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Abstract

Simultaneous stabilization with asymptotic tracking of step-input references is explored for linear, time-invariant, multi-input multi-output
stable plants. Necessary conditions are presented for existence of simultaneous integral-action controllers and existence of simultaneous PID-
controllers. A systematic simultaneous PID-controller synthesis method is proposed under a sufficient condition.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the problem of simultaneously stabilizing a fi-
nite class of linear time-invariant (LTI) multi-input multi-output
(MIMO) stable plants while achieving asymptotic tracking of
step-input references with zero steady-state error. These prob-
lems arise in many practical applications; for example, when
designing a common controller for multiple operating points of
the same system. The simplest controllers that achieve integral-
action are proportional+ integral+derivative (PID) controllers,
which are widely used and preferred for their simplicity. We de-
rive conditions under which general integral-action controllers
and particularly PID-controllers exist that achieve simultaneous
closed-loop stabilization.

The problem of simultaneously stabilizing stable plants using
PID-controllers is equivalent to strong simultaneous stabiliza-
tion of systems whose unstable poles are at the origin using
controllers restricted to order two or less. Even without the
order restriction on the controllers, simultaneous stabilization
of three or more plants and strong stabilization problems are
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known to be difficult (Blondel, 1994; Blondel, Gevers,
Mortini, & Rupp, 1994; Vidyasagar, 1985). There exists a com-
mon controller that simultaneously stabilizes two given plants if
and only if a related system satisfies the parity interlacing prop-
erty (PIP) (Blondel et al., 1994; Vidyasagar, 1985). If the simul-
taneous stabilization involves more than two unstable plants,
PIP is a necessary but not sufficient condition. If this common
controller also has to achieve asymptotic tracking of step-input
references as considered here, then it is only natural to expect
additional conditions to hold even for the case of two plants.
Since we consider a finite class of stable plants here, the simul-
taneous stabilization goal is always achievable. But additional
constraints have to be imposed on the DC-gains of these plants
in order to achieve the asymptotic tracking requirement using
low-order PID-controllers. Rigorous PID design methods exist
mostly for single-input single-output (SISO) systems (Aström
& Hagglund, 1995; Silva, Datta, & Bhattacharyya, 2002);
these methods do not consider simultaneous PID stabilization.
General integral action or more restricted PID designs that
achieve simultaneous closed-loop stability of MIMO systems
have not been explored.

The main results here are: (1) necessary conditions for ex-
istence of simultaneous integral-action controllers (Lemma
2) and (2) sufficient conditions and explicit PID synthesis
(Proposition 1). The conditions are based on the DC-gains of
the plants. For single-output systems, the sufficient conditions
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coincide with the necessary conditions for the existence of si-
multaneous PID-controllers. The systematic procedure for si-
multaneous PID-controller synthesis is then applied to several
MIMO examples. The proposed explicit designs allow choice
of parameter values. Although the objective here is to achieve
simultaneous closed-loop stability with tracking, the flexibility
in the choice of the PID parameters offered by the design pro-
cedure may be used to satisfy additional performance criteria.

Although we discuss continuous-time systems here, all
results apply also to discrete-time systems with appropriate
modifications. The following notation is used: U denotes
the extended closed right-half plane, i.e., U = {s ∈ C |
Re(s)�0} ∪ {∞}; R, R+ denote real and positive real num-
bers; Rp denotes real proper rational functions of s; S ⊂ Rp
is the stable subset with no poles in U; M(S) is the set of
matrices (of any size) with entries in S; the notation Sny×nu

is used when the matrix size is emphasized; In is the n × n

identity matrix. A square matrix M ∈ M(S) is called uni-
modular iff M−1 ∈ M(S). The H∞-norm of M(s) ∈ M(S)

is denoted by ‖M(s)‖ (i.e., the norm ‖ · ‖ is defined as
‖M‖ := sups∈�U �̄(M(s)), where �̄ is the maximum singu-
lar value and �U is the boundary of U). For simplicity, we
drop (s) in transfer matrices such as G(s) where this causes
no confusion. We use coprime factorizations over S; i.e., for
C ∈ R

nu×ny
p , C=NcD

−1
c denotes a right-coprime-factorization

(RCF), where Nc ∈ Snu×ny , Dc ∈ Sny×ny , det Dc(∞) �= 0.

