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In the b.c.f.r. (N,,, D ,  Npl),  if Npl = Z (Npr = I ) ,  then the b.c.f.r. 
reduces to a right-coprime-fraction representation (r.c.f.r.) (a left- 
coprime-fraction representation (1.c .f.r.), respectively). Reducing a 
b.c. f.r. to a r.c. f.r . or a 1.c. f.r. is a difficult problem. As a special case, 
stable rational coprime factorizations were obtained in [8] from a 
stabilizable and detectable state-space realization of P (=  C(sZ - 
A)-IB);  in this case it is possible to use constant state-feedback and 
output-injection to obtain stable matrices (SI - A + BK)- l  and (SI - A 
+ FC) - I .  Note that B and Care constant matrices. In general, all of N,,, 
D ,  and Npl contain “dynamics,” and we have a right-Bezout identity for 
(N,,, D )  and a left-Bezout identity for (D,  Npl); the purpose of this note is 
to use these Bezout identities appropriately to obtain the coprime 
factorizations. 

In this note we use a completely general algebraic approach to obtain a 
r.c.f.r., a I.c.f.r., and the associated generalized Bezout identity from a 
b.c.f.r.: the main result is Proposition 2.5. In order to motivate the 
connection between coprime factorizations, we analyze the unity- 
feedback system S(P,  C), with P factorized as N,D;l, d;plNp, and 
N,,D-’N,,. We write the set of all stabilizing compensators in terms of 
the b.c.f.r. of P in Theorem 2.6. Finally, in Example 2.8, we apply 
Proposition 2.5 to the state-space representation and show that we obtain 
the same coprime factorizations as in [SI. 

Due to the general algebraic setting, our results apply to lumped or 
distributed, continuous-time or discrete-time systems. 

We use the following symbols and abbreviations: “f/O” input-output, 
“ a  := b” a is defined as b, “det A” the determinant of matrix A ,  
“m(H)” the set of matrices with elements in H ,  “I,” the n x n identity 
matrix. 
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Bicoprime Factorizations of the Plant and Their Relation 
to Right- and Left-Coprime Factorizations 

C. A. DESOER AND A. N. GUNDES 

Abstract-In a general algebraic framework, starting with a bicoprime 
factorization P = N,,D- INpl, we obtain a right-coprime factorization 
N D -*, a left-coprime factorization D;’mPp, and the generalized Bezout 
idPen&ies associated with the pairs ( N p ,  0,) and ( D p ,  mp). We express the 
set of all H-stabilizing compensators for P in the unity-feedback 
configuration S ( P ,  C) in terms of (N,,, D ,  N,,) and the elements of the 
Bezout identity. The state-space representation P = C(sI - A ) - ’ B  is 
included as an example. 

INTRODUCTION 

The set of all stabilizing compensators and achievable performance for 
a given plant P has been of great interest in the analysis and synthesis of 
linear time-invariant multiinput multioutput (MIMO) systems. Stabilizing 
compensators were first characterized in [l 11 for continuous-time and 
discrete-time lumped systems. An algebraic approach that included 
distributed as well as lumped continuous-time and discrete-time systems 
was given in [2]. Algebraic formulations were used by many researchers; 
for a detailed review of the factorization approach and related topics until 
1985, see [9] and the references therein. 

The well-known class of all stabilizing compensators is based on a 
right-coprime factorization (P  = NpD - I )  or a left-coprime factorization 
( P  = Bp’N,) of the plant P [31-[$, [9], [lo], 171. It is useful to 
parametrize all stabilizing compensators starting with bicoprime factori- 
zations ( P  = N,,D- INp/) as well, since a bicoprime-fraction representa- 
tion (b.c.f.r.) is sometimes readily available (as in closed-loop input- 
output (110) maps of MIMO feedback systems). For example, in 
decentralized control it is more convenient to factorize an m-channel plant 
as 
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I. ALGEBRAIC BACKGROUND 

A .  Notation [6J, [9] 

H is a principal ring (i.e., an entire commutative ring in which every 

J C H i s  the group of units of H. 
Z C H i s  a multiplicative subsystem, 0 I ,  1 E Z (i.e., x E Z, y E Z 

* xy E I ) .  
G = H / I  : = { n / d n  E H ,  d E Z} is the ring of fractions of H 

associated with Z. 
G, (Jacobson radical of the ring G )  : = { x  E G:(l + xy)-l E G ,  for 

all y E G } .  
Note that i) Z = the set of units of G which are in H. ii) Let A E 

m(H),  B E m(G),  then a) A - ’  E m ( H )  iff det A E J a n d  b) B-l E 
m(G)  iff det B E I .  iii) Let Y E m(G,), X ,  Z E m(G),  then X Y ,  YZ E 
m(G,) and (Z + X Y ) - ’ ,  (Z + Y Z ) - l  E m(G).  iv) Let a, b, E H, then 
ab E J i f f  aand b E J .  v) Let c,  d E H. Thencd E Ziff candd  E Z 

