J]=1 THEN
BEGIN
SUMP:=SUMP+RELIABII,J];
SUMC:=SUMC+NRELIAB],J];
END;
MTTF[K]:=MTTF[K]+SUMC*DELTA,
SETCOLOR(COLORIKY]);
IF (ROUND(TIME/DELTA) MOD FREQUENCY)=0 THEN
WRITE(DATAF,SUMC:9:5,CHR(9));
LINE(5+ROUND((TIME-DELTA)*SCALE),450-ROUND(SUMP*350),5+ROUND(TIME*SCALE),450-

ROUND(SUMC*350));

END;
IF (ROUND(TIME/DELTA) MOD FREQUENCY)=0 THEN
WRITELN(DATAF);

RELIAB:=NRELIAB,;

FOR I:=1 TO N*(M-1)-1 DO
FOR J:=1 TO N DO
BEGIN
TEMP:=-LEMBDA*(N*M-I-J+2)*RELIAB[I1,J];
IF (CODEJI,J-1]=1) AND ((RATESH][I,J-1]+RATESV]I,J-1]) <>0) THEN
TEMP:=LEMBDA*(N*M-I-J+2+1)*(RATESV[I,JJ/(RATESV[I,J-1]+RATESH[I,J-

1]))*RELIAB[I,J-1]+ TEMP;

IF (CODEJI-1,J]=1) AND ((RATESH][I-1,JJ+RATESV]I-1,J]) <>0) THEN
TEMP:=LEMBDA*(N*M-I-J+2+1)*(RATESH[l JJ/(RATESV]I-1,J]+RATESH]I-

1,J)*RELIAB[I-1,J]+TEMP;

TEMP:=TEMP*DELTA,;
NRELIABI[I,J]:=TEMP+RELIABJI,J];
END;
J:=N+1;
FOR I:=1 TO N*(M-1)-1 DO
BEGIN
IF (RATESH][I,J-1]1+RATESV][Il,J-1]) <> 0 THEN
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TEMP:=LEMBDA*(N*M-1-J+2+1)*(RATESV[I,JJ/(RATESV][I,J-1]+RATESH[I,J-
1]))*RELIAB[1,J-1]
ELSE

TEMP:=0;
TEMP:=TEMP*DELTA,
NRELIABIJI,J]:=TEMP+RELIABII,J];

END;

TIME:=TIME+DELTA;
UNTIL (TIME > MAXTIME);
WRITELN(DATAF);
FOR I:=1 TO N DO
WRITELN(DATAF,|,CHR(9),MTTFII]:9:5);
WRITELN(DATAF);
WRITELN(DATAF);
CLOSE(DATAF);

END;

{ LOAD THE TRANSITIONAL FRACTIONS }

PROCEDURE LOAD(FILNAME:STRING);

BEGIN
ASSIGN(DATAM,FILNAME);
RESET(DATAM);
READ(DATAM,RATESH,RATESV);
CLOSE(DATAM);

END;

{ PRINT A MESSAGE }
PROCEDURE PRINT(N,X,Y:INTEGER);
VAR S1,52:STRING;
INTEGER;
BEGIN
FOR I:=1 TO N DO
BEGIN
STR(MTTFII]:9:5,S1);
$2:=52+S1;
END;
OUTTEXTXY(X,Y,S2);
END;

END.

A.2 The Transitional Fractions Programs

These programs determines the transitional fractions for the MAX, MIN, GUPTA, and

HJM Designs.
A.2.1 MAX's and MIN's transitional fractions

PROGRAM MAXMIN;

{ THIS PROGRAM DERIVES THE TRANSITIONAL FRACTIONS FOR GUPTA DESIGN }
{ FOR THE CASE OF 8X8 MULTIPIPELINE }

USES GRAPH,CRT,;

CONST MMAX=10;
NMAX=10;

TYPE NODE=RECORD
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S:IINTEGER;

X,Y:INTEGER;

END;
MATRIX=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF INTEGER;
VECTOR=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF REAL;

VAR M,N:INTEGER;
XPA,PA:ARRAY[1..MMAX,1..NMAX] OF NODE;
1,J:INTEGER;

SP,COUNT,PROB:INTEGER;
SURVIVE:INTEGER,;

DATAM:FILE OF MATRIX;
CODE,RATESH,RATESV:MATRIX;
RELIAB,NRELIAB:VECTOR;
INDEXI,INDEXJ,SPLAST:INTEGER,;

{ INITIALIZE THE TRANSITIONAL FRACTIONS }

PROCEDURE INIT;
VAR ILJINTEGER;
BEGIN
FOR 1:=0 TO N*(M-1) DO
FOR J:=0 TO N+1 DO
BEGIN
RELIAB[I,J]:=0;
RATESH][I,J]:=0;
RATESVII,J]:=0;
CODE]1,J]:=0;
END;
RELIAB[L,1]:=1;
NRELIAB:=RELIAB;
FOR J:=1 TO N+1 DO
FOR I:=1 TO 1+(M-1)*(J-1) DO
CODE[1,J]:=1;
CODE[N*(M-1),N+1]:=0;
END;

{INJECT ONE FAULTY PE }

PROCEDURE INJECTONE;
BEGIN

PA:=XPA;

REPEAT
I:=RANDOM(M)+1;
J:=RANDOM(N)+1;

UNTIL (PA[I,J].S <> 1);

PA[l,J].S:=1;
XPA:=PA;
END;

{ INITIALIZE THE MULTIPIPELINE }

PROCEDURE INITIALIZE;
BEGIN
FOR I:=1 TO M DO
FOR J:=1 TON DO
BEGIN
PA[l,J].S:=0;
PA[lI,J].X:=0;
PA[l,J].Y:=0;
END;
XPA:=PA;
END;

{ RUN THE SIMULATION ALGORITHM ON MAX DESIGN }
PROCEDURE RUNMAX;
VAR I,J,K,L,Z:INTEGER;

ENDIT:BOOLEAN,;
BEGIN
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K:=0;
FOR I:=1 TO M DO
BEGIN
Z:=0;
FOR J:=1 TO N DO
IF PA[l,J].S=1 THEN
Z:=7+1;
IFZ>K THEN
K:=Z;
END;
SURVIVE:=N-K;
END;

{ RUN THE SIMULATION ALGORITHM ON MIN DESIGN }

PROCEDURE RUNMIN;
VAR I,J,K,L,Z:INTEGER;
ENDIT:BOOLEAN;

BEGIN
K:=N;
FOR J:=1 TON DO
BEGIN
Z:=0;
FOR I:=1 TO M DO
IF PA[l,J].S=1 THEN
Z:=1;
IFZ=1 THEN
K:=K-1;
END;
SURVIVE:=K;
END;

{ STORE THE TRANSITIONAL FRACTIONS }

PROCEDURE STORE(FILNAME:STRING);

BEGIN
ASSIGN(DATAM,FILNAME);
REWRITE(DATAM);
WRITE(DATAM,RATESH,RATESV):;
CLOSE(DATAM);

END;

{ DERIVE THE TRANSITIONAL FRACTIONS FOR MAX DESIGN }

PROCEDURE DERIVE_MAX(STAT:INTEGER);
BEGIN
CLRSCR;
FOR COUNT:=1 TO STAT DO
BEGIN
GOTOXY(10,10);
WRITELN(COUNT);
INITIALIZE;
INDEXI:=0;
INDEXJ:=1;
SPLAST:=N;
REPEAT
RUNMAX;
SP:=SURVIVE;
IF SP = SPLAST THEN
BEGIN
INC(INDEXI);
INC(RATESH[INDEXI,INDEXJ]);
END;
IF SP < SPLAST THEN
BEGIN
INC(INDEXJ);
INC(RATESV[INDEXI,INDEXJ]);
END;
INJECTONE;
SPLAST:=SP;
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UNTIL SP=0;
END;
END;

{ DERIVE THE TRANSITIONAL FRACTIONS FOR THE MIN DESIGN }

PROCEDURE DERIVE_MIN(STAT:INTEGER);
BEGIN
CLRSCR;
FOR COUNT:=1 TO STAT DO
BEGIN
GOTOXY(10,10);
WRITELN(COUNT);
INITIALIZE;
INDEXI:=0;
INDEXJ:=1;
SPLAST:=N;
REPEAT
RUNMIN;
SP:=SURVIVE;
IF SP = SPLAST THEN
BEGIN
INC(INDEXI);
INC(RATESH[INDEXI,INDEXJ]);
END;
IF SP < SPLAST THEN
BEGIN
INC(INDEXJ);
INC(RATESV[INDEXI,INDEXJ]);
END;
INJECTONE;
SPLAST:=SP;
UNTIL SP=0;
END;
END;

BEGIN {--MAIN--}
M:=8;
N:=8;
INIT;
DERIVE_MAX(1000);
STORE('C:\WINWORD\THESIS\PRGS\MAALG.RAT");
INIT;
DERIVE_MIN(1000);
STORE('C:\WINWORD\THESIS\PRGS\MIALG.RAT?");
READLN;
END.

