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Reliable decentralised proportional–integral–derivative controller synthesis methods are presented for closed-
loop stabilisation of linear time-invariant plants with two multi-input, multi-output (MIMO) channels subject to
time delays. The finite-dimensional part of plants in the classes considered here are either stable or they have at
most two poles in the unstable region. Closed-loop stability is maintained with only one of the two controllers
when the other controller is turned off and taken out of service.
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1. Introduction

In this work, a stabilising controller synthesis method
is developed for linear time-invariant (LTI), multi-
input multi-output (MIMO) systems that are subject to
time delays. The controller structure is a two-channel
block-decentralised controller configuration, where
each of the two channels may have multiple inputs
and outputs. The challenging objectives of decentra-
lised closed-loop stabilisation, reliable stability in the
case of complete failure of either one of the two
channels and integral action are all achieved with
simple low-order controllers.

In addition to closed-loop stability, an important
performance objective is asymptotic tracking of step-
input references with zero steady-state error, which is
achieved by designing controllers with integral action.
The simplest integral action controllers are in
the proportional–integral–derivative (PID) form
(Goodwin, Graebe, and Salgado 2001), which are
first order if the derivative term is zero (PI) or second
order if the derivative term is non-zero. Although PID
controllers are widely used in many control applica-
tions and preferred due to easy implementation and
tuning, their simplicity also presents a major restric-
tion that they can control only certain classes of
unstable plants since the controller order cannot
exceed two. For the delay-free case, and even without
the decentralisation constraint, a complete character-
isation of unstable plants that can be stabilised using
PID controllers is not available. It was shown in
Gündes� and Özgüler (2007) that strong stabilisability
of the plant is a necessary but not sufficient condition.
Several unstable delay-free plant classes that admit

PID controllers are identified in Gündes� and Özgüler
(2007), where the zeros in the unstable region are
essentially restricted to be either all larger or all
smaller than the positive real poles of the plant; a dual
classification allows the zeros to be anywhere in the
complex plane while restricting the poles that are in the
unstable region. Stability and feedback stabilisation of
delay systems have been extensively investigated and
many delay-independent and delay-dependent stability
results are available (Niculescu 2001; Gu, Kharitonov,
and Chen 2003). Most of the tuning and internal
model control techniques used in process control
systems apply to delay systems (Skogestad 2003),
which inherit the results on robust control of
infinite-dimensional systems (Foias, Özbay, and
Tannenbaum 1996). The more specialised problem of
existence of stabilising PID controllers for delay
systems is not easy to solve (see e.g. Silva, Datta,
and Bhattacharyya (2005)). For stable plants and for
unstable plants with up to two poles in the unstable
region, a non-decentralised PID controller synthesis
method was developed in Gündes� , Özbay, and
Özgüler (2007) for delays that affect the inputs and
outputs (I/O delays). Although these earlier synthesis
approaches used in Gündes� et al. (2007) form the basic
motivation for some of the results presented in this
article, the method developed here allows arbitrary
delay terms to affect different entries of the plant’s
transfer-matrix for the stable case, and also deals with
a more challenging problem due to the decentralised
controller configuration and reliability considerations.

A control system’s reliability against complete
failure of certain channels is a practical engineering
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consideration and an important design requirement.
Reliable stabilisation guarantees closed-loop stability
even when some control channels are affected by
failures and feedback is not available from those
sensors. It is assumed that a controller that fails is set
equal to zero; i.e. the failure is recognised and the failed
controller is taken out of service (with its states reset to
zero). If the controller design incorporates integral
action as in the case of PID controllers, then
asymptotic tracking of constant reference inputs with
zero steady-state error is achieved in those channels
that remain operational, but closed-loop stability is
still maintained. In the decentralised setting, PID
controller designs were considered for two-by-two
delay-free plants in Aström, Johansson, and Wang
(2002) and Tavakoli, Griffin, and Fleming (2006),
where the channels have single-input single-output
(SISO). The reliable control problem of maintaining
closed-loop stability when one controller fails was
studied in Gündes� and Özgüler (2002) for delay-free
plants which had unstable poles only at the origin; the
controllers achieved integral action but their order was
generally high and not restricted as in PID. A more
recent work presented reliable decentralised PID
controllers in Gündes� , Mete, and Palazoğlu (2009)
for several more general unstable delay-free plant
classes that allow PID stabilisation. The work sum-
marised thus far did not incorporate delay terms in
reliable decentralised stabilisation and the results
obtained were for finite-dimensional systems.

The goal in this article is to establish existence of
decentralised reliably stabilising PID controllers and
to present controller designs for MIMO systems
subject to time delays. Since the main objective is to
characterise controllers that reliably stabilise the
system, we do not consider performance issues but
allow freedom in the design parameters, which can be
used towards satisfaction of performance criteria. We
propose systematic decentralised PID synthesis pro-
cedures for the following classes of delayed MIMO
systems:

(1) For plants whose finite dimensional part is
stable, completely different delay terms may
affect each of the MIMO transfer-matrix
entries; i.e. e�hijs multiplies the ij-th entry of
the finite-dimensional part of the plant’s
transfer-matrix. We propose decentralised
PID designs that are reliable against the failure
of any one of the two MIMO controllers. The
main result in this section (Proposition 1) is
motivated by similar methods as in Gündes�
et al. (2007), which presented a non-decentra-
lised synthesis without reliability considerations
and only applied to I/O delays. In contrast, the

result in this work is applicable to the most
general delay considerations possible for this
plant class and has a completely different
decentralised feedback configuration.

(2) For plants whose finite-dimensional part is
unstable, arbitrary delay terms enter the
numerator matrix in the coprime factorisation
of the plant’s transfer-matrix. In the case of
unstable plants, due to the order constraints of
(second order) PID controllers, we allow up to
two poles in the unstable region to be present in
any of the transfer-matrix entries, whereas the
transmission-zeros may be anywhere, and there
may be any number of poles in the stable
region. The main results in this section
(Propositions 2 and 3) show that decentralised
PID controllers exist for these classes of MIMO
plants with delays, and develop systematic
synthesis procedures that explicitly characterise
reliable designs with wide range of parameter
choices, where constant reference inputs are
tracked asymptotically only in the channel that
remains operational but closed-loop stability is
always maintained.

