Simultaneous Tracking Controller Synthesis for MIMO Systems

A. N. Gündes

Abstract—Simultaneous stabilization of linear, time-invariant, multi-input multi-output stable plants is considered with asymptotic tracking of step-input references with zero steady-state error. Conditions are derived for existence of simultaneous integral-action controllers and PID-controllers. A systematic simultaneous PID synthesis method is proposed.

I. INTRODUCTION

We consider simultaneous stabilization of a finite class of linear, time-invariant (LTI) multi-input multi-output (MIMO) stable plants while achieving asymptotic tracking of step-input references with zero steady-state error. We derive conditions for existence of general integral-action controllers and particularly proportional-integral-derivative (PID) controllers that achieve simultaneous stabilization.

Simultaneous stabilization of three or more plants and strong stabilization are difficult problems even without the controller order restriction [1], [2], [6]. Rigorous PID design methods exist mostly for single-input single-output (SISO) systems (see e.g., [5]). Simultaneous PID designs for MIMO systems have not been explored extensively. The results here are necessary conditions for existence of simultaneous integral-action controllers based on the DC-gains of the plants (Lemma 3.1), and sufficient conditions and explicit PID synthesis (Proposition 3.1). For single-output systems, the sufficient conditions are also necessary. The freedom in the PID parameters may be used to satisfy additional performance criteria. The discussion is based on continuous-time systems; all results apply also to discrete-time systems with appropriate modifications. Notation: \(\mathcal{U} = \{ s \in \mathbb{C} \mid \Re(c(s)) \geq 0 \} \cup \{ \infty \} \) is the extended closed right-half complex plane; \(\mathbb{R}, \mathbb{R}_+ \) denote reals and positive reals; \(\mathbb{R}_p \) denotes real proper rational functions of \(s \); \(\mathbb{S} \subseteq \mathbb{R}_p \) is the stable subset with no poles in \(\mathcal{U} \); \(M(\mathcal{S}) \) is the set of matrices with entries in \(\mathbb{S} \); \(I_m \) is the (size \(m \)) identity matrix. The \(H_\infty \)-norm of \(M(s) \in M(\mathcal{S}) \) is \(\| M \| := \sup_{s \in \partial \mathcal{U}} \sigma(M(s)) \), where \(\sigma \) is the maximum singular value and \(\partial \mathcal{U} \) is the boundary of \(\mathcal{U} \). We drop \(s \) in transfer matrices such as \(G(s) \).

II. PRELIMINARIES

Consider the standard LTI, MIMO unity-feedback system

\[
\text{Sys}(G_j, C) \quad \text{in Fig. 1, where } G_j \in \mathbb{S}^{m \times u}, \quad j \in \{1, \ldots, k\}, \quad \text{and } C \in \mathbb{R}_p^{m \times m} \text{ denote the plant and the controller.}
\]

We assume \(\text{Sys}(G_j, C) \) is well-posed, \(G_j \) and \(C \) have no unstable hidden-modes, and \(\text{rank} G_j = m \). The objective is to design \(C \) achieving asymptotic tracking of step-input references with zero steady-state error for a finite class of stable plants \(G_j \) simultaneously. Let \(C = N_cD_c^{-1} \) be a right-coprime-factorization (RCF); \(N_c \in \mathbb{S}^{m \times m}, \quad D_c \in \mathbb{S}^{m \times m} \), \(\det D_c(\infty) \neq 0 \). Then \(C \) stabilizes \(G_j \in M(\mathcal{S}) \) if and only if \(M_j := D_c + G_jN_c \) is unimodular [6], [4]. Let the transfer-function from \(r \) to \(e \) be \(H^r \) and let the transfer-function from \(r \) to \(y \) be \(H^y \); then \(H^y = (I_m + G_jC)^{-1} = I_m - G_jC(I_m + G_jC)^{-1} =: I_m - G_jC_{\text{wu}} =: I_m - H^y \).