1.2. Example (Rational Functions in s): Let U 3 e+ be a closed 
subset of C, symmetric about the real axis, and let \ U be nonempty; let 
8 : = U U { m}. The ring of proper scalar rational functions (with real 
coefficients) which are analytic in U is a principal ring; we denote it by 
R,(s). Let H = R,(s). By definition of J ,  f E Jimplies that f has neither 
poles nor zeros in 8. We choose Z to be the multiplicative subset of R,(s) 
such that f E Zimplies that f ( m )  is a nonzero constant in R; equivalently, 
Z C R,(s) is the set of proper, but not strictly proper, real rational 
functions which are analytic in U .  Then R,(s)/Z is the ring of proper 
rational functions @,(s). The set of strictly proper rational functions 
Rsp(s) is the Jacobson radical of the ring FJ,,(s). 

ideal is principal). 

PI. 

1.3. Definitions (Coprime Factorizations in H): 
i) The pair (N,, Dp), where N,, D, E m(H) ,  is called right-coprime 

(r.c.) iff there exist U,, V, E m ( H )  such that 

VpDp+ U,N,=I; (1.1) 

ii) the pair (N,, Dp) is  called a right-fraction representution (r.f.r.) 
of P E m(G)  iff 

Dp is square, det Dp E Z and P = N P D i 1 ;  (1 -2) 

---I- 71 -- 
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Fig. 1. The system S(P,  C ) .  

iii) the pair (N,, 0,) is called a right-coprime-fraction representa- 
tion (r.c.f.r.) of 

P E m(G) iff (N,, 0,) is a r.f.r. of P and ( N p ,  0,) is r.c. 

The definitions of left-coprime (I.c.), left-fraction representation 
(1.f.r.) and left-coprime-fraction representation (1.c.f.r.) are duals of i), 
ii), and iii), respectively 191, [71, [SI. 

iv) The triple (N,,, D ,  Npl), N,,, D ,  NpI E m ( H )  is called a 
bicoprime-fraction representation (b.c.f.r.) of P E m(G) iff the pair 
(N,,, D )  is right-coprime, the pair (D,  Npl) is left-coprime, det D E I 

Note that every P E m(G) has a r.c.f.r. (N,, D,), a 1.c.f.r. (a,, N,), 
and P = N,,D-'N,I. 0 

and a b.c.f.r. (N,,, D ,  Npl) in H because H i s  a principal ring [9]. 

11. MAIN RESULTS 

Consider the system S(P, C) in Fig. 1. 
2.1. Assumptions: A) P E G? "1. Let (N,, 0,) be a r.c.f.r., (a,, 

fip)beaI.c.f.r.,(N,,,D,Npl)beab.c.f.r.ofP,whereN, E H " o X n i , D p  

E H"ix"i, Bp E H " o X n o ,  Np E H"oX"t, Npr E H"ox",  D E H"'", Npl 
E Hnx"l. 
B) C E G"ix"o. Let (a,, Nc) be a 1.c.f.r. and (Nc, DJ be a r.c.f.r. of 

C, where Dc E H"ixni, fi, E H"tX"o,  N, E H n i x n o ,  D, E H n o X n o .  

If P satisfies assumption A) we have the following generalized Bezout 
identities. 

1) For the r.c. pair (N,, D,) and the I.c. pair (a,, N,), where P = 
NpDpI = ai'fi,, there are matrices V,, U,, U,, rp E m ( H )  such that 

((N,, D,), (a,, fi,)) is called a doubly-coprime factorization of P. 
2) For the b.c.f.r. (Npr, D ,  Npl) we have two generalized Bezout 

identities: for the r.c. pair (N,,, D ) ,  there are matrices V,,, U,,, -?, y, 
0, P E m ( H )  such that 

0 I", 

for the I.c. pair (D,  Npl) there are matrices Vpl, Up/, X, Y ,  U, V E m ( H )  
such that 

[; -;] [ -v;pl ;] = [; ;,] ' 

(2.3) 

Let 

y : =  [ ; I  , U : =  [ ; ; I  
the map Hyu:u * y is called the I/O map. 

2.2. Definition (H-Stability): The system S(P, C) is said to be H -  
stable iff H,, E m(H).  

2.3. Definition (H-Stabilizing Compensator): 1) C is called an H- 
stabilizing compensator for P iff C E G n i x n o  satisfies assumption B) 
and the system S(P, C) is H-stable. 2) The set 

S (  P )  : = { C : C H-stabilizes P} (2.4) 

is called the set of all H-stabilizing compensators for P. 
We analyze the system S(P, C) by factorizing P and C as in the four 

Fig. 2. S(P,  C) with P = N,D;' and C = 

cases below; the first two analyses give the well-known set S(P)  of all H- 
stabilizing compensators in terms of familiar r.c.f.r. and 1.c.f.r. of P [9], 

2.4. Analysis: Case I :  Let P = N D - '  and let C = d;'N,, where 
(N,, 0,) is r.c. and (a,, Nc) is I.c. (see Fig. 2). S(P, C) is then described 

[lo], 131. 