We apply the systematic methods of Propositions
1–3 to systems containing delays to illustrate the
reliable decentralised PID controller synthesis.
In Example 1, we achieve a fully reliable design
where stability is maintained when either one of the
channels fails. In Example 2, due to the instabilities
that cannot be compensated in the case of failures, it is
shown that a decentralised design is achieved but is not
reliable against failure of either channel. In Example 3,
a partially reliable design is achieved where the main
channel remains active and closed-loop stability is
maintained if the secondary channel fails. In each
example, simulation results are shown for the chosen
controller parameters. The freedom in these para-
meters is specified in the synthesis methods. These
parameters can be varied to achieve other performance
specifications and to achieve desired responses. Our
objective is to establish closed-loop stabilisability with
decentralised structure and PID order constraints and
hence, we do not explore fully the issues of how the
choice of free parameters affect the system’s
performance.

We use the following standard notation:

Notation: Let C, R and Rþ, denote complex, real and
positive real numbers. The extended closed right-half
complex plane is U ¼ {s2C jRe(s)� 0}[ {1}; Rp

denotes real proper rational functions (of s); S�Rp is
the stable subset with no poles in U;M(S) is the set of
matrices with entries in S; Ir is the r�r identity matrix.
The space H1 is the set of all bounded analytic
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functions in Cþ. For h2H1, the norm is defined as

khk1¼ ess sups2Cþjh(s)j, where ess sup denotes the

essential supremum. A matrix-valued function H is in

M(H1) if all its entries are in H1; in this case

kHk1 ¼ ess sup
s2Cþ

�ðHðsÞÞ, where �� denotes the max-

imum singular value. From the induced L2 gain point

of view, a system whose transfer-matrix is H is stable

iff H2M(H1). A square transfer-matrix H2M(H1)

is unimodular iff H�12M(H1). We drop (s) in

transfer-matrices such as G(s). Since all norms of

interest here are H1 norms, we drop the norm

subscript, i.e. k � k1�k � k. We use coprime factorisa-

tions over S; i.e. for G 2 Rp
r�r, G¼Y�1X denotes a left-

coprime factorisation (LCF), where X, Y2Sr�r,

detY(1) 6¼ 0.

2. Problem description

Consider the two-channel decentralised feedback

system SysðbG,CDÞ with two MIMO channels in

Figure 1, where CD ¼ diag½C1,C2� 2 Rp
r�r is the

decentralised controller and bG is the delayed plant

transfer-function partitioned as

bG ¼ bG11
bG12bG21
bG22

" #
: ð1Þ

It is assumed that the feedback system is well posed

and that the delay-free part of the plant and the

controller have no unstable hidden-modes. The finite-

dimensional part of the plant is G2Rp
r�r, where each

channel has as many inputs as outputs, i.e.

Gjj2Rp
rj�rj , Gij2Rp

ri�rj , i, j2 {1, 2}, and rankG¼ r.

Let G¼Y�1X be an LCF of G. Then we assume thatbG can be written as

bG ¼ Y�1bX, where bXij ¼ e�hijsXij, i, j ¼ 1, . . . , r: ð2Þ

Therefore, the ij-th entry bXij of bX may contain all

different delay terms and that the delays are known. If

the finite-dimensional part G of the delayed plant bG is

stable, then (2) implies that the entries of bG may

contain all different arbitrary known delay terms.

If the finite-dimensional part G of the delayed plant bG
is not stable, then we assume that the delayed plant

transfer-function bG has restrictions on the number
of poles in the unstable region.

For the system SysðbG,CDÞ, let w :¼
�w1
w2

�
,

v :¼
� v1
v2

�
, y :¼

� y1
y2

�
, u :¼

� u1
u2

�
denote the input and

output vectors. The closed-loop transfer-matrix Hcl

from (w, v) to (u, y) is

Hcl ¼
CDðIþ bGCDÞ

�1
�CDðIþ bGCDÞ

�1bGbGCDðIþ bGCDÞ
�1

ðIþ bGCDÞ
�1bG

" #
: ð3Þ

Definition 1: (a) The feedback system SysðbG,CDÞ is
stable if the closed-loop map Hcl is in M(H1).
(b) The controller CD stabilises bG if CD, is proper
and SysðbG,CDÞ is stable. (c) The controller CD that
stabilises bG is partially reliable if the system
SysðbG, 0,C2Þ is also stable, i.e. the transfer-function
from (w2, v) to ( y, u2) is inM(H1). (d) The controller
CD that stabilises bG is fully reliable if the system
SysðbG, 0,C2Þ is also stable (i.e. the transfer-function
from (w2, v) to ( y, u2) is in M(H1)), and the system
SysðbG,C1, 0 Þ is also stable (i.e. the transfer-function
from (w1, v) to ( y, u1) is inM(H1)).

For existence of partially reliable controllers,
the finite-dimensional part G of the plant bG must
satisfy additional requirements (Gündes� et al. 2009).
In addition to the decentralised structure of the
controller CD, we restrict our attention to proper
PID controllers of the following form (Goodwin
et al. 2001): For j¼ 1, 2,

Cj ¼ KPj þ
1

s
KIj þ

s

�j sþ 1
KDj, ð4Þ

where KPj, KIj, KDj2R
rj�rj are the proportional, the

integral, and the derivative constants, respectively, and
�j2Rþ, where Cj has integral-action when KIj 6¼ 0. We
include subsets of PID controllers obtained by setting
one or two of these three constants to zero; e.g. (4) is a
PI controller when KDj¼ 0.

3. Reliable controller synthesis

Partially or fully reliable decentralised PID controllers
can be designed for stable MIMO plants with delays.
In Section 3.1 we explore decentralised design for
stable MIMO plants, where arbitrary delay terms may
affect different entries of the plant’s transfer-matrix. In
Section 3.2, we consider decentralised PID controller
synthesis for MIMO plants with one or two poles in
the region of instability U, including the origin. Some
restrictions on the number of U-poles are necessary
since for plants with an arbitrary number of U-poles,
existence of PID controllers is not guaranteed even
when the plant is delay-free. Many plants that have
more than two poles in the unstable region cannot be

w2

−
CDe2
C2

u2
v2 G y2

w1
− e1

C1

u1
v1 y1

Figure 1. The two-channel decentralised system SysðbG,CÞ
with delays.

518 A.N. Gündes� and H. Özbay
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stabilised using PID controllers (e.g. 1
ðs�pÞ3

or 1
ðs�pÞðs2þp2Þ

for p� 0).