2. Problem description and preliminaries

Consider the standard LTI, MIMO unity-feedback sys-
tem Sys(Gj , C) shown in Fig. 1, where Gj ∈ Sny×nu , j ∈
{1, . . . , k}, and C ∈ R

nu×ny
p denote the plant’s and the con-

troller’s transfer-functions, respectively. It is assumed that the
feedback system is well-posed, Gj and C have no unstable

hidden-modes, and each plant Gj ∈ R
ny×nu
p is full normal

rank. The objective is to design a controller C that achieves
asymptotic tracking of step-input references with zero steady-
state error for a finite class of stable plants Gj simultaneously.
Let C =NcD

−1
c be an RCF, where Nc ∈ Snu×ny , Dc ∈ Sny×ny ,

det Dc(∞) �= 0. Then C stabilizes Gj ∈ M(S) if and only if

Mj := Dc + GjNc (1)

is unimodular, i.e., M−1
j ∈ M(S) (Gündeş & Desoer, 1990;

Vidyasagar, 1985). Let Her
j denote the (input–error) transfer-

function from r to e; let H
yr
j denote the (input–output) transfer-

function from r to y; then

Her
j = (Iny + GjC)−1 = Iny − GjC(Iny + GjC)−1

=: Iny − GjH
wr
j =: Iny − H

yr
j . (2)

  C     Gj

−

r

v

w ye

Fig. 1. Unity-feedback system Sys(Gj , C).

Definition 1. (i) The system Sys(Gj , C) is said to be stable iff
the closed-loop transfer-function from (r, v) to (y, w) is stable.
(ii) The controller C is said to simultaneously stabilize Gj for
j ∈ {1, . . . , k} iff C is proper and the systems Sys(Gj , C)

are all stable. (iii) The stable systems Sys(Gj , C) are said to
have integral-action iff Her

j has blocking-zeros at s = 0, j ∈
{1, . . . , k}. (iv) The controller C is said to be a simultaneously
stabilizing integral-action controller iff C stabilizes Gj for j ∈
{1, . . . , k}, and Dc of any RCF C =NcD

−1
c has blocking-zeros

at s = 0, i.e., Dc(0) = 0.

Suppose that Sys(Gj , C) is stable and that step input refer-
ences are applied to the system. Then the steady-state error e(t)

due to step inputs at r(t) goes to zero as t → ∞ if and only
if Her

j (0) = 0. Therefore, by Definition 1, the stable system
Sys(Gj , C) achieves asymptotic tracking of constant reference
inputs with zero steady-state error if and only if it has integral-
action. Write Her

j as Her
j = (Iny + GjC)−1 = DcM

−1
j . Then

by Definition 1, Sys(Gj , C) has integral-action if and only if
C =NcD

−1
c is an integral-action controller since Mj unimodu-

lar means Her
j (0) = (DcM

−1
j )(0) = 0 if and only if Dc(0) = 0.

The controller’s denominator matrix having blocking-zeros at
s = 0 is equivalent to the well-known internal model princi-
ple, i.e., the controller duplicates the dynamic structure of the
exogenous signals that the regulator has to process (Francis &
Wonham, 1975).