A.2.2 GUPTA's transitional fractions

PROGRAM GUPTAPIPELINES;
{ THIS PROGRAM DERIVES THE TRANSITIONAL FRACTIONS FOR GUPTA DESIGN }
{ FOR THE CASE OF 8X8 MULTIPIPELINE }

USES GRAPH,CRT,;

CONST MMAX=10;
NMAX=10;

TYPE NODE=RECORD {PE DESCRIPTION}
S:INTEGER;
X,Y:INTEGER;
END;
MATRIX=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF INTEGER;
VECTOR=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF REAL;

VAR M,N:INTEGER;
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XPA,PA:ARRAY[1..MMAX,1..NMAX] OF NODE;
1,J:INTEGER;

SP,COUNT,PROB:INTEGER;
SURVIVE:INTEGER,;

DATAF:TEXT;

SUM:INTEGER;

DATAM:FILE OF MATRIX;
CODE,RATESH,RATESV:MATRIX;
INDEXI,INDEXJ,SPLAST:INTEGER,;

{ INITILAIZE TRANSITIONAL FRACTIONS }

PROCEDURE INIT;
VAR ILJINTEGER;
BEGIN
FOR 1:=0 TO N*(M-1) DO
FOR J:=0 TO N+1 DO
BEGIN
RATESH]I,J]:=0;
RATESVII,J]:=0;
CODE]1,J]:=0;
END;
FOR J:=1 TO N+1 DO
FOR I:=1 TO 1+(M-1)*(J-1) DO
CODE[1,J]:=1;
CODE[N*(M-1),N+1]:=0;
END;

{INJECT ONE FAULTY PE }

PROCEDURE INJECTONE;
BEGIN

PA:=XPA;

REPEAT
:=RANDOM(M)+1;
J:=RANDOM(N)+1;

UNTIL (PA[I,J].S <> 1);

PA[l,J].S:=1;
XPA:=PA;
END;

{ CONNECT THE PE'S }

PROCEDURE CONNECT;
VAR XN,YN,XPN:INTEGER;
BEGIN
SURVIVE:=0;
FOR J:=1 TON DO
BEGIN
1:=1;
XN:=PA[l,J].X;
YN:=PA[l,J].Y;
WHILE (XN>0) AND (YN>0) AND (XN<M) AND (YN <=N) DO
BEGIN
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;
END;
IF XN =M THEN
BEGIN
INC(SURVIVE);
1:=1;
XN:=PA[l,J].X;
YN:=PA[l,J].Y;

WHILE (XN<M) DO
BEGIN
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;
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{ INITIALIZE THE MULTIPIPELINE }

PROCEDURE INITIALIZE;
BEGIN
FOR I:=1 TO M DO
FOR J:=1 TON DO
BEGIN
PA[l,J].S:=0;
PA[lI,J].X:=0;
PA[l,J].Y:=0;
END;
XPA:=PA;
END;

{ RUN THE SIMULATION ALGORITHM }

PROCEDURE RUN;
VAR I,J,K,L,Z:INTEGER;
ENDIT:BOOLEAN;
BEGIN
FOR J:=1 TON DO
BEGIN
IF PA[1,J].5=0 THEN
BEGIN
PA[1,J].S:=2;
K:=J;
ENDIT:=FALSE;
FOR I:=1 TO M-1 DO
BEGIN
IF NOT ENDIT THEN
BEGIN
L:=1;
WHILE (PA[l+1,L].S <> 0) AND (L<N) DO
INC(L);
IF PA[I+1,L].S =0 THEN
BEGIN
PA[I,K].X:=I+1;
PA[I,K].Y:=L;
PA[I+1,L].S:=2;

IF L>K THEN
BEGIN
FOR Z:=K+1 TO L-1 DO
PA[l,Z].S:=3;
END;
IF L<K THEN
BEGIN
FOR Z:=L+1 TO K-1 DO
PA[I+1,7].S:=3;
END;
K:=L;
END
ELSE ENDIT:=TRUE;

{ STORE THE TRANSITIONAL FRACTIONS }

PROCEDURE STORE(FILNAME:STRING);
BEGIN
ASSIGN(DATAM,FILNAME);
REWRITE(DATAM);
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WRITE(DATAM,RATESH,RATESV):;
CLOSE(DATAM);
END;

{ DERIVE THE TRANSITIONAL FRACTIONS }

PROCEDURE DERIVE(STAT:INTEGER);
BEGIN
CLRSCR;
FOR COUNT:=1 TO STAT DO
BEGIN
GOTOXY(10,10);
WRITELN(COUNT);
INITIALIZE;
INDEXI:=0;
INDEXJ:=1;
SPLAST:=N;
REPEAT
RUN;
CONNECT;
SP:=SURVIVE;
IF SP = SPLAST THEN
BEGIN
INC(INDEXI);
INC(RATESH[INDEXI,INDEXJ]);
END;
IF SP < SPLAST THEN
BEGIN
INC(INDEXJ);
INC(RATESV[INDEXI,INDEXJ]);
END;
INJECTONE;
SPLAST:=SP;
UNTIL SP=0;
END;
END;
BEGIN {--MAIN--}
M:=8;
N:=8;
INIT;
DERIVE(1000);
STORE('C:\WINWORD\THESIS\PRGS\GUALG.RAT");
READLN;
END.

A.2.3 HJM's transitional fractions

PROGRAM HIM_PIPELINES;
{ THIS PROGRAM DERIVES THE TRANSITIONAL FRACTIONS FOR HJM DESIGN }
{ FOR THE CASE OF 8X8 MULTIPIPELINE }

USES NODES,GRAPH,CRT;

CONST MMAX=10;
NMAX=10;

TYPE MATRIX=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF INTEGER;
VECTOR=ARRAY[0..NMAX*(MMAX-1)+1,0..NMAX+1] OF REAL;

VAR M,N:INTEGER;
XPA,PA:ARRAY[1..MMAX,1..NMAX] OF NODE;
1,J:INTEGER;

SP,COUNT,PROB:INTEGER;
DATAM:FILE OF MATRIX;
CODE,RATESH,RATESV:MATRIX;
INDEXI,INDEXJ,SPLAST:INTEGER,;
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{ INITIALIZE THE TRANSITIONAL FRACTIONS }
PROCEDURE INIT;
VAR ILJINTEGER;
BEGIN
FOR 1:=0 TO N*(M-1) DO
FOR J:=0 TO N+1 DO
BEGIN
RATESH]I,J]:=0;
RATESVII,J]:=0;
CODE]1,J]:=0;
END;
FOR J:=1 TO N+1 DO
FOR I:=1 TO 1+(M-1)*(J-1) DO
CODE[1,J]:=1;
CODE[N*(M-1),N+1]:=0;
END;

{INJECT ONE FAULTY PE IN THE MULTIPIPELINE }

PROCEDURE INJECTONE;
BEGIN
PA:=XPA;
REPEAT
I:=RANDOM(M)+1;
J:=RANDOM(N)+1;
UNTIL (PA[I,J].GETSTATE <> 1);
PA[l,J].SETSTATE(1);
XPA[I,J].SETSTATE(1);
END;