3.1 Stable plants with time delays

If the finite-dimensional part G of the delayed plant bG
is stable, then it is possible to design decentralised PID
controllers that are partially or fully reliable. The delay
terms enter the entries of the plant’s transfer-matrix
arbitrarily. Note that bGð0Þ ¼ Gð0Þ. In Proposition 1, we
first design the controller C2 to stabilise bG22 and then
we design C1 to stabilise the system bW defined bybW :¼ bG11 � bG12C2ðIþ bG22C2Þ

�1bG21, ð5Þ

which contains C2. When G is stable, bW is also stable.
This method provides a partially reliable decentralised
design. If C1 is designed to stabilise bW and bG11

simultaneously, then the decentralised controller
becomes fully reliable.

The synthesis in Proposition 1 is based on similar
methods as in the non-decentralised design ideas in
(Gündes� et al. 2007), where the delays were restricted
to have diagonal I/O structures. Here, Proposition 1
applies to a more general case with arbitrary delay
terms; furthermore, it provides a systematic synthesis
approach of decentralised reliable controller design for
plants containing arbitrary delay terms.

Proposition 1: Let bG be as in (1), where G2Sr�r is
stable, and let rankbGð0Þ ¼ rankGð0Þ ¼ r. For Cj to be a
PD controller, let Mj¼ 0. For Cj to be a PID controller
(with non-zero integral constant), let Mj¼ I.

(a) Partially reliable design: Let rankbG22ð0Þ ¼
rankG22ð0Þ ¼ r2. Choose any bKP2 , bKD22

R
r2�r2 , �240. Define

bC2 :¼ bKP2 þ
s

�2sþ 1
bKD2 þ

1

s
G22ð0Þ

�1M2: ð6Þ

Then for any �22Rþ satisfying (7), the PID
controller C2 in (7) stabilises bG22:

C2 ¼ �2bC2, 05�25
1

s
sbG22ðsÞbC2 �M2

h i���� �����1: ð7Þ
Let bW be defined by (5). Choose any bKP1,bKD12R

r1�r1 , �140. Define

bC1 :¼ bKP1 þ
s

�1sþ 1
bKD1 þ

1

s
bWð0Þ�1M1: ð8Þ

Then for any �12Rþ satisfying (9), the PID
controller C1 in (9) stabilises bW:

C1 ¼ �1bC1, 05�1 5
1

s
s bWðsÞbC1 �M1

h i���� �����1: ð9Þ

With C2 and C1 as in (7) and (9), respectively,
CD¼ diag [C1,C2] is a partially reliable decen-
tralised PID controller for the delayed plant bG.
For bKDj ¼ 0, the controllers (7) and (9) become
P controllers (if Mj¼ 0) or PI controllers
(if Mj¼ I ); for bKPj ¼ 0, (7) and (9) become
D controllers (if Mj¼ 0) or ID controllers
(if Mj¼ I ).

(b) Fully reliable design: Let rankbGjjð0Þ ¼
rankGjjð0Þ ¼ rj, j2 {1, 2}. Let bWð0ÞG11ð0Þ

�1

have all positive real eigenvalues. Let C2 be as
in (7). Let C1 be as in (9) with �1 satisfying

05�1 5 min

�
1

s
s bWðsÞbC1 �M1

h i����1,���� 1

s
sbG11ðsÞbC1 � G11ð0Þ bWð0Þ�1 M1

h i�����1�: ð10Þ
Then CD¼ diag[C1,C2] is a fully reliable decen-
tralised PID controller for the delayed plant bG.

Remark: The control procedure in Proposition 1
motivates the ‘optimal’ design of some of the free
parameters, such as bKP2 and bKP1. However, how the
choice of the free design parameters would eventually
affect the system’s performance cannot be generalised.
The focus here is on reliable stability and a full
performance analysis is not considered. Consider the
optimal PI controller bC2ðsÞ ¼ bKP2 þ

1
s G22ð0Þ

�1.
The proportional gain bKP2 will be optimised so that
the allowable interval for �2 is the largest, i.e. so
that the bound for �2 in (7) is maximised:

1

s
s bG22ðsÞ bKP2 þ

1

s
G22ð0Þ

�1

� �
� I

	 
���� �����1: ð11Þ

Re-arranging terms in (11), defining bKP2 ¼

G22ð0Þ
�1eKP2, and F22ðsÞ :¼ bG22ðsÞG22ð0Þ

�1, we are
interested in finding the optimal eKP2 such that (12) is
minimised:

1

s
½F22ðsÞ � I � þ F22ðsÞ eKP2

���� ����: ð12Þ

This problem was studied and a formula for the
optimal solution was obtained for a class of SISO
functions F22(s) in Özbay and Gündes� (2007).
Similarly, a PI controller C1 can be derived by
optimising bKP1 to maximise the bound for �1 in (9).
With bWðsÞ bWð0Þ�1 replacing F22, the optimisation
problem is again in the form (12).

In Example 1, we apply the synthesis procedure of
Proposition 1 to design a partially and fully reliable
decentralised control system that manipulates the flow
rate of two drugs (dopamine and sodium nitroprus-
side) to regulate two outputs (main arterial pressure

International Journal of Control 519
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and cardiac output) for critical care patients.
A simplified model is used representing the input–
output behaviour for a particular patient (Bequette
2003). The free parameters bKPj and bKDj are chosen
completely arbitrarily and adjusted based on the
simulations to obtain faster step responses with
acceptable damping. A generalisation of how these
arbitrary selections would affect the system’s response
is not possible but can be studied on a case-
by-case basis.

Example 1: Let bG ¼ h �6
0:67sþ1 e

�0:75s 3
2sþ1 e

�s

12
0:67sþ1 e

�0:75s 5
5sþ1 e

�s

i
2H1

2�2.

Following Proposition 1, partially and fully reliable
decentralised PID controllers can be designed with
non-zero KIj since rankG(0)¼ 2, Gjj (0) 6¼ 0, bWð0Þ�
G11ð0Þ

�1
¼ 2:24 0 when we have a non-zero integral

action in C2. First design C2: Choose bKP2 ¼ 1,bKD2 ¼ 0:2, �2¼ 0.1. With �2¼ 0.6 satisfying (7), the
PID controller in (7) is C2¼ 0.6þ 0.12/sþ 0.12s/
(0.1sþ 1). Now design C1: Choose bKP1 ¼ �0:15,bKD1 ¼ �0:1, �1¼ 0.1. With �1¼ 0.1 satisfying (9), the
PID controller in (9) is C1¼�0.015� 1/(132s)� 0.01s/
(0.1sþ 1). Then CD¼ diag[C1,C2] is a partially reliable
decentralised controller; it is also fully reliable since
�1¼ 0.1 also satisfies (10) with this bKP1. Figure 2(a)
shows the closed-loop step responses for the outputs y1
(dashed), y2 (solid), with unit-step references applied at
both w1, w2. The controller CD¼ diag[C1,C2] is active
with both channels operational, and both achieve
asymptotic tracking with zero steady-state error.
Figure 2b shows the step responses when C1¼ 0, with
only the second channel operational. Since the control-
ler is CD¼ diag[0,C2], the output y1 does not track the
step reference due to lack of integral action in the first
channel. Figure 2(c) shows the step responses when
C2¼ 0, with only the first channel operational. Since the
controller is CD¼ diag[C1, 0], the output y2 does not
track the step reference due to lack of integral action in
the second channel.