The simplest integral-action controllers are in PID form.
We consider the following (realizable) form of proper PID-
controllers, where KP , KI , KD ∈ Rnu×ny are called the
proportional constant, the integral constant, and the derivative
constant, respectively (Goodwin, Graebe, & Salgado, 2001):

Cpid = KP + KI

s
+ KDs

�s + 1
. (3)

Due to implementation issues of the derivative action, a pole is
typically added to the derivative term (with � > 0) so that the
transfer-function Cpid in (3) is proper. The only U-pole of the
PID-controller in (3) is at zero. The constants KP , KD, KI may
be negative; in the scalar case, this would imply that the zeros of
Cpid may be in the unstable region U. The integral-action in the
PID-controller is present when the integral constant KI is non-
zero. Subsets of the PID-controller in (3) are: proportional +
integral (PI) Cpi =KP +(KI /s) (when KD =0); proportional+
derivative (PD) Cid = KP + (KDs/�s + 1) (when KI = 0);
integral + derivative (ID) Cid = (KI /s)+ (KDs/�s + 1) (when
KP =0); integral (I) Ci=(KI /s) (when KP =KD=0); derivative
(D) Cd = (KDs/�s + 1) (when KP =KI = 0); proportional (P)
Cp = KP (when KI = KD = 0).

3. Main results

We first derive necessary conditions for existence of simulta-
neously stabilizing integral-action controllers, and particularly
PID-controllers. Then we propose explicit PID-controller de-
sign under a sufficient condition, which turns out to be neces-
sary for plants with a single-output. Lemma 1 states the basic
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necessary condition on Gj for existence of integral-action con-
trollers:

Lemma 1 (Necessary condition for integral-action). Let Gj ∈
Sny×nu . If the stable system Sys(Gj , C) has integral-action,
then rank Gj(0) = ny �nu, i.e., Gj has no transmission-zeros
at s = 0.

Although there exist integral-action controllers such that the
closed-loop system is stable for each individual plant Gj that
has no transmission-zeros at s = 0, existence of integral-action
controllers simultaneously stabilizing all Gj for j ∈ {1, . . . , k}
requires additional necessary conditions as stated in Lemma
2. If the integral-action controllers are further restricted to
be PID, these necessary conditions are imposed except when
all plants in the class are minimum-phase and non-strictly
proper:

Lemma 2 (Necessary conditions for simultaneous integral-
action). Let Gj ∈ Sny×nu , j ∈ {1, . . . , k}. Let rank Gj(0) =
ny �nu. Let Gj(0)I ∈ Rnu×ny denote any arbitrary right-
inverse of Gj(0).

(a) Suppose that all Gi − Gj for i, j ∈ {1, . . . , k} have at
least one common blocking-zero in R ∩ U (including in-
finity). Under this condition, if there exist simultaneously
stabilizing integral-action controllers, then

det[Gj(0)Gi(0)I ] > 0 for all i, j ∈ {1, . . . , k}. (4)

(b) Suppose that each Gj has at least one blocking-zero in
R ∩ U (including infinity) for j ∈ {1, . . . , k}. Under this
condition, if there exist simultaneously stabilizing PID-
controllers, then (4) holds.

In Lemma 2(a), if all plants in the class have the same
blocking-zero z0 ∈ U on the extended positive real axis, then
Gi(z0) − Gj(z0) = 0, and (4) becomes a necessary condition
for existence of a common integral-action controller. For ex-
ample, if all plants in the class are strictly proper, then they all
have a blocking-zero at ∞ ∈ U. The plants Gj may have addi-
tional individual U-zeros other than this common zero at s=z0.
In Lemma 2(b), if each plant in the class has some blocking-
zero on the extended positive real axis (not necessarily all at
the same location), then (4) becomes a necessary condition for
existence of a common PID-controller.

Proposition 1 presents a method for designing PID-
controllers that simultaneously stabilize {G1, . . . , Gk}. A suf-
ficient condition for existence of such controllers is that the
eigenvalues of Gj(0)G1(0)I are positive real for all plants
Gj in the class, where an arbitrary member G1 is called the
nominal plant.