{ INITIALIZE THE MULTIPIPELINE }

PROCEDURE INITIALIZE;
BEGIN
FOR I:=1 TO M DO
FOR J:=1 TON DO
BEGIN
PA[ILJ].INIT;
PA[I,J].SETXY(l,J);
END;
XPA:=PA;
END;

{ GET CONTROL SIGNALS STATUS }

PROCEDURE GETVARS(I,JINTEGER;VAR 11,12,13,14:INTEGER);
VAR K:INTEGER;
TEMP:INTEGER;
BEGIN
IF I=1 THEN
BEGIN
11:=1;
12:=0;
13:=PA[I+1,J].GET_LACK_D;
14:=PA[I+1,(J MOD N)+1].GET_LACK_U;
END
ELSE IF I=M THEN
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP < 0 THEN TEMP:=TEMP+N;
11:=PA[I-1,TEMP+1].GET_RREQ_D;
12:=PA[I-1,((J+K-1)MOD N)+1].GET_RREQ_U;
13:=0;

BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
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TEMP:=(J-1+K-1) MOD N;
IF TEMP < 0 THEN TEMP:=TEMP +N;
11:=PA[I-1,TEMP+1].GET_RREQ_D;
12:=PA[I-1,((J+K-1) MOD N)+1].GET_RREQ_U;
13:=PA[I+1, TEMP+1].GET_LACK_D;
14:=PA[I+1,((J+K-1) MOD N)+1].GET_LACK_U;
END;
END;

{ SET CONTROL SIGNALS STATUS }

PROCEDURE SETVARS(I,J:INTEGER;01,02,03,04:INTEGER);
VAR K:INTEGER;
TEMP:INTEGER;
BEGIN
IF I=1 THEN
BEGIN
PA[I+1,J].SET_LREQ_D(O3);
PA[I+1,(J MOD N)+1].SET_LREQ_U(04);
END
ELSE IF I=M THEN
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP<0 THEN TEMP:=TEMP+N;
PA[I-1,TEMP+1].SET_RACK_D(O1);
PA[I-1,((J+K-1)MOD N)+1].SET_RACK_U(02);
END
ELSE
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP<0 THEN TEMP:=TEMP+N;
PA[I-1,TEMP+1].SET_RACK_D(O1);
PA[I-1,((J+K-1) MOD N)+1].SET_RACK_U(02);
PA[l+1,TEMP+1].SET_LREQ_D(O3);
PA[I+1,((J+K-1) MOD N)+1].SET_LREQ_U(O4);
END;
END;

{ RUN THE SIMULATION ALGORITHM }

PROCEDURE RUN;

VAR EXIT:BOOLEAN;
11,12,13,14:INTEGER;
01,02,03,04:INTEGER;

BEGIN

REPEAT

EXIT:=TRUE;

FOR I:=1 TO M DO

FOR J:=1 TO N DO

BEGIN

GETVARS(1,J,11,12,13,14);
PA[IJ].SET_LREQ_U(I1);
PA[I,J].SET_LREQ_D(I2):
PA[1,J].SET_RACK_U(I3);
PA[1,J].SET_RACK_D(14);
PA[l,J].UPDATE;
01:=PA[I,J].GET_LACK_U;
02:=PA[I,J].GET_LACK_D;
03:=PA[I,J.GET_RREQ_U;
04:=PA[1,J.GET_RREQ_D:;
SETVARS(1,J,01,02,03,04);
EXIT:=EXIT AND PA[l,J.NOCHANGE;

END;

UNTIL EXIT;
END;

{ DETERMINE THE NUMBER OF SURVIVED PIPELINES }
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FUNCTION SURVIVE:INTEGER,;
VAR SUM:INTEGER;
BEGIN
1:=1;
SUM:=0;
FOR J:=1 TO N DO
SUM:=SUM+(1-PA[l,J].GET_LACK_U);
SURVIVE:=SUM;
END;

{ STORE THE TRANSITIONAL FRACTIONS }

PROCEDURE STORE(FILNAME:STRING);

BEGIN
ASSIGN(DATAM,FILNAME);
REWRITE(DATAM);
WRITE(DATAM,RATESH,RATESV):;
CLOSE(DATAM);

END;

{ DERIVE THE TRANSITIONAL FRACTIONS }

PROCEDURE DERIVE(STAT:INTEGER);
BEGIN
CLRSCR;
FOR COUNT:=1 TO STAT DO
BEGIN
GOTOXY(10,10);
WRITELN(COUNT);
INITIALIZE;
INDEXI:=0;
INDEXJ:=1;
SPLAST:=N;
REPEAT
RUN;
SP:=SURVIVE;
IF SP = SPLAST THEN
BEGIN
INC(INDEXI);
INC(RATESH[INDEXI,INDEXJ]);
END;
IF SP < SPLAST THEN
BEGIN
INC(INDEXJ);
INC(RATESV[INDEXI,INDEXJ]);
END;
INJECTONE;
SPLAST:=SP;
UNTIL SP=0;
END;
END;

BEGIN { -- MAIN --}
M:=8;
N:=8;
INIT;
DERIVE(1000);
STORE('C:\WINWORD\THESIS\PRGS\MYALG.RAT");
READLN;

END.

A.3 Reliability and MTTF Calculations

This program calculates the reliabilities of the four designs and plot them on one graph.
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PROGRAM RELIABILITY_PLOT,;
{ THIS PROGRAM PLOTS THE RELIABILITIES OF THE FOUR DESIGNS: }
{MAX, MIN, GUPTA , AND HIM }

USES GRAPH,CRT,PLOT;

CONST DELTA =0.1;
MAXTIME = 25 ;
LEMBDA =0.1,;

VAR M,N:INTEGER;
1,J:INTEGER;
DATAM:FILE OF MATRIX;

{ INITIALIZE THE GRAPH UNIT }

PROCEDURE GRINIT;
VAR GD,GM:INTEGER;
BEGIN
GD:=DETECT;
INITGRAPH(GD,GM,");
END;

BEGIN
GRINIT;
M:=8;
N:=8;
SETFACT(2);
FREQUENCY:=5;

{ RELIABILITY OF MAX DESIGN }

INIT(M,N);
FOR I:=1 TO N DO

COLOR[I]:=CYAN;
LOAD('C:\PROGRAM\TP\THESIS\MAALG.RAT?;
ITERATE(M,N,LEMBDA,DELTA MAXTIME);
PRINT(N,10,17);

{ RELIABILITY OF MIN DESIGN }

INIT(M,N);
FOR I:=1 TO N DO

COLOR[I]:==MAGENTA;
LOAD('C:\PROGRAM\TP\THESIS\MIALG.RAT');
ITERATE(M,N,LEMBDA,DELTA, MAXTIME);
PRINT(N,10,24);

{ RELIABILITY OF GUPTA DESIGN }

INIT(M,N);
FOR I:=1 TO N DO

COLOR[I]:=RED;
LOAD('C:\PROGRAM\TP\THESIS\GUALG.RAT?;
ITERATE(M,N,LEMBDA,DELTA, MAXTIME);
PRINT(N,10,1);

{ RELIABILITY OF HIJM DESIGN }

INIT(M,N);
FOR I:=1 TO N DO

COLOR[I]:=YELLOW;
LOAD('C:\PROGRAM\TP\THESIS\MYALG.RAT';
ITERATE(M,N,LEMBDA,DELTA MAXTIME);
PRINT(N,10,9);

READLN;
END.
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A.4 Yield and reconfiguration examples

These programs calculates the yield and also display reconfiguration examples for GUPTA
and HJM designs.