3.2 Unstable plants with time delays

Although strong stabilisability is a necessary but
insufficient condition for PID stabilisability, a complete
characterisation of unstable plants that can be stabi-
lised using these simple controllers is not available
even for the delay-free and non-decentralised cases.
Assuming full-feedback structure, several classes of
unstable delay-free plants were identified as PID
stabilisable in Gündes� and Özgüler (2007), where
restrictions were imposed on either the plant’s right-
half-plane transmission-zeros or the plant’s right-half-
plane poles. For the case of plants with I/O delays
under full-feedback, it was shown in Gündes�

et al. (2007) that plants whose finite-dimensional part

has at most two positive real poles (while there is no

restriction on the poles with negative real part) can be

stabilised using non-decentralised PID controllers.

0 5 10 15 20 25 30
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0
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0.4
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Figure 2. Example 1 step-responses with (a) CD¼

diag[C1,C2], (b) CD¼ diag[0,C2], (c) CD¼ diag[C1, 0].
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If the finite-dimensional part G of the delayed plantbG is unstable, then let the finite-dimensional part
GðsÞ 2 Rp

r�r of the plant have full (normal) rank. Let
G have no transmission-zeros at s¼ 0. Without loss
of generality, it can be assumed that G has an LCF as in
(13):

G ¼ Y�1X ¼
Y11 Y12

0 Y22

	 
�1 X11 X12

X21 X22

	 

: ð13Þ

We assume that different delay terms may affect any
arbitrary entry of the numerator factor X of G in (13)
and the delayed plant bG can be written as:

bG ¼ Y�1bX ¼ Y11 Y12

0 Y22

	 
�1 bX11
bX12bX21
bX22

" #
: ð14Þ

Note that I/O delays would be a special case of the
more general delay description in (14). We consider
two cases of delayed plants bG, where the finite-
dimensional part G is unstable with restrictions on
the number of U-poles. In all cases, G may have any
number of poles in the stable region. In the proposed
methods, we first design C2 to stabilise G22 and then C1

to stabilise the system bW defined in (5), which contains
C2. The channels can be re-ordered to exchange
the roles of G11 and G22. In Case 1, bW is unstable;
in Case 2, bW is stable. In Case 1, G has one U-pole
p112Rþ that appears in G22, and has another U-pole
p212Rþ that appears in G11 (and possibly various
other entries) but not in G22 (unless p11¼ p21). In this
case, a partially reliable decentralised design that relies
on closed-loop stability with only C2 active and C1¼ 0
is not possible because of the instability that is not
reflected in G22. In Case 2, G has at most two U-poles
that appear in G22 and these poles may appear in
various other entries of G. Since all instabilities of G
are reflected in G22, a partially reliable decentralised
design with C1¼ 0 can be achieved in this case.

3.2.1 Case 1

In this case for the finite-dimensional part G of bG
in (13), we assume

Y11 ¼
ðs� p11Þ

a1sþ 1
Ir1 , Y22 ¼

ðs� p21Þ

a2sþ 1
Ir2 , Y12 ¼ 0, ð15Þ

where p11, p21� 0 are the non-negative real poles of
G, aj2Rþ, j¼ 1, 2. Let rankXjj ( pj1)¼ rank(s� pj1)�
G(s)js¼pj1¼ rj for j¼ 1, 2. Therefore, all entries of Gjk, j,
k2 {1, 2} have a pole at pj1 . All entries of G have the
same pole if p11¼ p21. For PID controller design with
non-zero integral constant, also assume that G22 has
no transmission zeros at s¼ 0, i.e. rankX22(0)¼
rank(s� p21)G(s)js¼0¼ r2; this assumption is not

necessary for PD controller design. Since each Yjj is

diagonal, the delayed plant bG can be written as

bG ¼ Y�111 0

0 Y�122

" # bX11
bX12bX21
bX22

" #
: ð16Þ

Under certain assumptions on the poles p11, p212Rþ,

there exist decentralised PID controllers for the

delayed plant bG. A systematic decentralised PID

controller synthesis method is developed for this case

in Proposition 2.

Proposition 2: Let bG be as in (16). For j¼ 1, 2,

let Gjj ¼ Y�1jj Xjj2Rp
rj�rj , rankXjj ( pj1)¼ rank(s� pj1)�

Gjj (s)js¼pj1¼ rj, where pj1� 0. Let Gjk ¼ Y�1jj Xjk,

k¼ 1, 2. For Cj to be a PD controller, let Mj¼ 0. For

Cj to be a PID controller (with non-zero integral

constant), let Mj¼ I and let G have no transmission-

zeros at s¼ 0, i.e. rankX(0)¼ rank(YG(s))js¼0¼ r, and

let rank X22(0)¼ rank(s� p21)G22(s)js¼0¼ r2. For the

designs of C1 and C2 choose any bKDj2R
rj�rj , �j40,

j¼ {1, 2}.

Step 1: Design C2: Define

bC2 :¼ X22ð0Þ
�1
þ

s

�2sþ 1
bKD2, ð17Þ

��2 :¼
1

s
ðs� p21Þ bG22ðsÞbC2 � I
h i

: ð18Þ

If 0	 p215k��2k
�1, then for any �22Rþ satisfying

(19), the PD controller Cpd 2 in (19) stabilises bG22:

Cpd 2 ¼ ð�2 þ p21ÞbC2, 05�25 k��2k
�1 � p21: ð19Þ

If bKD2 ¼ 0, (19) is a P controller. With Cpd 2 as in (19),

let Hpd 2 :¼ bG22ðIþ Cpd 2
bG22Þ

�1, where Hpd 2(0)
�1
¼

�2X22(0)
�1. Then for any �22Rþ satisfying (20), the

PID controller C2 in (20) stabilises bG22:

C2 ¼ Cpd 2 þ
�2�2
s

X22ð0Þ
�1M2,

05 �2 5
1

s
½Hpd 2ðsÞHpd 2ð0Þ

�1
� I �

���� �����1: ð20Þ

Step 2: Design C1: Let bW ¼: Y�111
bW11 be defined by (5).