Proposition 1 (Simultaneous PID-controller synthesis). Let
Gj ∈ Sny×nu , j ∈ {1, . . . , k}. Let rank Gj(0) = ny �nu.
Designate an arbitrary plant G1 as the nominal plant.
Let G1(0)I ∈ Rnu×ny denote any arbitrary right-inverse
of G1(0). Suppose that, for j ∈ {2, . . . , k}, all eigenval-

ues of Gj(0)G1(0)I are real and positive. Then simul-
taneously stabilizing PID-controllers exist. Furthermore,
PID-controllers stabilizing {G1, . . . , Gk} can be designed
as follows: Choose any K̂P , K̂D ∈ Rnu×ny , � > 0. Let
KP =�K̂P ,KD =�K̂D , KI =�G1(0)I for any positive � ∈ R+
satisfying

� < min
j∈{1,...,k}

∥∥∥∥∥Gj

(
K̂P + K̂Ds

�s + 1

)

+[Gj(s) − Gj(0)]G1(0)I

s

∥∥∥∥∥
−1

. (5)

Then a PID-controller that simultaneously stabilizes all Gj for
j ∈ {1, . . . , k} is given by

Cpid = �K̂P + �G1(0)I

s
+ �K̂Ds

�s + 1
. (6)

PI, ID, I-controllers are obtained by choosing K̂D =0, K̂P =0,
and K̂D = K̂P = 0, respectively.

The sufficient condition of positive real eigenvalues for
Gj(0)G1(0)I becomes a necessary condition for plant classes
that have single-output (ny =1 and nu �1, i.e., Gj(0)G1(0)I ∈
R) when each plant has at least one blocking-zero on the
extended positive real axis (these zeros may all be different).
Transmission-zeros and blocking-zeros are the same for these
plants.

Corollary 1 (Necessary and sufficient existence conditions
for simultaneous PID-controllers). Let Gj ∈ S1×nu , j ∈
{1, . . . , k}. Let Gj(0) �= 0.

(a) Suppose that all Gi−Gj for i, j ∈ {1, . . . , k} have at least
one common blocking-zero in R ∩ U (including infinity).
Under this condition, there exist simultaneously stabilizing
integral-action controllers if and only if Gj(0)Gi(0)I > 0,
for all i, j ∈ {1, . . . , k}.

(b) Suppose that each Gj has at least one blocking-zero in
R ∩ U (including infinity) for j ∈ {1, . . . , k}. Under
this condition, there exist simultaneously stabilizing PID-
controllers if and only if Gj(0)G1(0)I > 0, for all j ∈
{2, . . . , k}.

We apply the systematic design procedure of Proposition
1 to several MIMO plant classes with no transmission-zeros
at s = 0. The plants in Example 1 have varying number of
transmission-zeros on the extended right-half-plane and only
one has a blocking-zero, which means that the necessary
conditions of Lemma 2 do not apply. Since the plants in
Example 2 all share a common blocking-zero, the necessary
conditions of Lemma 2 apply. These plants all have exactly
one positive transmission-zero. The class considered in Ex-
ample 3 includes plants without any transmission-zeros in U
as well as those with different numbers of transmission-zeros
in U ∩ R.
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Example 1. Consider the class of plants {G1, G2, G3}:

G1 =
⎡
⎢⎣

−1

s + 1

−4

s + 2

0
(s − 2)(s − 5)

(s + 1)(s + 2)

⎤
⎥⎦ ,

G2 =

⎡
⎢⎢⎣

−5(s2 + 9)

(s + 3)2

s + 12

s + 3
−(s2 + 9)

(s + 3)2

9

(s + 3)

⎤
⎥⎥⎦ ,

G3 =
⎡
⎢⎣

s − 2

s + 5

s − 2

(s + 1)(s + 5)
−(s − 2)

s + 3

−10(s − 2)

(s + 1)(s + 3)

⎤
⎥⎦ .