A.4.1 GUPTA's Design

PROGRAM GUPTAPIPELINES;

{ THIS PROGRAM SHOWS EXAMPLES OF RECONFIGURATIONS AS WELL AS PERFORMING
SIMULATIONS TO GET THE YIELD - EXPECTED NUMBER OF SURVIVED PIPELINES
NORMALIZED TO THE TOTAL NUMBER OF PIPELINES }

USES GRAPH,CRT,;

CONST MMAX=9;
NMAX=20;

TYPE NODE=RECORD
S:INTEGER;
X,Y:INTEGER;
END;

VAR M,N:INTEGER;
PA:ARRAY[1..MMAX,1..NMAX] OF NODE;
1,J,H:IINTEGER;

PSTR,XSTR:STRING,;
SP,COUNT,PROB:INTEGER;
SURVIVE:INTEGER,;
DATAF:TEXT;
SUM:INTEGER;
MAVG:REAL;
CHOICE:INTEGER;

{ DRAW A PE }

PROCEDURE BOX(A,B:INTEGER;COLOR:INTEGER);
BEGIN
SETFILLSTYLE(1,COLOR);
BAR(40*A+10,40*B+10,40%A+25,40*B+25);
SETCOLOR(RED):;
RECTANGLE(40*A+10,40*B+10,40*A+25,40*B+25);
END;

[ DRAW ARROW }

PROCEDURE ARROW(X,Y:INTEGER);
BEGIN

LINE(X,Y,X-20,Y);

LINE(X,Y,X-4,Y-4);

LINE(X,Y, X-4,Y+4);
END;

{ INITIALIZE THE GRAPH UNIT }

PROCEDURE GRINIT;
VAR GD,GM:INTEGER;
BEGIN
GD:=DETECT;
INITGRAPH(GD,GM,");
END;

{ DRAW THE MULTIPIPELINE }
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PROCEDURE DRAW;

VAR ILJINTEGER;

BEGIN
SETCOLOR(MAGENTA);
RECTANGLE(0,0,639,479);
FOR I:=1 TO M DO
FOR J:=1 TO N DO

IF PA[1,J].5=0 THEN
BOX(I,J, YELLOW)

ELSE
BOX(1,J,BLUE);

END;

{ REDRAW THE MULTIPIPELINE AFTER CHANGES }

PROCEDURE REDRAW;

VAR ILJINTEGER;

BEGIN
SETCOLOR(MAGENTA);
RECTANGLE(0,0,639,479);
FOR I:=1 TO M DO
FOR J:=1 TO N DO

IF PA[1,J].5=0 THEN
BOX(I,J,YELLOW)
ELSE IF PA[,J].S=1 THEN
BOX(1,J,BLUE)
ELSE IF PA[I,J].S=2 THEN
BOX(1,J,YELLOW)

ELSE IF PA[I,J].S=3 THEN
BOX(1,J,RED);

END;

{ DRAW AN INPUT LINE }

PROCEDURE INPUT(A:INTEGER);
CONST ONCOLOR=RED;
BEGIN
SETCOLOR(ONCOLOR);
LINE(40*1+10+7,40*A+10+7,40*1+10+7-30,40*A+10+7);
END;

{ DRAW AN OUTPUT LINE }

PROCEDURE OUTPUT(A:INTEGER);
CONST ONCOLOR=RED;
BEGIN
SETCOLOR(ONCOLOR);
LINE(40*M+10+7,40*A+10+7,40*M+10+7+30,40*A+10+7);
END;

{ CONNECT TWO PE'S }

PROCEDURE CON2(A,B,C,D:INTEGER);

CONST ONCOLOR=RED;

BEGIN
SETCOLOR(ONCOLORY);
LINE(40*A+10+7,40*B+10+7,40*A+10+7+15,40*B+10+7);
LINE(40*C+10+7-15,40*D+10+7,40*C+10+7,40*D+10+7);
LINE(40*A+10+7+15,40*B+10+7,40*C+10+7-15,40*D+10+7);

END;
{ CONNECT FOR SIMULATION PURPOSES ONLY }

PROCEDURE CONNECT_SIM;
CONST ONCOLOR=RED;
VAR XN,YN,XPN:INTEGER;
BEGIN

SURVIVE:=0;

FOR J:=1 TO N DO
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BEGIN
1:=1;
XN:=PA[l,J].X;
YN:=PA[l,J].Y;
WHILE (XN>0) AND (YN>0) AND (XN<M) AND (YN <=N) DO
BEGIN
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;
END;
IF XN =M THEN
BEGIN
INC(SURVIVE);
1:=1;
XN:=PA[l,J].X;
YN:=PA[,J].Y;

WHILE (XN<M) DO

BEGIN
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;

END;

END;
END;
END;

{ CONNECT FOR SHOWING EXAMPLES ONLY }

PROCEDURE CONNECT_SHOW;
CONST ONCOLOR=RED;
VAR XN,YN,XPN:INTEGER;
BEGIN
SURVIVE:=0;
REDRAW;
SETCOLOR(ONCOLOR);
FOR J:=1 TON DO
BEGIN
1:=1;
XN:=PA[l,J].X;
YN:=PA[l,J].Y;
WHILE (XN>0) AND (YN>0) AND (XN<M) AND (YN <=N) DO
BEGIN
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;
END;
IF XN =M THEN
BEGIN
INC(SURVIVE);
INPUT(J);
1:=1;
XN:=PA[l,J].X;
YN:=PA[l,J].Y;
CON2(1,J,XN,YN);

WHILE (XN<M) DO

BEGIN
CON2(XN,YN,PA[XN,YN].X,PA[XN,YN].Y);
XPN:=XN;
XN:=PA[XN,YN].X;
YN:=PA[XPN,YNL.Y;

END;

OUTPUT(YN);

END;
END;
END;

{ INITIALIZE THE MULTIPIPELINE }
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PROCEDURE INITIALIZE;
BEGIN
FOR I:=1 TO M DO
FOR J:=1 TO N DO
BEGIN
PA[1,J].S:=0;
PA[1,J].X:=0;
PA[1,J].Y:=0;
END;
END;

{INJECT THE FAULTS IN THE MULTIPIPELINE }

PROCEDURE INJECT(P:REAL);
VAR T,X:INTEGER;
BEGIN
T:=ROUND(M*N*P);
FOR X:=1 TO T DO
BEGIN
REPEAT
l:=RANDOM(M)+1;
J:=RANDOM(N)+1;
UNTIL PA[L,JLS <> 1;
PA[I,J].S:=1;
END;
END;

{ RUN THE RECONFIGURATION }

PROCEDURE RUN;
VAR I,J,K,L,Z:INTEGER;
ENDIT:BOOLEAN;
BEGIN
FOR J:=1 TON DO
BEGIN
IF PA[1,J].5=0 THEN
BEGIN
PA[1,J].S:=2;
K:=J;
ENDIT:=FALSE;
FOR I:=1 TO M-1 DO
BEGIN
IF NOT ENDIT THEN
BEGIN
L:=1;
WHILE (PA[l+1,L].S <> 0) AND (L<N) DO
INC(L);
IF PA[I+1,L].S =0 THEN
BEGIN
PA[I,K].X:=I+1;
PA[I,K].Y:=L;
PA[I+1,L].S:=2;

IF L>K THEN
BEGIN
FOR Z:=K+1 TO L-1 DO
PA[l,Z].S:=3;
END;
IF L<K THEN
BEGIN
FOR Z:=L+1 TO K-1 DO
PA[I+1,7].S:=3;
END;
K:=L;
END
ELSE ENDIT:=TRUE;
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END;
{ PERFORM THE SIMULATION }

PROCEDURE SIMULATE;

BEGIN
M:=8;
CLRSCR;
GOTOXY(1,1);
WRITELN('PERFORMING SIMULATIONS FOR GUPTA"S DESIGN?);
WRITELN('PROBABILITY OF FAILURE OF A PE (PF) VARIES FROM 0 TO 1%;
WRITELN('N VARIES FROM 4 TO 20, M=8');
ASSIGN(DATAF,'C:\WINWORD\THESIS\PRGS\YIELD-G.DAT');
REWRITE(DATAF);
APPEND(DATAF);
WRITELN(DATAF);