Define

bC1 :¼ bW11ð0Þ
�1
þ

s

�1sþ 1
bKD1, ð21Þ

��1 :¼
1

s
ðs� p11Þ bWðsÞbC1 � I
h i

: ð22Þ

If 0	 p115k��1k
�1, then for any �12Rþ satisfying

(23), let Cpd1 be given by (23):

Cpd1 ¼ ð�1 þ p11ÞbC1, 05�15 k��1k
�1 � p11: ð23Þ
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If bKD1 ¼ 0, (23) is a P controller. With Cpd1 as in (23),

let Hpd1 :¼ bWðIþ Cpd1
bW Þ�1, where Hpd1ð0Þ

�1
¼

�1 bW11ð0Þ
�1. For any �12Rþ satisfying (24), let C1 be

as in (24):

C1 ¼ Cpd1 þ
�1�1
s

bW11ð0Þ
�1M1,

05 �1 5
1

s
½Hpd1ðsÞHpd1ð0Þ

�1
� I �

���� �����1: ð24Þ

With C2, C1 as in (20), (24), CD¼ diag[C1,C2] is a

decentralised PID controller for the delayed plant bG. ForbKDj ¼ 0, (20), (24) are P controllers (if Mj¼ 0) or PI

controllers (if Mj¼ I ); for bKPj ¼ 0, (20), (24) are

D controllers (if Mj¼ 0) or ID controllers (if Mj¼ I ).

In Example 2, we apply the synthesis procedure in

Proposition 2 to design decentralised PID controllers

for an MIMO distillation column with arbitrary delays

in the channels. A full-feedback proportional control

design was considered for this system in Gündes� et al.
(2007) for the special case of h1¼ h4, h2¼ h3 affecting

input channels. Here, we choose bKDj ¼ 0 and design PI

controllers for both channels. The selection of the

parameters bKDj obviously affect the response. Since

these effects are different for each particular case, we

do not fully analyse performance issues but only

establish closed-loop stability.

Example 2: Let bG ¼ h 3:04
s e�h1s �278:2e�h2s

sðsþ6Þðsþ30Þ
0:052
s e�h3s 206:6e�h4s

sðsþ6Þðsþ30Þ

i
, which

can be written in the form of (14):

bG ¼ s
a1sþ1

0

0 s
a1sþ1

" #�1

�

3:04e�h1s

a1sþ 1

�278:2e�h2s

ðsþ 6Þðsþ 30Þða1sþ 1Þ

0:052e�h3s

a1sþ 1

206:6e�h4s

ðsþ 6Þðsþ 30Þða1sþ 1Þ

26664
37775,

a140, Y11¼Y22 and p11¼ p21¼ 0. Let h1¼ h3¼ 0.5,

h2¼ h4¼ 0.6. Choose bKD2 ¼ 0. With bC2 ¼ X22ð0Þ
�1
¼

180=206:6, take �2¼ 0.5 satisfying (19). Then take

�2¼ 0.1 satisfying (20). The PI controller

C2¼�2X22(0)
�1(1þ �2/s)¼ 0.4356þ 0.04356/s stabi-

lises bG22. Now choose bKD1 ¼ 0. With bC1 ¼bW11ð0Þ
�1
¼ 1=3:11, take �1¼ 1.3 satisfying (23). Then

take �1¼ 0.15 satisfying (24). The PI controller

C1 ¼ �1W11ð0Þ
�1
ð1þ �2=sÞ ¼ 0:418þ 0:0627=s stabi-

lises bW. With the decentralised PI controller

CD¼ diag[C1,C2] stabilising bG, Figure 3 shows

the closed-loop step responses for the outputs y1
(dashed), y2 (solid), with unit-step references applied

at both w1, w2.

3.2.2 Case 2

In this case for the finite-dimensional part G of bG,
we assume Y12 to be either diagonal or zero, let
Y11¼ Ir1. Let

d :¼
Y‘
i¼1

ðaisþ 1Þ, n :¼
Y‘
i¼1

ðs� p2iÞ, ð25Þ

Y22 ¼
n
d Ir2 , X22¼Y22G22 and ‘2 {1, 2}, ai2Rþ,

i2 {1, ‘}. Let rankX22( p2i)¼ rank nG(s)js¼p2i¼ rj for
i2 {1, ‘}. Therefore, G has one or two U-poles at

p2i2U, and all U-poles of G appear in G22; they may

also appear in any of the other entries of G. If ‘¼ 1,
then p21� 0; if ‘¼ 2, then the two poles are either real

( p21, p22� 0) or they are a complex–conjugate pair
( p21 ¼ �p222U). For PID controller design with

non-zero integral constant, also assume that G22 has

no transmission zeros at s¼ 0, i.e. rankX22(0)¼
rank nG22(s)js¼0¼ r2; this assumption is not necessary

for PD controller design. Since Y22 is diagonal, and Y12

is diagonal when it is not zero, the delayed plant bG can

be written as

bG ¼ I Y12

0 Y22

	 
�1 bX11
bX12bX21
bX22

" #
: ð26Þ

Under certain assumptions on the U-poles, there exist
decentralised PID controllers for the delayed plant bG.
Furthermore, closed-loop stability can be maintained

with C1¼ 0. A systematic reliable decentralised PID
controller synthesis is developed in Proposition 3,

where, for the controller C2 that stabilises bG22, we
consider real and complex–conjugate pairs of poles as

two separate cases:

Case (a): The two U-poles are real, i.e. p2i2R, p2i� 0,

i¼ 1, 2.
Case (b): The two U-poles are a complex–conjugate
pair, i.e. p21 ¼ �p22, n¼ s2� ( p21þ p22)sþ p21p22¼

s2� 2fsþ g2, f� 0, g40, f5g. In this case,
X22(0)¼ g2G22(0).

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Y

y1
y2

Figure 3. Example 2 step-responses with CD¼ diag[C1,C2].
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Proposition 3: Let bG be as in (26). With n, d as

in (25), G22 ¼ Y�122 X222Rp
r2�r2 , rankX22( p2i)¼

rank nG(s)js¼p2i¼ r2, i2 {1, ‘}, ‘2 {1, 2}. For Cj to be a

PD controller, let Mj¼ 0. For Cj to be a PID controller

(with KI 6¼ 0), let Mj¼ I and let rankX(0)¼

rank(YG(s))js¼0¼ r, rankX22(0)¼ rank nG22(s)js¼0¼ r2.