The plant G1 has transmission-zeros at s=2, 5, ∞ ∈ U, but no
blocking-zeros; G2 has transmission-zeros at s=0±j3, s=33 ∈
U, but no blocking-zeros; G3 has a transmission-zero at in-
finity and a blocking-zero at s = 2 ∈ U. The eigenvalues of
G2(0)G1(0)−1 and G3(0)G1(0)−1 are all positive, and hence,
the class satisfies the sufficient conditions for existence of si-
multaneously stabilizing PID-controllers given in Proposition

1. Following the synthesis method, we choose K̂P =
[−0.5

0
0

0.1

]
,

K̂D =0. We take �=0.39 < min{0.5713, 0.3919, 0.6364} satis-
fying (5). The corresponding simultaneous PI-controller Cpi =
�K̂P + (�G1(0)−1/s), which is one among many that can be
designed using the procedure of Proposition 1, is

Cpi =
⎡
⎣

−0.195(s + 2)

s

−0.156

s

0
0.039(s + 2)

s

⎤
⎦ .

Example 2. Consider the quadruple tank process (Johansson,
2000), which consists of four interconnected water tanks. The
objective is to control the level in two lower tanks with two
pumps. The linearized system dynamics has a transmission-
zero, which can be moved between the positive and negative real
axis by changing a valve. With two input voltages to the tanks
and two output voltages from level measurements (the param-
eters �ij , cij and the time-constants Tij as in Johansson, 2000),
the linearized plant model Gj at the jth operating point is given
by

Gj =
⎡
⎢⎣

�1j�1j

1 + sT 1j

(1 − �2j )�1j

(1 + sT 1j )(1 + sT 3j )
(1 − �1j )�2j

(1 + sT 2j )(1 + sT 4j )

�2j�2j

1 + sT 2j

⎤
⎥⎦ .

The plant models for each operating point all have a com-
mon blocking-zero at infinity. Therefore, by Lemma 2(a),
simultaneously stabilizing integral-action controllers (and in
particular PID-controllers) exist only if det[Gj(0)Gi(0)−1] =
det Gj(0) det Gi(0)−1 > 0 for all i, j , i.e., det Gj(0) = �1j +
�2j − 1, has the same sign as det Gi(0) = �1i + �2i − 1. The
plants Gj have no transmission-zeros at s = 0 if and only if
�1j + �2j �= 1. In addition to the blocking-zero at infinity, Gj

has a positive transmission-zero if �1j +�2j < 1, which shifts to
the negative real-axis if �1j + �2j > 1. Therefore, the necessary

condition of Lemma 2(a) concludes that simultaneously stabi-
lizing integral-action controllers exist only if (i) either all plants
to be simultaneously stabilized have this transmission-zero on
the positive real-axis (so that the sign of �1j + �2j − 1 is neg-
ative for all plants Gj ), (ii) or all plants to be simultaneously
stabilized have this transmission-zero on the negative real-axis
(so that the sign of �1j + �2j − 1 is positive for all plants Gj ).
If �1j + �2j − 1 < 0 for Gj , whereas �1i + �2i − 1 > 0 for Gi ,
then the necessary condition of Lemma 2(a) is violated and
hence, Gj and Gi cannot be simultaneously stabilized using
PID-controllers.

Consider the case �1j = �2j = 1, Tij = 1, �1j = �2j = �j

as in Aström, Johansson, and Wang (2002). Let all plants have
�j < 1

2 , so that one of the two transmission-zeros is positive for
each Gj . Assign �1 =minj �j , i.e., G1 corresponds to the plant

with the smallest �. Under these conditions, Gj(0)G1(0)−1 is
symmetric, positive-definite and hence, the sufficient condi-
tions for existence of simultaneously stabilizing PID-controllers
given in Proposition 1 are satisfied for any number of plants Gj

representing different operating points. Let �1= 1
5 , �2= 1

4 , �3= 1
3

to design a controller that simultaneously stabilizes G1 (with
transmission-zeros at s = 3, −5), G2 (with transmission-zeros
at s = 2, −4), and G3 (with transmission-zeros at s = 1, −3).