FOR H:=0 TO 20 DO
BEGIN

WRITE(DATAF,H/20:7:5,CHR(9));
GOTOXY(1,5);
WRITELN('PF=",H/20:5:2);
FOR N:=4 TO 20 DO
BEGIN
GOTOXY(16,5);
WRITE(' ;
GOTOXY(16,5);
WRITE('N=",N);
MAVG:=0;
FOR COUNT:=0 TO 99 DO
BEGIN
INITIALIZE;
INJECT(H/20);
RUN;
CONNECT_SIM;
SP:=SURVIVE;
MAVG:=(MAVG*COUNT+SP)/(COUNT+1);
END;
WRITE(DATAF,MAVG:7:4,CHR(9));
END;
WRITELN(DATAF);
END;
CLOSE(DATAF);
END;

{ SHOW EXAMPLES OF THE RECONFIGURATION }

PROCEDURE SHOW;

VAR CH:CHAR;
PF:REAL;

BEGIN
WRITE(ENTER PROBABILITY OF FAILURE OF A PE: ");
READLN(PF);
GRINIT;

M:=8;

N:=8;

REPEAT
CLEARDEVICE;
INITIALIZE;
INJECT(PF);
DRAW;

RUN;

CONNECT_SHOW;

REDRAW,;

SP:=SURVIVE;

OUTTEXTXY(40,435,'<ESC>-EXIT <ENTER>-CONTINUE);
CH:=READKEY;

UNTIL ORD(CH)=27;

END;
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BEGIN {--MAIN--}
WRITELN;
WRITELN('1-PERFORM SIMULATIONS.");
WRITELN('2-SHOW RECONFIGURATION EXAMPLES.");
WRITELN;
WRITE('SELECT ONE OF THE FOLLOWING:');
READLN(CHOICE);
IF CHOICE=1 THEN SIMULATE ELSE SHOW;

END.

A.4.2 HIM's Design

PROGRAM HIM_PIPELINES;

{ THIS PROGRAM SHOWS EXAMPLES OF RECONFIGURATIONS AS WELL AS PERFORMING
SIMULATIONS TO GET THE YIELD - EXPECTED NUMBER OF SURVIVED PIPELINES
NORMALIZED TO THE TOTAL NUMBER OF PIPELINES, AND STUDIES THE EFFECT
OF M AND N ON THE YIELD }

USES NODES,GRAPH,CRT;

CONST MMAX=9;
NMAX=20;

VAR M,N,HINTEGER;
PA:ARRAY[1..MMAX,1..NMAX] OF NODE;
1,J:INTEGER;

XSTR:STRING;
SP,COUNT,PROB:INTEGER;
MAVG:REAL;

DATAF:TEXT;

TSUM:REAL,
CHOICE:INTEGER;

{ DRAW A PE }

PROCEDURE BOX(A,B:INTEGER;COLOR:INTEGER);

VAR K:INTEGER;

BEGIN
SETFILLSTYLE(1,COLOR);
IF ODD(A) THEN K:=1 ELSE K:=0;
BAR(40%A+10,40*B+10+20*K,40*A+25,40*B+25+20*K);
SETCOLOR(RED):;
RECTANGLE(40*A+10,40*B+10+20*K,40*A+25,40*B+25+20*K):

END;

{ DRAW AN ARROW }

PROCEDURE ARROW(X,Y:INTEGER);
BEGIN

LINE(X,Y,X-20,Y);

LINE(X,Y, X-4,Y-4);

LINE(X,Y, X-4,Y+4);
END;

{ DRAW AN INPUT LINE }

PROCEDURE INPUT(B:INTEGER;COLOR:INTEGER);
VAR K,AIINTEGER,;
BEGIN
SETCOLOR(COLORY);
A:=1;
IF ODD(A) THEN K:=1 ELSE K:=0;
ARROW(40*A+10,40*B+20*K+17);
END;

{ DRAW AN OUTPUT LINE }
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PROCEDURE OUTPUT(B:INTEGER;COLOR:INTEGER);
VAR K,AIINTEGER,;
BEGIN
SETCOLOR(COLORY);
A:=M;
IF ODD(A) THEN K:=1 ELSE K:=0;
ARROW(40*A+10+15+20,40*B+20*K+17);
END;

{ DRAW THE NET TO UP }

PROCEDURE NET_U(A,B:INTEGER;COLOR:INTEGER);
VAR K:INTEGER,;
BEGIN
SETCOLOR(COLORY);
IF ODD(A) THEN K:=1 ELSE K:=0;
LINE(40*A+10+7,40*B+10+20*K+7,40*A+10+7+40-7,40*B+10+20*K+7-20+7);
END;

{ DRAW THE NET TO DOWN }

PROCEDURE NET_D(A,B:INTEGER;COLOR:INTEGER);
VAR K:INTEGER,;
BEGIN
SETCOLOR(COLORY);
IF ODD(A) THEN K:=1 ELSE K:=0;
LINE(40*A+10+7,40*B+10+20*K+7,40*A+10+7+40-7,40*B+10+20*K+7+20-7);
END;

{ DRAW THE NET UP WITH A SPECIAL CARE }

PROCEDURE NET_US(A,B:INTEGER;COLOR:INTEGER);
VAR K:INTEGER;
AP,BP,KP:INTEGER;
BEGIN
SETCOLOR(COLORY);
IF ODD(A) THEN K:=1 ELSE K:=0;
LINE(40*A+10+7,40*B+10+20*K+7,40*A+10+7+20-7,40*B+10+20*K+7-3+7);
AP:=A+1;
BP:=1;
IF ODD(AP) THEN KP:=1 ELSE KP:=0;
LINE(40*AP+10+7,40*BP+10+20*KP+7,40*AP+10+7-20+7,40*BP+10+20*KP+7+3-7);
LINE(40*A+10+7+20-7,40*B+10+20*K+7-3+7,
40*AP+10+7-20+7,40*BP+10+20*KP+7+3-7);
END;

{ DRAW THE NET DOWN WITH A SPECIAL CARE }

PROCEDURE NET_DS(A,B:INTEGER;COLOR:INTEGER);
VAR K:INTEGER;
AP,BP,KP:INTEGER;
BEGIN
SETCOLOR(COLORY);
IF ODD(A) THEN K:=1 ELSE K:=0;
LINE(40*A+10+7,40*B+10+20*K+7,40*A+10+7+20-7,40*B+10+20*K+7+3-7);
AP:=A+1;
BP:=N;
IF ODD(AP) THEN KP:=1 ELSE KP:=0;
LINE(40*AP+10+7,40*BP+10+20*KP+7,40*AP+10+7-20+7,40*BP+10+20*KP+7-3+7);
LINE(40*A+10+7+20-7,40*B+10+20*K+7+3-7,
40*AP+10+7-20+7,40*BP+10+20*KP+7-3+7);
END;

{ INITIALIZE THE GRAPH UNIT }
PROCEDURE GRINIT;
VAR GD,GM:INTEGER;

BEGIN
GD:=DETECT;
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INITGRAPH(GD,GM,");
END;

{ DRAW THE MULTIPIPELINE }

PROCEDURE DRAW;
VAR ILJINTEGER;
BEGIN
SETCOLOR(MAGENTA);
RECTANGLE(0,0,639,479);
FOR I:=1 TO M DO
FOR J:=1 TO N DO
BEGIN
IF PA[I,J].GETSTATE=0 THEN
BOX(I,J, YELLOW)
ELSE
BOX(1,J,BLUE);
END;
FOR I:=1 TO M-1 DO
FOR J:=1 TO N DO
BEGIN
IF NOT(NOT(ODD(l)) AND (J=1)) THEN
NET_U(1,J, WHITE);
IF NOT(ODD(I) AND (J=N)) THEN
NET_D(1,J, WHITE);
IF ODD(l) AND (J=N) THEN
NET_US(1,J, GREEN);
IF NOT(ODD(I)) AND (J=1) THEN
NET_DS(1,J, GREEN);
END;
FOR J:=1 TO N DO
BEGIN
INPUT(J,CYAN);
OUTPUT(J,CYAN);
END;
END;