Definition 2.1: i) The system \(\text{Sys}(G_j, C) \) is stable iff the transfer-function from \((r, v) \) to \((y, w) \) is stable. ii) The controller \(C \) simultaneously stabilizes \(G_j \) for \(j \in \{1, \ldots, k\} \) iff \(C \) is proper and all \(\text{Sys}(G_j, C) \) are stable. iii) The stable \(\text{Sys}(G_j, C) \) has integral-action iff \(H^y \) has blocking-zeros at \(s = 0 \). iv) The controller \(C \) is a simultaneously stabilizing integral-action controller iff \(C \) stabilizes \(G_j \) for \(j \in \{1, \ldots, k\} \), and \(D_c \) of any RCF \(C = N_cD_c^{-1} \) has blocking-zeros at \(s = 0 \), i.e., \(D_c(0) = 0 \).

Suppose that \(\text{Sys}(G_j, C) \) is stable. Then the steady-state error \(e(t) \) due to step inputs at \(t = 0 \) to zero as \(t \to \infty \) and only if \(H^y(0) = 0 \). By Definition 2.1, the stable \(\text{Sys}(G_j, C) \) achieves asymptotic tracking of constant reference inputs with zero steady-state error if and only if it has integral-action. Write \(H^y = (I_m + G_jC)^{-1} = D_cM_c^{-1} = I_m - G_jN_cM_c^{-1} \). Then \(\text{Sys}(G_j, C) \) has integral-action if and only if \(C = N_cD_c^{-1} \) is an integral-action controller since \(H^y(0) = (D_cM_c^{-1})(0) = 0 \) if and only if \(D_c(0) = 0 \). The simplest integral-action controllers are in the proper (realizable) PID form \(C_{\text{pid}} = K_p + K_i r + K_ds^2 + K_ds + 1 \), where \(K_p, K_i, K_D \in \mathbb{R}^{u \times m} \) are the proportional, integral, and derivative constants [3]. Due to implementation issues, a pole is typically added to the derivative term (with \(r > 0 \)) so that the transfer-function \(C_{\text{pid}} \) is proper. The only \(\mathcal{U} \)-pole of \(C_{\text{pid}} \) is at \(s = 0 \). The constants \(K_p, K_D, K_I \) may be negative; in the scalar case, this means the zeros of \(C_{\text{pid}} \) may be in \(\mathcal{U} \). The integral-action in \(C_{\text{pid}} \) is present when \(K_I \neq 0 \).

III. MAIN RESULTS

We derive necessary conditions for existence of simultaneously stabilizing integral-action controllers. We propose explicit PID-controller design under a sufficient condition, which is necessary for systems with a single-output.

Lemma 3.1: (i) (Necessary condition for integral-action): Let \(G_j \in \mathbb{S}^{m \times u} \). If the system \(\text{Sys}(G_j, C) \) has integral-action, then \(\text{rank} G_j(0) = m \leq u \), i.e., \(G_j \) has no transmission-zeros at \(s = 0 \). (ii) (Necessary conditions for simultaneous integral-action): Let \(G_j \in \mathbb{S}^{m \times u}, \quad j \in \{1, \ldots, k\}, \) denote a right-inverse of \(G_j(0) \). a) Suppose that for all \(i, j \in \{1, \ldots, k\}, \) \(G_i(z_0) - G_j(z_0) = 0 \) for some \(s = z_0 \in \mathbb{R} \cap \mathcal{U} \). If there exist simultaneously stabilizing integral-action controllers, then

\[
\det [G_j(0)G_i(0)^T] > 0, \quad \text{for all } i, j \in \{1, \ldots, k\}. \quad (1)
\]

The author is with Electrical and Computer Engineering, University of California, Davis, CA 95616 angundes@ucdavis.edu
b) Suppose that each \(G_j(z_j) = 0 \) for some \(z_j \in \mathbb{R} \cap \mathcal{U}, j \in \{1, \ldots, k\} \). If there exist simultaneously stabilizing PID-controllers, then (1) holds for all \(i, j \in \{1, \ldots, k\} \).

Proposition 3.1: (Simultaneous PID-controller synthesis):

Let \(G_j(z) \in \mathbb{S}^{n \times n}, \text{rank}(G_j(0)) = m \leq u, j \in \{1, \ldots, k\} \).