For example, choose K̂P =
[−0.1

0.5
2

−0.1

]
, K̂D = 0. We take

� = 0.54 < min{0.5438, 0.5834, 0.6612} satisfying (5). With

G1(0)−1 =
[−1/3

4/3
4/3

−1/3

]
, the corresponding simultaneous PI-

controller Cpi = �K̂P + (�G1(0)−1/s) is

Cpi =
⎡
⎣

−(0.054s + 0.18)

s

1.08s + 0.72

s
0.27s + 0.72

s

−(0.054s + 0.18)

s

⎤
⎦ .

Example 3. Consider the plants Gj , j ∈ {1, 2, 3, 4}:

Gj =
⎡
⎣

s + 4

s + 1

s − 1

s + 1
20

s + 6
gj

⎤
⎦ , g1 = −0.5, g2 = 2,

g3 = 10, g4 = 0.

The plants have no blocking-zeros; G1 has a transmission-
zero at s = 0.318 ∈ U (and one at s = −50.318 /∈U); G2
has transmission-zeros at s = 0 ± j

√
34 ∈ U; G3 has no

transmission-zeros in U, and G4 has transmission-zeros at
s = 1, ∞ ∈ U. The eigenvalues of Gj(0)G1(0)−1 are all pos-
itive, and hence, the class satisfies the sufficient conditions
for existence of simultaneously stabilizing PID-controllers
given in Proposition 1. Following the synthesis method,

we choose K̂P =
[

0.1
1.8

0
−0.4

]
, K̂D = 0.1I2, � = 0.05. We

take � = 0.04 < min{0.2215, 0.2043, 0.0415, 0.2202} satis-
fying (5). The corresponding simultaneous PID-controller
Cpid=�K̂P +�(K̂Ds/�s+1)+(�G1(0)−1/s), which is one
among many that can be designed using the procedure of
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Proposition 1, is

Cpid =
⎡
⎢⎣

0.084s2 + 0.065s − 0.3

s(s + 20)

0.6

s

−1.44s − 2

s

0.064s2 − 0.2s + 2.4

s(s + 20)

⎤
⎥⎦ .

4. Conclusions

We showed that a class of stable plants {G1, . . . , Gk} with
blocking-zeros on the extended positive real-axis can be simul-
taneously stabilized using low-order integral-action (PID) con-
trollers only if det[Gj(0)Gi(0)I ] > 0 for all i, j ∈ {1, . . . , k}.
We derived a sufficient condition which is not too far from
this necessary condition: If the eigenvalues of Gj(0)G1(0)I

are all real and positive for some arbitrary member G1 of the
class, then there exist simultaneous PID-controllers. In fact, the
necessary conditions and the sufficient conditions coincide for
plants with only one output (although they may have multiple
inputs). Under the sufficient condition of positive eigenvalues
for the DC-gain matrix, we presented a PID synthesis method,
which allows a wide range of choices for the PID parameters.
We applied this systematic simultaneous PID-controller design
to several MIMO plant classes.

We only considered stable plant classes for simultaneous
integral-action control here. Since PID-controllers do not nec-
essarily exist for unstable plants and since simultaneous stabi-
lization of three or more unstable plants is an extremely difficult
problem even without restrictions on the controller order, unsta-
ble plant classes would be very challenging to tackle. Sufficient
conditions for simultaneous PID stabilization of unstable plant
classes are being explored as extensions of the present results.

Appendix

Proof of Lemma 1. The stability of Sys(Gj , C) implies
Her

j (0)=Iny −GjH
wr
j (0)=0, i.e., GjH

wr
j (0)=Iny . Therefore,

rank[Gj(0)Hwr
j (0)]=ny � min{rank Gj(0), rank Hwr

j (0)} im-
plies ny �rank Gj(0)� min{ny, nu} and hence, rank Gj(0) =
ny . �
Proof of Lemma 2. (a) Let C = NcD