{ CONNECT THE PE'S }

PROCEDURE CONNECT(!,J:INTEGER;CODE:INTEGER);
CONST ONCOLOR=RED;
OFFCOLOR=BLACK;
BEGIN
IF I<>M THEN
BEGIN
IF CODE=0 THEN
BEGIN
IF NOT(NOT(ODD(l)) AND (J=1)) THEN
NET_U(l,J,ONCOLOR);
IF ODD(l) AND (J=N) THEN
NET_US(1,J,OFFCOLOR);
IF NOT(ODD(I) AND (J=N)) THEN
NET_D(l,J,OFFCOLORY);
IF NOT(ODD(l)) AND (J=1) THEN
NET_DS(1,J,0ONCOLOR);
END;
IF CODE=1 THEN
BEGIN
IF NOT(NOT(ODD(l)) AND (J=1)) THEN
NET_U(l,J,OFFCOLORY);
IF ODD(l) AND (J=N) THEN
NET_US(1,J,ONCOLOR);
IF NOT(ODD(I) AND (J=N)) THEN
NET_D(l,J,ONCOLOR);
IF NOT(ODD(l)) AND (J=1) THEN
NET_DS(1,J,OFFCOLOR);
END;
IF CODE=2 THEN
BEGIN
IF NOT(NOT(ODD(l)) AND (J=1)) THEN
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NET_U(,J,OFFCOLOR);
IF ODD(l) AND (J=N) THEN
NET_US(1,J,OFFCOLORY;
IF NOT(ODD(I) AND (J=N)) THEN
NET_D(I,J,OFFCOLOR);
IF NOT(ODD(l)) AND (J=1) THEN
NET_DS(1,J,OFFCOLORY;
END;
END;
IF CODE <> 2 THEN
BEGIN
IF I=1 THEN
INPUT(J,ONCOLORY;
IF I=M THEN
OUTPUT(J,ONCOLORY;
END
ELSE
BEGIN
IF I=1 THEN
INPUT(J,OFFCOLORY;
IF I=M THEN
OUTPUT(J,OFFCOLORY;
END;
END;

{ INITIALIZE THE MULTIPIPELINE }

PROCEDURE INITIALIZE;
BEGIN

FOR I:=1 TO M DO
FOR J:=1 TO N DO
BEGIN
PA[ILJLINIT;
PA[1,J].SETXY(1,J);
END;
END;

{ GET CONTROL SIGNALS STATUS }

PROCEDURE GETVARS(I,JINTEGER;VAR 11,12,13,14:INTEGER);
VAR K:INTEGER;
TEMP:INTEGER;
BEGIN
IF I=1 THEN
BEGIN
11:=1;
12:=0;
13:=PA[I+1,J].GET_LACK_D;
14:=PA[I+1,(J MOD N)+1].GET_LACK_U;
END
ELSE IF I=M THEN
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP < 0 THEN TEMP:=TEMP+N;
11:=PA[I-1,TEMP+1].GET_RREQ_D;
12:=PA[I-1,((J+K-1)MOD N)+1].GET_RREQ_U;
13:=0;

BEGIN
IF ODD(I) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP < 0 THEN TEMP:=TEMP +N;
11:=PA[I-1,TEMP+1].GET_RREQ_D;
12:=PA[I-1,((J+K-1) MOD N)+1].GET_RREQ_U;
13:=PA[I+1, TEMP+1].GET_LACK_D;
14:=PA[I+1,((J+K-1) MOD N)+1].GET_LACK_U;
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END;
END;

{ SET CONTROL SIGNALS STATUS }

PROCEDURE SETVARS(I,J:INTEGER;01,02,03,04:INTEGER);
VAR K:INTEGER;
TEMP:INTEGER;
BEGIN
IF I=1 THEN
BEGIN
PA[I+1,J].SET_LREQ_D(O3);
PA[I+1,(J MOD N)+1].SET_LREQ_U(04);
END
ELSE IF I=M THEN
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP<0 THEN TEMP:=TEMP+N;
PA[I-1,TEMP+1].SET_RACK_D(O1);
PA[I-1,((3+K-1)MOD N)+1].SET_RACK_U(02);
END
ELSE
BEGIN
IF ODD(l) THEN K:=1 ELSE K:=0;
TEMP:=(J-1+K-1) MOD N;
IF TEMP<0 THEN TEMP:=TEMP+N;
PA[I-1,TEMP+1].SET_RACK_D(O1);
PA[I-1,((J+K-1) MOD N)+1].SET_RACK_U(02);
PA[l+1,TEMP+1].SET_LREQ_D(O3);
PA[I+1,((J+K-1) MOD N)+1].SET_LREQ_U(O4);
END;
END;

{ REDRAW THE MULTIPIPELINE AFTER CHANGES }

PROCEDURE REDRAW;
BEGIN
FOR I:=1 TO M DO
FOR J:=1 TO N DO
CONNECT(1,J,PA[l,J]. GETCODE):;
END;

{INJECT FAULTS IN THE MULTIPIPELINE }

PROCEDURE INJECT(P:REAL);
VAR T,X:INTEGER,;

BEGIN
TSUM:=TSUM+M*N*P;
T:=TRUNC(TSUM);
TSUM:=TSUM-T;

FOR X:=1 TO T DO
BEGIN
REPEAT
l:=RANDOM(M)+1;
J:=RANDOM(N)+1;
UNTIL PA[I,J].GETSTATE=0;
PA[l,J].SETSTATE(L);
END;
END;

{ RUN THE RECONFIGURAT FOR SIMULATION PURPOSES ONLY }

PROCEDURE RUN_SIM;
VAR EXIT:BOOLEAN;
11,12,13,14:INTEGER;
01,02,03,04:INTEGER,;
BEGIN
REPEAT
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EXIT:=TRUE;
FOR I:=1 TO M DO
FOR J:=1 TO N DO
BEGIN
GETVARS(1,J,11,12,13,14);
PA[I,J].SET_LREQ_U(I1);
PA[I,J].SET_LREQ_D(I2):
PA[1,J].SET_RACK_U(13);
PA[1,J].SET_RACK_D(14);
PA[l,J].UPDATE;
01:=PA[I,J].GET_LACK_U;
02:=PA[I,J].GET_LACK_D;
03:=PA[I,J.GET_RREQ_U;
04:=PA[1,J.GET_RREQ_D:;
SETVARS(1,J,01,02,03,04);
EXIT:=EXIT AND PA[l,J.NOCHANGE;
END;
UNTIL EXIT;
END;

{ RUN THE RECONFIGURATION FOR SHOWING EXAMPLES ONLY }

PROCEDURE RUN_SHOW;
VAR EXIT:BOOLEAN;
11,12,13,14:INTEGER;
01,02,03,04:INTEGER;
BEGIN
REPEAT
EXIT:=TRUE;
FOR I:=1 TO M DO
FOR J:=1 TO N DO
BEGIN
GETVARS(1,J,11,12,13,14);
PA[I,J].SET_LREQ_U(I1);
PA[I,J].SET_LREQ_D(I2):
PA[1,J].SET_RACK_U(I3);
PA[1,J].SET_RACK_D(14);
PA[l,J].UPDATE;
01:=PA[I,J].GET_LACK_U;
02:=PA[I,J].GET_LACK_D;
03:=PA[I,J.GET_RREQ_U;
04:=PA[1,J.GET_RREQ_D:;
SETVARS(1,J,01,02,03,04);
EXIT:=EXIT AND PA[l,J.NOCHANGE;
END;
REDRAW;
UNTIL EXIT;
END;

{ DETERMINE THE NUMBER OF SURVIVED PIPELINES }

FUNCTION SURVIVE:INTEGER,;
VAR SUM:INTEGER;
BEGIN
1:=1;
SUM:=0;
FOR J:=1 TO N DO
SUM:=SUM+(1-PA[l,J].GET_LACK_U);
SURVIVE:=SUM;
END;