Designate an arbitrary plant as \(G_i \). Let \(G_i(0)^{i} \in \mathbb{R}^{n \times m} \) denote a right-inverse of \(G_i(0) \). If all eigenvalues of \(G_i(0)G_i(0)^{i} \) are real and positive for \(j \in \{2, \ldots, k\} \), then simultaneously stabilizing PID-controllers exist and can be designed as follows: Let \(F = 0 \) for a PD-controller, \(F = 1 \) for a PID-controller. Choose any \(K_{P}^\ast, K_D \in \mathbb{R}^{n \times m}, \tau > 0 \). Define \(\hat{C} := K_P + \frac{K_D}{\tau + I} + \frac{G_i(0)^{i}}{s} F \). Choose any \(\beta \in \mathbb{R}_+ \) satisfying \(0 < \beta < \min_j \{\{1, \ldots, k\} \} \parallel s \hat{G}_i \hat{C} - G_i(0)G_i(0)^{i} F \parallel^{-1} \). Let \(K_P = \beta K_P^\ast, K_D = \beta K_D, K_I = \beta G_i(0)^{i} \). Then a PID-controller that simultaneously stabilizes all \(G_j \) is \(\hat{C} \) and \(\beta \hat{C} = \beta K_P^\ast, \beta K_D, \beta K_I = \beta G_i(0)^{i} \). This is a PID-controller for \(F = 0 \), a PI-controller for \(K_D = 0 \), an ID-controller for \(K_P = 0 \), and an I-controller for \(\hat{K}_D^\ast = \beta K_P^\ast \).

Corollary 3.1: (Necessary and sufficient existence conditions for simultaneous PID-controllers): Let \(G_j(0) \leq 0 \), \(j \in \{1, \ldots, k\} \). a) Suppose that for all \(i, j \in \{1, \ldots, k\}, G_i(z_i) - G_j(z_j) = 0, \) for some \(s = z_o \in \mathbb{R} \cap \mathcal{U} \). There exist simultaneously stabilizing integral-action controllers if and only if \(G_j(0)G_i(0)^{i} \) > 0, for all \(i, j \in \{1, \ldots, k\} \). b) Suppose that each \(G_j(z_j) = 0 \) for some \(z_j \in \mathbb{R} \cap \mathcal{U} \), then simultaneously stabilizing PID-controllers exist and can be designed as follows: Let \(F = 0 \) for a PD-controller, \(F = 1 \) for a PID-controller. Choose any \(K_P^\ast, K_D \in \mathbb{R}^{n \times m}, \tau > 0 \). Define \(\hat{C} := K_P + \frac{K_D}{\tau + I} + \frac{G_i(0)^{i}}{s} F \). Choose any \(\beta \in \mathbb{R}_+ \) satisfying \(0 < \beta < \min_j \{\{1, \ldots, k\} \} \parallel s \hat{G}_i \hat{C} - G_i(0)G_i(0)^{i} F \parallel^{-1} \). Let \(K_P = \beta K_P^\ast, K_D = \beta K_D, K_I = \beta G_i(0)^{i} \). Then a PID-controller that simultaneously stabilizes all \(G_j \) is \(\hat{C} \) and \(\beta \hat{C} = \beta K_P^\ast, \beta K_D, \beta K_I = \beta G_i(0)^{i} \). This is a PID-controller for \(F = 0 \), a PI-controller for \(K_D = 0 \), an ID-controller for \(K_P = 0 \), and an I-controller for \(\hat{K}_D^\ast = \beta K_P^\ast \).

IV. CONCLUSIONS

We showed that a class of stable plants \(\{G_1, \ldots, G_k\} \) with blocking-zeros in \(\mathcal{U} \) can be simultaneously stabilized using low-order integral-action (PID) controllers only if \(\text{det}(G_j(0)G_i(0)^{i}) > 0 \) for all \(i, j \in \{1, \ldots, k\} \). If the eigenvalues of \(G_j(0)G_i(0)^{i} \) are real and positive for some arbitrary \(G_1 \) of the class, then there exist simultaneous PID-controllers. The necessary conditions and the sufficient conditions coincide for systems with only one output. Under the sufficient condition of positive eigenvalues for the Dc-gain matrix, we presented a PID synthesis method, which allows a wide range of choices for the PID parameters.