Step 1: Design C2: If ‘¼ 1, design the PID controller C2

that stabilises bG22 as in (20) of Proposition 2. If ‘¼ 2,

choose any �240. Define

��1 :¼
1

s

n

ð�2sþ 1Þ
bG22ðsÞX22ð0Þ

�1
� I

	 

: ð27Þ

Consider two cases: (a) Let p2i� 0, i2 {1, 2}. LetbF2 :¼ ðs� p22ÞbG22ðsÞX22ð0Þ
�1. If 0	 p215k��1k

�1,

then define ��2 as in (28) for any �12Rþ satisfying (29):

��2 :¼
1

s
�1

�
Iþ
ð�1 þ p21Þ

�2sþ 1
bF2

��1bF2 � I

" #
, ð28Þ

05�1 5 k��1k
�1 � p21: ð29Þ

If 0	 p225k��2k
�1, then let KP2¼ (�1�2�

p21p22)X22(0)
�1, KD2¼ (�1þ p21)(1þ �2p22)X22(0)

�1 for

any �22Rþ satisfying (30):

05�2 5 k��2k
�1 � p22: ð30Þ

Then a PD controller that stabilises bG22 is given by

Cpd 2 ¼

	
ð�1�2 � p21p22Þ

þ
ð�1 þ p21Þð1þ p22�2Þs

�2sþ 1



X22ð0Þ

�1: ð31Þ

With Cpd 2 as in (31), let Hpd 2 :¼ bG22ðIþ Cpd 2
bG22Þ

�1,

where Hpd 2(0)
�1
¼ �1�2X22(0)

�1. Then the PID con-

troller C2 in (32) stabilises bG22 for any �22Rþ

satisfying (32):

C2 ¼ Cpd 2 þ
�2�1�2

s
X22ð0Þ

�1M2,

05 �2 5
1

s
½Hpd 2ðsÞHpd 2ð0Þ

�1
� I �

���� �����1: ð32Þ

(b) Let p21 ¼ �p222C, n¼ s2� ( p21þ p22)sþ p21p22¼

s2� 2fsþ g2, f� 0, g40, f5g. If fþ 2g5k��1k
�1,

then let

KP2 ¼ ½�1�2 þ �1ð g� f Þ þ �2g� fg�X22ð0Þ
�1,

KD2 ¼ ð�1 þ �2 þ fþ 2gÞX22ð0Þ
�1
� �2KP2,

for any �1, �22 {Rþ[ 0} satisfying (33):

0 	 �1 þ �2 5 k��1k
�1 � ð fþ 2gÞ: ð33Þ

Then a PD controller that stabilises bG22 is given by

Cpd 2 ¼

½ð�1 þ �2 þ fþ 2gÞsþ �1�2

þ �1ð g� f Þ þ �2g� fg�

� �
g2ð�2sþ 1Þ

G22ð0Þ
�1:
ð34Þ

With Cpd 2, as in (34), let Hpd 2 :¼ bG22ðIþ Cpd 2
bG22Þ

�1,

where Hpd 2(0)
�1
¼ (�1þ g)(�2þ g� f )X22(0)

�1 and

X22(0)¼ g2G22(0). Then the PID controller C2 in (35)

stabilises bG22 for any �22Rþ satisfying (32):

C2 ¼ Cpd 2 þ
�2ð�1 þ gÞð�2 þ g� f Þ

s
X22ð0Þ

�1M2,

05 �2 5
1

s
½Hpd 2ðsÞHpd 2ð0Þ

�1
� I �

���� �����1: ð35Þ

Step 2: Design C1 : If ‘¼ 1, let C2 be as in (20). If ‘¼ 2,

let C2 be as in (32) or (35) when p2i2Rþ or p2i2U n Rþ,

respectively. Let bW be defined by (5). Choose anybKP1, bKD12R
r1�r1 , �140. Define

bC1 :¼ bKP1 þ
s

�1sþ 1
bKD1 þ

1

s
bWð0Þ�1M1: ð36Þ

For �12Rþ satisfying (37), let C1 be as in (37):

C1 ¼ �1bC1, 05�1 5
1

s
s bWðsÞbC1 �M1

h i���� �����1: ð37Þ
With C1 as in (37), CD¼ diag[C1,C2] is a partially

reliable decentralised PID controller for the delayed

plant bG.
In Example 3, we apply the synthesis procedure in

Proposition 3 to design decentralised PID controllers

for the delayed version of a chemical reactor model

adopted from El-Farra, Mhaskar, and Christofides

(2004), where the concentration of the inlet reactant

and the rate of heat input are manipulated to regulate

the outlet reactant concentration and the reactor

temperature. The linearisation around one of the

operating points gives an unstable plant transfer-

matrix G, which is the finite-dimensional part of bG.
Example 3: Let bG ¼ 1

dðsÞ

h
ð106 s�

1
8Þe
�h1s � 1

512 e
�h2s

4e�h1s ð4sþ 1
8Þe
�h2s

i
,

with dðsÞ ¼ 100ðs� 1
16Þðsþ

3
160Þ, h1¼ 0.25 s and

h2¼ 0.5 s. Note that G has poles at p21¼ 1/162U and

p¼�3/160 =2U; i.e. ‘¼ 1. Since the only U-pole p212U

is reflected in G22, the transfer-matrix bG can be written

in the form of (26):

bG¼ 1
1

96

0
ðs� 1

16Þ

ða1sþ1Þ

2664
3775
�1 10

6
e�0:25s

1

24
e�0:5s

4

ða1sþ1Þ
e�0:25s

4sþ 1
8

ða1sþ1Þ
e�0:5s

2664
3775

�
1

100ðsþ 3
160Þ
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a140, Y11¼ 1, Y22 ¼
s�p21
a1sþ1

. First we design Cpd 2 ¼

ð�2 þ p21ÞX
�1
22 ð0Þð1þ

eKd 2
s

�2sþ1
Þ, where X�122 ð0Þ ¼ 15 and

the parameters bKD2 ¼ X�122 ð0Þ
eKd 2, �2 are optimised so

that the allowable range of the gain (�2þp21), deter-
mined by (19), is maximised. We find that optimal

choices are eKd 2 ¼ 22 and �2¼ 32 give rise to

05(�2þ p21)52. We select (�2þ p21)¼ 1; hence

�2 ¼ 1� 1
16, and Cpd 2ðsÞ ¼ 15 ð1þ 22 s

32 sþ1 Þ. With this

choice of Cpd 2, the allowable range for the integral

action gain is computed from (20) as 05 �2 5 1
23. We

choose C2ðsÞ ¼ 15 ð1þ 1
30 sþ

22 s
32 sþ1 Þ. In the second step

we design a PI controller C1(s) in the form

C1ðsÞ ¼ �1 bWð0Þ�1ðeKp1 þ
1
sÞ, where bWð0Þ�1 ¼ 15

8 andeKp1 is optimised to maximise the allowable range

for �1. We find that optimal choice eKp1 ¼
100
3 gives

05�151.1631. We choose C1ðsÞ ¼ 1:5 ð 1003 þ
1
s Þ.