−1
c be an integral-action

controller simultaneously stabilizing the class {G1, . . . , Gi, . . . ,

Gj , . . . , Gk}, where Gi, Gj are two arbitrary plants in the
class. Since C has integral-action, the denominator Dc can
be written as Dc =: (s/s + a)D̂c for any a ∈ R+, where
D̂c ∈ M(S). By (1), Mi = (s/s + a)D̂c + GiNc and
Mj = (s/s + a)D̂c + GjNc are unimodular. By assumption,
Gi(z0) = Gj(z0) for the same z0 ∈ R+ ∪ ∞ implies Mi(z0) −
Mj(z0)=[Gi(z0)−Gj(z0)]Nc(z0)=0, i.e., Mi(z0)=Mj(z0).
Since det Mi(z0)=det Mj(z0) at some point z0 ∈ U, det Mi(s)

has the same sign as det Mj(s) for all s ∈ U∩ R. In particular,
at s=0, Mi(0)=Gi(0)Nc(0)implies Nc(0)=Gi(0)IMi(0) and
hence, Mj(0) = Gj(0)Nc(0) = Gj(0)Gi(0)IMi(0). The con-
clusion follows since det Mj(0)=det[Gj(0)Gi(0)I ] det Mi(0),
with det Mj(0) having the same sign as det Mi(0), implies (4).

(b) Now let Cpid be a PID-controller simultaneously sta-
bilizing the class. Write Cpid as Cpid = NcD

−1
c = ((s/s +

a)Cpid)((s/s + a)Iny )
−1 for any a > 0; i.e., Nc = [KP +

(KDs/�s + 1)](s/s + a) + (KI /s + a). By (1), Mi = (s/s +
a)I + GiNc and Mj = (s/s + a)I + GjNc are unimodu-
lar. By assumption, Gi(zi) = 0 for some zi ∈ R+ ∪ ∞ and
Gj(zj ) = 0 for some zj ∈ R+ ∪ ∞ implies det Mi(zi) =
det(zi/zi + a)I > 0 and det Mj(zj ) = det(zj /zj + a)I > 0.
Since det Mi(s) has the same sign for all s ∈ U ∩ R,
det Mi(0) > 0; similarly, det Mj(0) > 0. At s = 0, Mi(0) =
Gi(0)Nc(0) = Gi(0)a−1Ki implies Ki = aGi(0)IMi(0) and
hence, Mj(0) = Gj(0)Nc(0) = Gj(0)Gi(0)IMi(0). The con-
clusion follows since det Mj(0)=det[Gj(0)Gi(0)I ] det Mi(0),
with det Mj(0) > 0 and det Mi(0) > 0,implies (4). �

Proof of Proposition 1. Write Cpid = ((s/s + a)Cpid)((s/s +
a)Iny )

−1 for any a > 0. By assumption, �j := Gj(0)G1(0)I

has positive real eigenvalues. For j ∈ {1, . . . , k}, define Mj :=
(s+a)−1sIny +Gj(s+a)−1sCpid. Since a > 0, � > 0 and (sI+
��j )

−1 ∈ M(S), Mj is unimodular if and only if M̂j := (s +
a)(sI+��j )

−1Mj is unimodular, which can be written as M̂j=
(sI +��j )

−1sI + (sI +��j )
−1sGjCpid = (sI +��j )

−1sI +
(sI + ��j )

−1s�Gj [K̂P + (K̂Ds/�s + 1) + (G1(0)I /s)] = I +
(sI + ��j )

−1s�[Gj(K̂P + (K̂Ds/�s + 1)) + (Gj (s)G1(0)I −
�j )/s]. Since ‖(sI + ��j )

−1s‖ = 1, M̂j is unimodular for
� > 0 satisfying (5). Hence, by (1), the systems Sys(Gj , C) are
stable for all j ∈ {1, . . . , k}. �

Proof of Corollary 1. When ny = 1�nu, Gj(0)G1(0)I is a
scalar. The necessity of the conditions in Corollary 1(a–b) fol-
low from Lemma 2. The sufficiency follows from Proposition
1 since the eigenvalue of Gj(0)G1(0)I ∈ R is itself. �
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