APPENDIX: PROOFS

Proof of Lemma 3.1: i) The stability of \(\text{Sys}(G_j, C) \) implies \(H_j^{sr}(0) = I_m - G_jH_j^{uw}(0) = 0, \) i.e., \(G_jH_j^{uw}(0) = I_m \). Therefore, \(\text{rank}(G_jH_j^{uw}(0)) = m \leq \min\{\text{rank}G_j(0), \text{rank}H_j^{uw}(0)\} \leq \min\{m, u\} \) and hence, \(\text{rank}(G_j(0)) = m \). ii) a) Let \(C = N_D^{-1} \) be an integral-action controller simultaneously stabilizing the class \(\{G_1, \ldots, G_i, \ldots, G_j, \ldots, G_k\} \), where \(G_i, G_j \) are two arbitrary plants. Since \(C \) has integral-action, \(D_c = \frac{a}{s+a} D_c \) for any \(a \in \mathbb{R}_+ \), where \(D_c \in \mathcal{M}(S) \). Then \(M_i = \frac{a}{s+a} D_c + G_i N_c \) and \(M_j = \frac{a}{s+a} D_c + G_j N_c \) are unimodular. By assumption, \(G_i(z_0) = G_j(z_0) \) for the same \(z_0 \in \mathbb{R}_+ \) and \(\infty \) implies \(M_i(z_0) = M_j(z_0) = [G_i(z_0) - G_j(z_0)]N_c(z_0) = 0, \) i.e., \(M_i(z_0) = M_j(z_0) \). Since \(\text{det}(M_i(z_0)) = \text{det}(M_j(z_0)) \) at some \(z_0 \in \mathcal{U} \), \(\text{det}(M_i(s)) \) has the same sign as \(\text{det}(M_j(s)) \) for all \(s \in \mathcal{U} \). At \(s = 0, M_i(0) = G_i(0)N_c(0) \) implies \(N_c(0) = G_i(0)^{i}M_i(0) \) and hence, \(M_j(0) = G_j(0)N_c(0) = G_j(0)(G_j(0)^{i}M_i(0)). \) The conclusion follows since \(\text{det}(M_j(0)) = \text{det}(G_j(0)(G_j(0)^{i}M_i(0))) \) with \(\text{det}(M_j(0)) > 0 \) and \(\text{det}(M_i(0)) > 0 \), implies (1). b) Let \(C_{\text{pid}} \) be a simultaneously stabilizing PID-controller. Write \(C_{\text{pid}} = N_D^{-1} = (\frac{1}{s+a} + C_{\text{pid}}(\frac{1}{s+a} I_{m})^{-1} \) for any \(a > 0 \), i.e., \(N_c = [K_P + \frac{K_D}{\tau + I} + \frac{K_I}{\tau + I}] \). Then \(M_i = \frac{a}{s+a} I + G_i N_c, M_j = \frac{a}{s+a} I + G_j N_c \) are unimodular. By assumption, \(G_i(z_0) = 0 \) for some \(z_0 \in \mathbb{R}_+ \). And \(G_j(z_o) \) for some \(z_o \in \mathbb{R}_+ \) implies \(\text{det}(M_i(z_0)) = \frac{a}{s+a} > 0 \) and \(\text{det}(M_j(z_0)) = \frac{a}{s+a} > 0 \). Since \(\text{det}(M_i(s)) \) has the same sign for all \(s \in \mathcal{U} \), \(\text{det}(M_i(s)) > 0 \), similarly, \(\text{det}(M_j(s)) > 0 \). At \(s = 0, M_i(0) = G_i(0)N_c(0) = G_i(0)^{i}K_i \) implies \(K_i = G_i(0)^{i}M_i(0) \) and hence, \(M_i(0) = G_i(0)N_c(0) = G_i(0)^{i}M_i(0) \). The conclusion follows since \(\text{det}(M_i(0)) = \text{det}(G_i(0)(G_i(0)^{i}M_i(0))) \) with \(\text{det}(M_i(0)) > 0 \) and \(\text{det}(M_i(0)) > 0 \), implies (1).