{ PERFORM THE SIMULATIONS - YIELD }

PROCEDURE SIMULATE;
BEGIN
M:=8;
CLRSCR;
GOTOXY(1,1);
WRITELN('PERFORMING SIMULATIONS FOR HIM"S DESIGN - YIELD");
WRITELN('PROBABILITY OF FAILURE OF A PE (PF) VARIES FROM 0 TO 1%;
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WRITELN(N VARIES FROM 4 TO 20, M=8 );
ASSIGN(DATAF, C:\WINWORD\THESIS\PRGS\YIELD-H.DAT?);
REWRITE(DATAF);

APPEND(DATAF);

WRITELN(DATAF);

FOR H:=0 TO 20 DO
BEGIN

WRITE(DATAF,H/20:7:5,CHR(9));
GOTOXY(1,5);
WRITELN('PF=",H/20:5:2);
FOR N:=4 TO 20 DO
BEGIN
GOTOXY(16,5);
WRITE(' ;
GOTOXY(16,5);
WRITE('N=",N);
MAVG:=0;
FOR COUNT:=0 TO 99 DO
BEGIN
INITIALIZE;
INJECT(H/20);
RUN_SIM;
SP:=SURVIVE;
MAVG:=(MAVG*COUNT+SP)/(COUNT+1);
END;
WRITE(DATAF,MAVG:7:4,CHR(9));
END;
WRITELN(DATAF);
END;
CLOSE(DATAF);
END;

{ PERFORM THE SIMULATIONS - N VERSES M }

PROCEDURE N_VS_M:;
BEGIN
CLRSCR;
GOTOXY(1,1);
WRITELN(PERFORMING SIMULATIONS FOR HJM"S DESIGN - N VERSES M);
WRITELN(PROBABILITY OF FAILURE OF A PE (PF) IS VARIES FROM 0.1 TO 0.3Y);
WRITELN(N VARIES FROM 1 TO 20, M VARIES FROM 3 TO 5');
ASSIGN(DATAF, C:\WINWORD\THESIS\PRGS\N-VS-M.DAT');
REWRITE(DATAF);
APPEND(DATAF);
WRITELN(DATAF);
FOR H:=1 TO 3 DO
BEGIN
GOTOXY(L,5);
WRITELN('PF=',H/10:5:2);

FOR M:=3 TO 5 DO

BEGIN
GOTOXY(16,5);
WRITE( Y
GOTOXY(16,5);
WRITE(M=",M);

FOR N:=1 TO 20 DO
BEGIN
GOTOXY(32,5);
WRITE(' ;
GOTOXY(32,5);
WRITE('N=",N);
TSUM:=0;
MAVG:=0;
FOR COUNT:=0 TO 499 DO
BEGIN
INITIALIZE;
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INJECT(H/10);
RUN_SIM;
SP:=SURVIVE;
STR(SP,XSTR);
MAVG:=(MAVG*COUNT+SP)/(COUNT+1);
END;
WRITELN(DATAF,MAVG/N:7:4,CHR(9));
END;
WRITELN(DATAF);
END;
END;
CLOSE(DATAF);
END;

{ SHOW EXAMPLES }

PROCEDURE SHOW;

VAR CH:CHAR;
PF:REAL;

BEGIN
WRITE(ENTER PROBABILITY OF FAILURE OF A PE: ");
READLN(PF);
GRINIT;

M:=8;

N:=8;

REPEAT
CLEARDEVICE;
INITIALIZE;
INJECT(PF);
DRAW;
RUN_SHOW;
REDRAW;
SP:=SURVIVE;
OUTTEXTXY(40,435,'<ESC>-EXIT <ENTER>-CONTINUE);
CH:=READKEY;

UNTIL ORD(CH)=27;

END;

BEGIN {--MAIN--}

WRITELN;

WRITELN('1-PERFORM SIMULATIONS - YIELD');

WRITELN('2-PERFORM SIMULATIONS - N VERSES M');

WRITELN('3-SHOW RECONFIGURATION EXAMPLES.);

WRITELN;

WRITE('SELECT ONE OF THE FOLLOWING:');

READLN(CHOICE);

IF CHOICE=1 THEN SIMULATE ELSE IF CHOICE=2 THEN N_VS_M ELSE SHOW;
END.
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Appendix B

Transitional Fractions

In this appendixthe tramsitional fractions forthe 3«3 multipipeline will bederived.
The X3 multipipeline isshown below in FigureB.1. The Markovmodel for the
multipipeline is shown in Figure 4.4. Thaim in this appendix is to determine the

transitional fractions FV1 ... FV9.

Figure B.1 The %3 multipipeline.

The following theorem below is useful:
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Theorem B.1
In an NxM multipipeline that hasone fault per column, the number of survived

pipelines is N-1.

Proof:

Considertwo consecutive stagasandj of the multipipeline.Each PE in stage sends
output to two PEs in stageind each PE in stageeceives input frontwo PEs in stage
If a PE in stage is faulty, therthere existwo PEs in stage with the condition thagach
has input fronone healthy PE irstage i.Similarly if a PE instagej is faulty, then there
existtwo PEs in stage with the condition that each sendgtput to onehealthy PE in
stagej. Assumethe faulty PEs in stages andj are PE(x,i) and PE(y,jespectively. The
reconfiguration below for each of the cases gives N-1 paths from stage i to stage j:
case l: x=y.
PE(r,i) connected to PE(r,j) for alldifferent fromx.
case 2: x>y.
PE(r,i) is connected to PE(r+1,j) for gk r <x.
PE(r,i) is connected to PE(r,j) for alkr <y andx <r < N-1.
case 3: x<Yy.
PE(r,i) is connected to PE(r,j) for alk r <y.
PE(r,i) is connected to PE(r+1,j) for alkd <xandy <r < N-1.
PE(N-1,i) is connected to PE(O,)).
The above three cases are shown in Figu#e Inthis Figure,the solid linesare the
active lines after the reconfiguration. It is clear that in each case, te&igts a

reconfiguration solution to have-1 pathsfrom stagei to stagg. Similarly, thereexists
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N-1 pathsfrom stagei-1 to stage and fromstagej to stagg+1. Therefore, therexists

N-1 paths from stage O to stage M-1. In conclusion, we have N-1 pipelines.

s _ o , JEEN , ' '
, , /U WS WA W
i
' ' ' v ' '

CASE 1 CASE 2 CASE 3

Figure B.2 Reconfiguration in the three different cases of fault locations.

Determining FV1.:

FV1 represents the fraction of R&lures which lead to loss of a pipeliaéter the
occurrence of thdirst fault. Obviously, in thiscase,all PE failureslead to loss of a

pipeline. Hence, FV1=1.

Determining FV2:

FV2 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is inthe ensemblg(2,1). Assumethe existing fault in this ensemble is in
columni of themultipipeline.The occurrence of the secofadlt in columni will lead to

loss of a pipeline. Onthe otherhand, the occurrence of the secdadlt in a column
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different fromi will notlead to loss of a pipeline. Assunw@thout loss ofgenerality that
the faulty PE is and the second faulty PEXs

If x O {b,c}, a pipeline will be lost.

If x O {d,e,f,g,h,i}, no pipeline will be lost.
Therefore, FV2 = (2/8) = 1/4.

Determining FVa3:

FV3 is the the fraction of PHailures which lead to loss of a pipeline while the
multipipeline is inthe ensemblg(1,2). Since we havdost two pipelines with only two
faults, the two faults must be in tekame column othe multipipeline. Assuméhe existing
faults in thisstate are irtolumni of themultipipeline.The occurrence of the thifdult in
columni will lead to loss of a pipeline. On tli¢herhand, the occurrence of the thfedilt
in a column different from will not lead to loss of a pipeline. Assumeithout loss of
generality, that the faulty PEs ax@andb. Assume also the third faulty PE ke

If x O {c}, a pipeline will be lost.
If x O {d,e,f,g,h,i}, no pipeline will be lost.

Hence, FV3 =1/7

Determining FV4:

FV4 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is in the ensemble (2,2). Since we have lost one pipelinénvattaults, then
the two faults are indifferent columns othe multipipeline. Assumehe existing faults in

this ensemblare incolumnsi andj of themultipipeline. The occurrence of the thifdult
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in columni or j will lead to loss of a pipeline. Ghe otherhand, according to Theorem
B.1, the occurrence of the thifdult in the fault-freecolumnwill not lead to loss of a
pipeline . Assumeyithout loss ofgenerality, thathe faulty PEs area andd. Assume also
the third faulty PE ix.