Clearly, the controller parameters can further be

optimised in the ranges specified above.
Figure 4(a) shows the step responses for the outputs

y1, y2, with unit-steps applied at both w1, w2 and

both channels of CD¼ diag[C1,C2] are active.

Figure 4(b) shows the step responses when C1 fails,

i.e. CD¼diag[0,C2] with only the second

channel operational. The partially reliable design
guarantees closed-loop stability when C1¼ 0 and
asymptotic tracking with zero steady-state error is
achieved since integral action is present in the second
channel.

4. Conclusions

We derived reliable PID controllers for LTI plants with
two decentralised MIMO channels subject to delays.
For stable plants, the decentralised controllers are
designed to be partially or fully reliable to provide
closed-loop stability even when either one of the
controllers is set to zero. For plants with only one or
two unstable poles (with no restriction on the number
of stable poles) we presented systematic methods to
define the PID controller parameters explicitly.
Reliable stabilisation is also achieved for unstable
plants if the main channel that always remains oper-
ational contains all plant poles that are in the unstable
region. Our systematic synthesis method explicitly
defines the PID parameters for reliable closed-loop
stabilisation but we do not explore how specific choices
of these free parameters affect the performance since
this is an issue to study for particular applications
rather than the general case. Since the parameters are
chosen based on sufficient conditions for stability, this
introduces a certain amount of conservativeness.
Considering the difficulty of the problem due to
restrictions imposed by the decentralised structure,
order limitations of PID controllers and the presence
of arbitrary delay terms in the plant’s transfer-matrix
entries, conservative results for performance consid-
erations are to be expected while there is freedom in the
choice of parameters for stability.

Plants whose finite-dimensional part has more than
two poles in the unstable region do not necessarily
admit PID controllers even if they are strongly
stabilisable. This is true even for plants with no
delays. Further assumptions are needed on such
plants, which would impose restrictions on the
plant’s transmission-zeros. The reliable decentralised
PID synthesis methods presented here may be extended
to delayed plants with more than two MIMO channels.
Performance implications for choices within the
stabilising parameters can also be explored for specific
applications of the synthesis methods presented here.
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Skogestad, S. (2003), ‘Simple analytic rules for model

reduction and PID controller tuning’, Journal of Process

Control, 13, 291–309.
Tavakoli, S., Griffin, I., and Fleming, P.J. (2006), ‘Tuning of

decentralised PI (PID) controllers for TITO processes’,

Control Engineering Practice, 14, 1069–1080.

Appendix

Proof of Proposition 1: (a) The decentralised PID controller
CD¼ND�1, where D¼ diag[D1,D2], with Dj ¼ I�

�j
sþ�j

Mj,

Nj¼Cj Dj, �j2Rþ, j¼ 1, 2, stabilises bG2MðH1Þ if and only

if UD :¼ Dþ bGN is unimodular. Similarly, C2 stabilises bG22 if

and only if U2 is unimodular, where

U2 :¼ D2 þ bG22N2 ¼ D2 þ bG22C2D2

¼ Iþ �2

	bG22

�bKP2 þ
s

�2sþ 1
bKD2

�
D2

þ
s

sþ �2

ðĜ22G22ð0Þ
�1
� I Þ

s
M2



:

Note that U2 is unimodular if (7) is satisfied. When M2¼ 0,

U2 ¼ Iþ �2bG22ðbKP2 þ
s

�2sþ1
bKD2Þ is unimodular if (7) holds.

Hence, C2 in (7) stabilises bG22 and C2 ðIþ bG22C2Þ
�1
2

MðH1Þ implies bW2MðH1Þ; C2 ðIþ bG22C2Þ
�1
ð0Þ ¼

G22ð0Þ
�1 implies bWð0Þ ¼ G11ð0Þ � G12ð0ÞG22ð0Þ

�1G21ð0Þ. By

(9), Uw :¼ D1 þ bWC1D1 is unimodular; hence, C1 stabilisesbW. Therefore, SysðbG,CDÞ is stable and CD is partially reliable

since diag[0,C2] also stabilises bG. (b) By assumption,

� ¼: G11ð0Þ bWð0Þ�1 has positive real eigenvalues implies

ksI(sIþ �1�)�1k¼ 1 for �140. Define ~D1 ¼ I� �1�ðsIþ

�1�Þ
�1M1, ~N1 ¼ C1

~D1 . Then U1 is unimodular, where

U1 :¼ ~D1 þ bG11
~N1 ¼ Iþ �1

	bG11

�bKP1 þ
s bKD1

�1sþ 1

�
~D1

þ
ðbG11

bWð0Þ�1 ��Þ

s
sIðsIþ �1�Þ

�1M1



:

Hence, C1 stabilises bG11 and CD is fully reliable since
diag[C1, 0] also stabilises bG. œ

Proof of Proposition 2: (i) By (14), the decentralised PID
controller CD¼ND�1 (as in the proof of Proposition 1)
stabilises bG if and only if UD :¼ YDþ bXN is unimodular.
The PD controller Cpd 2 stabilises bG22 if and only if Upd is
unimodular, where

Upd :¼ Y22 þ bX22Cpd 2 ¼
ðs� p21Þ

a2sþ 1
½Iþ bG22Cpd 2 �

¼
ðs� p21Þ

a2sþ 1
½Iþ ð�2 þ p21ÞbG22Cpd 2�

¼

	
Iþ
ð�2 þ p21Þs

sþ �2
��2



ðsþ �2Þ

ða2sþ 1Þ
:

A sufficient condition for Upd to be unimodular
is that (19) holds. Hence, Cpd 2 in (19) stabilisesbG22 and Hpd2 :¼U�1pd

bX22¼ bG22ðI þ Cpd2
bG22Þ

�1
2MðH1Þ,

where Hpd2ð0Þ
�1
¼G�122 ð0ÞþKP2¼X22ð0Þ

�1Y22ð0Þþ ð�2þp21Þ

X22ð0Þ
�1
¼ �2X22ð0Þ

�1. Using similar steps as in the proof of

Proposition 1, the I-controller KI2/s¼ �2Hpd 2(0)
�1/s stabilises

Hpd 2 for any �22R satisfying (20). Therefore,

C2¼Cpd 2þKI2/s in (20) stabilises bG22 and C2 ðIþ bG22C2Þ
�1
2

MðH1Þ. Now since U2 :¼ s
sþ�2

Y22þ bX22
s

sþ�2
C2 is unimodular,

UD is unimodular if and only ifY11D1þ bW11N1 is unimodular,

equivalently, C1 stabilises bW. Using a C1 design for bW similar

to C2 for bG22, it follows that CD stabilises bG. œ

Proof of Proposition 3: (a) Let p2i2Rþ. If ‘¼ 2, let

V1 :¼
ðs�p11Þ

a1sþ1
Iþð�1þp11Þ

ða2sþ1Þ

�2sþ1
bX22X22ð0Þ

�1

¼
ðs�p11Þ

a1sþ1

	
Iþ
ð�1þp11Þ

�2 sþ1
bF2



¼

	
Iþ
ð�1þp11Þs

sþ�1
��1



ðsþ�1Þ

a1sþ1
:

If (29) holds then V1 is unimodular. By (31), Cpd 2 ¼

ð�1 þ p11Þ
ðs�p21Þ
�2sþ1

X22ð0Þ
�1
þ �1ð�2 þ p21ÞX22ð0Þ

�1: Define
Vpd as

Vpd :¼Y22þ bX22Cpd ¼
ðs� p21Þ

a2sþ 1
½
ðs� p11Þ

a1sþ 1
I

þð�1þ p11Þ
ða2sþ 1Þ

�2sþ 1
bX22ðsÞX22ð0Þ

�1
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þ�1ð�2þ p21ÞbX22ðsÞX22ð0Þ
�1

¼V1

	
ðs� p21Þ

a2sþ 1
Iþ�1ð�2þ p21ÞV

�1
1
bX22ðsÞX22ð0Þ

�1



¼: V1V2:

Since V1 is unimodular, Vpd is unimodular if and only if V2 is
unimodular, where

V2¼
ðs�p21Þ

a2sþ1

	
Iþ
ða2sþ1Þ

s�p21
�1ð�2þp21ÞV

�1
1
bX22ðsÞX22ð0Þ

�1



¼
ðs�p21Þ

a2sþ1

	
Iþ�1ð�2þp21Þ

�
Iþ
ða1sþ1Þ

�2 sþ1
bF2

��1
� bG22ðsÞX22ð0Þ

�1



¼

	
Iþ
ð�2þp21Þ

sþ�2
ð�1V

�1
1
bX22ðsÞX22ð0Þ

�1

�ða2sþ1Þ� I Þ



ðsþ�2Þ

a2sþ1
¼

	
Iþ
ð�2þp21Þs

sþ�2
��2



ðsþ�2Þ

a2sþ1
:

If (30) holds then V2 is unimodular. Hence, Cpd 2 in (31)
stabilises bG22 and Hpd 2 :¼ V�1pd

bX22 ¼ bG22ðIþ Cpd 2
bG22Þ

�1
2

MðH1Þ, where Hpd 2ð0Þ
�1
¼ G�122 ð0Þ þ KP2 ¼ X22ð0Þ

�1
�

Y22ð0Þ þ ð�1�2 � p11p21ÞX22ð0Þ
�1
¼ �1�2X22ð0Þ

�1. Using sim-

ilar steps as in the proof of Proposition 1, the I-controller

KI2/s¼ �2Hpd 2(0)
�1/s stabilises Hpd 2 for any �22R satisfying

(20). Therefore, C2¼Cpd 2þKI2/s in (32) stabilises bG22.
(b) Let p2i2UnRþ. Define y :¼ (sþ �1þ g)(sþ �2þ g� f ),
where g� f40 by assumption. Let x :¼ y� n¼ (�1þ �2þ
fþ 2g)sþ�1�2þ�1(g� f )þ�2g� fg. Then k sxy k 	 ð�1 þ �2þ

fþ 2gÞ, where
p11 þ p21

2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p11p21
p

¼ fþ 2g. If (33) holds,

then k sxy ��1k 	 ð�1 þ �2 þ fþ 2gÞ k��1k5 1 implies Vpd is

unimodular, where

Vpd :¼ Y22 þ bX22Cpd 2 ¼
n

d
½Iþ bG22Cpd 2 � ¼

y

d

	
Iþ

x

y
��1



:

Hence, Cpd 2 in (34) stabilises bG22 and

Hpd 2 :¼ V�1pd
bX22 ¼ bG22ðIþ Cpd 2

bG22Þ
�1
2 MðH1Þ, where

Hpd 2ð0Þ
�1
¼ G�122 ð0Þ þ KP2 ¼ ð g

2Iþ KP2ÞX22ð0Þ
�1. For any

�22R satisfying (20), the I-controller KI2/s¼Hpd 2(0)
�1�2/s

stabilises Hpd 2. Therefore, C2¼Cpd 2þKI2/s in (35) stabilisesbG22. Now we prove C1 guarantees stability of the overall

system, with C2 as in (32) when p2i2Rþ and as in (35) when

p2i =2Rþ; hence C2 ðIþ bG22C2Þ
�1
2MðH1Þ. Write C2 ¼

ðN2U
�1
2 þD2U

�1
2 Þ
�1, with U2 unimodular, where

U2 :¼
s

sþ �2
Y22 þ bX22

s

sþ �2
C2:

Then bW ¼ bX11 � ðY12D2 þ bX12N2ÞU
�1
2
bX212MðH1Þ.

Therefore, UD :¼ s
sþ�Yþ

bX s
sþ�CD is unimodular for any

�2Rþ if and only if s
sþb Ir1 þ

s
sþb

bWC1 is unimodular for b40,

equivalently, C1 stabilises bW. Designing C1 for bW as in

Proposition 1, CD stabilises bG. Furthermore, CD, is partially

reliable because UD ¼

h
Ir1 Y12D2 þ bX12N2

0 U2

i
is unimodular

when C1¼ 0. œ
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