If x O {b,c,e,f}, a pipeline will be lost.

If x O {g,h,i}, no pipeline will be lost..
Hence, FV4 = 4/7.

Determining FV5:

FV5 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is inthe ensemblg1,3). Since we havéost two pipelines withthreefaults
and using TheorenB.1, thereexists two faults in one column of the multipipeline.
Consider the following cases:

casel: Thetwo failed PEslie in the first column. Due tdhe regularity of the
structure of themultipipeline, anytwo PEs of thefirst column can be
considered as thaulty PEs without loss ofjlenerality. Assuméhe faulty PEs
area andb. Then we have:

If the third faulty PE is d, 1 out of 6 transitions lead to loss of a pipeline.

If the third faulty PE is e, 2 out of 6 transitions lead to loss of a pipeline.

If the third faulty PE is f, 2 out of 6 transitions lead to loss of a pipeline.

If the third faulty PE is g, 1 out of 6 transitions lead to loss of a pipeline.

If the third faulty PE is h, 1 out of 6 transitions lead to loss of a pipeline.

If the third faulty PE is i, 1 out of 6 transitions lead to loss of a pipeline.

Therefore, in the first case, 8 out of 36 transitions lead to loss of a pipeline.
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case2 Thetwo failed PEslie in the seconctolumn. Due tathe regularity of
the structure of thenultipipeline, anytwo PEs of the secondolumn can be
considered as thaulty PEs without loss ofenerality. Assuméhe faulty PEs
ared ande. Then we have:
If the third faulty PE is b, 1 out of 6 transitions lead to loss of a pipeline.
If the third faulty PE is h, 1 out of 6 transitions lead to loss of a pipeline.
If the third faulty PE is a, 2 out of 6 transitions lead to loss of a pipeline.
If the third faulty PE is c, 2 out of 6 transitions lead to loss of a pipeline.
If the third faulty PE is g, 2 out of 6 transitions lead to loss of a pipeline.
If the third faulty PE is i, 2 out of 6 transitions lead to loss of a pipeline.
Therefore, in the second case, 40t of 36 transitions lead to loss of a
pipeline.
case3: Thetwo failed PEslie in the thirdcolumn. This case isimilar to case 1.
Hence, 8 out of 36 transitions lead to loss of a pipeline.

From the above three cases, 26 out of 108 transitions lead to loss of a pipeline.

Hence, FV5 = 26/108 = 13/54.

Determining FV6:

FV6 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is inthe ensemblg2,3). Sincethe multipipeline have 3 faults ithe ensemble
(2,3), the occurrence of the fourfidwlt implies thatthere existdwo faults inone of the
columns ofthe multipipeline. This implies thahe maximumnumber of survived pipelines
is less than 2Hence, theall the transitionsrom the ensemble(2,3) lead to loss of a

pipeline. Therefore, FV6=1.
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Determining FV7:

FV7 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is inthe ensemblg1,4). Since we havéost two pipelines withfour faults,
there exists two faults in one column of the multipipeline. Consider the following cases:

casel: Thetwo failed PEslie in the first column. Due tdhe regularity of the
structure of themultipipeline, anytwo PEs of thefirst column can be
considered as thaulty PEs without loss ofenerality. Assuméhe faulty PEs
area andb. Then we have:

If the third and fourtifaulty PEs areany of the following pairs{[e,qg], [e.i],
[f,h], [f.i], [g.i], [h,i]}, then 3 out of 5 transitions lead to loss of a pipeline.

If the third and fourtHfaulty PEs areany of the following pairs{[d,e], [d,f],
[e,h], [f,g], [9,h]}, then 2 out of 5 transitions lead to loss of a pipeline.

If the third and fourtHaulty PEs areany ofthe following pairs{[d,g], [d,h],
[d,i]}, then 1 out of 5 transitions lead to loss of a pipeline.

Therefore, in thdirst case, 31 (86+2x5+1x3) out of 70 (%6+5x5+5x3)
transitions lead to loss of a pipeline.

case? Thetwo failed PEslie in the seconctolumn. Due tathe regularity of
the structure of thenultipipeline, anytwo PEs of the secondolumn can be
considered as thaulty PEs without loss ofenerality. Assuméhe faulty PEs
ared ande. Then we have:

If the third and fourtifaulty PEs areany of the following pairs{[a,i], [a,d],

[c,i], [c,g]}, then 3 out of 5 transitions lead to loss of a pipeline.
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If the third and fourtHfaulty PEs areany ofthe following pairs{[a,b], [b,c],
[g,h], [h,i], [a,h], [c,h], [g,b], [i,b]}, then Dut of 5transitions lead to loss of a
pipeline.

If the third and fourth faulty PEs are b and h, theyuflof 5Stransitions lead to
loss of a pipeline.

Therefore, in the second case, 28482x8+1x1) out of 65 (%4+5x8+5x1)
transitions lead to loss of a pipeline.

case3: Thetwo failed PEslie in the thirdcolumn. This case isimilar to case

1. Hence, 31 out of 70 transitions lead to loss of a pipeline.

From the above three cases, 91 out of 205 transitions lead to loss of a pipeline.

Hence, FV7 = 91/205.

Determining FV8:

FV8 is the fraction of PHailures which lead to loss of a pipelinghile the

multipipeline is inthe ensemblg(1,5). Since we havédost two pipelines withfive faults,

there existéwo columns each witltwo faults inthe multipipeline. Considethe following

cases:

casel: Each of thdirst two columns ofthe multipipeline containstwo failed
PEs. Due to theegularity ofthe structure of thenultipipeline, anytwo PEs of
thefirst column can be considered tag faulty PEs without loss ofjenerality.
Assumethe faulty PEs in thefirst columnare a andb. Then we have the
following fault patterns:

If the third, fourth, andifth faulty PEs areany ofthe following sets{[d,e,q],

[d,e,i], [d,f,h], [d,f,i]}, then 3 out of 4 transitions lead to loss of a pipeline.
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If the third, fourth, andifth faulty PEs areany ofthe following sets {[de,h],
[d,f,0]}, then 2 out of 4 transitions lead to loss of a pipeline.
Therefore, in thdirst case, 16 (84+2x2) out of 24 (44+4x2) transitions lead
to loss of a pipeline.
case2: Each of the lastwo columns ofthe multipipeline containstwo failed
PEs.This case isimilar tocase 1. Therefore 1@ut of 24transitions lead to
loss of a pipeline.
case3: Each of thdfirst and third columns ofhe multipipeline contains two
failed PEs. Due to theegularity ofthe structure of thenultipipeline, any two
PEs of thefirst column can be considered the faulty PEs without loss of
generality. Assuméhe faulty PEs in thefirst columnare a andb. Then we
have the following fault patterns:
If the third, fourth, andifth faulty PEs areany ofthe following sets {[g,h,e],
[9,h,f], [g,i,d], [9,i,], [h,i,d], [h,i,e]}, then 3out of 4transitions lead to loss of
a pipeline.
If the third, fourth, andifth faulty PEs are g, h, andréspectively, then 2 out
of 4 transitions lead to loss of a pipeline.
Therefore, in the third case, 20x@32x1) out of 28 (46+4x1) transitions
lead to loss of a pipeline.

From the above three cases, 52 out of 76 transitions lead to loss of a pipeline.

Hence, FV8 = 52/76 = 13/19.
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Determining FVO:

FV9 is the fraction of PHailures which lead to loss of a pipelinghile the
multipipeline is inthe ensemblg1,6). Sincethe multipipeline have 6 faults ithe ensemble
(1,6), the occurrence of tlseventh faulimplies thatthere exists threfaults inone of the
columns ofthe multipipeline. This implies thathe number of survived pipelines mero.

Hence, all transitions from ensemble (1,6) leads to loss of a pipeline. Therefore, FV9=1.
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