P P  

by W ) ,  (2.6) 

S(P, C) is H-stable if and only if [DcDp + NcN,] E m ( H )  is H- 
unimodular [9], [lo], [5]. It is well known (see, for example, [9], [3], [5], 
[7]) that the set S(P) of all H-stabilizing compensators is given by 

S ( P ) = { ( V , - Q ~ , ) - I ( U P + Q d p )  : Q E H " ~ x " o }  (2.7) 

where V,, U,, N,, a, are as in (2.1). 

(N,, D,) is r.c. (see Fig. 3). S(P, C) is then described by (2.8), (2.9) 
Case2: Now let P = dplNp, C = N,D;', where (a,, N,) is 1.c. and 

S(P, C) is H-stable if and only if [DpDc + NpNc] E m ( H )  is H- 
unimodular (which is equivalent to [d ,D,  + NcN,] E m ( H )  is H-  
unimodular). The set S(P) of all H-stabilizing compensators is given by 

where 0, p, N,, Dp are as in (2.1). 
Case 3: Now let P = N2,D;INPl and let C = f i ; I f i c ,  where (N,,, D,  

N,l) is a b.c.f.r. and (D,, N,) is 1.c. (see Fig. 4). S(P, C) is then 
described by (2.1 l), (2.12) 

(2.12) 

Equations (2.11), (2.12) are of the form DHl = NLu, NR[ = y, where 
(NR, DH) is a r.c. pair and (DH, NL) is a 1.c. pair, NR,  DH, NL E m(H) .  
The system S(P, C) is H-stable if and only if D;' E m(H);  
equivalently, S(P, C) is H-stable if and only if - - 

D -Npi (2.13) 
DH= lNcNp, d, 1 is H-unirncdular. 

R := 1 
by (2.3), R E m ( H )  is H-unimodular. Postmultiply DH by R 

r 
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Fig. 3.  S(P, C) with P = a;'N, and C = NCO;'. Fig. 5 .  S(P,  C) with P = N,,D-'N,, and C = NcDc-' 

the left-hand side of (2.22) as Mand  M-I,  respectively, (2.22) then reads 

MM-'=I"o+ .3 .  (2.23) 

2) If, instead of NP,D-'NpI, the plant is given by P = NprD-'Npl + 
E, where E E m ( H ) ,  then a r.c.f.r. and a 1.c.f.r. are given by 

Fig. 4 S(P,  C) with P = N,,D-'N,, and C = ac-'Nc. 
(Np ,  0,) := (NprX+EY, Y ) ,  (Bp, N,) := (9 ,  x N p , i  PE), 

DH is H-unimodular if and only if DHR is H-unimodular; hence, (2.13) 
holds if and only if 

Vp : = V i  UVp,Np,- UUp,E, U, = UU,,, 
- -  up := -U,,U, V, := P+Np,Vp~u-EU,Iu. 

NcNp,X+ a, Y = : DHR is H-unimodular. (2.15) 

The set S(P) of all H-stabilizing compensators is then the set of all D; INc 
such that (2.15) is satisfied. 

Case 4: Finally, let P = Np,D-'NPl and let C = N,D;', where (N,,, 
D,  N,/) is a b.c.f.r. and (Nc,  D,) is r.c. (see Fig. 5). S(P, C)  is then 
described by (2.16), (2.17) 

(2.17) 

Following similar steps as in Case 3 of the analysis, we conclude that S(P, 
C) is H-stable if and only if 

DH : = [ :, is H-unimodular. (2.18) 

Let 

L J 

by (2.2), L E y ( H )  is H-unimodular; and hence, BH is H-unimodular if 
and only if LDH is H-unimodular. The set S(P) of all H-stabilizing 
compensators is then the set of all N,D; I such that 

xN,/N,+ YDc = : DHL is H-unimodular. (2.19) 

U 

We obtain a r.c.f.r. (Np,  0,) and a 1.c.f.r. (D,, N,) for P from the 
given b.c.f.r. (N,,, D,  Np/) in Proposition 2.5 below; using the 
relationship between these coprime-factorizations, the set of all H- 
stabilizing compensators is given by (2.7) and equivalently, by (2.10). 

2.5 Proposition: Let P E m(G,). Let (N,,, D,  Npl) be a b.c.f.r. of P, 
hence, (2.2), (2.3) hold. Under these conditions, 

(Np ,  0,) := (Np,X, Y )  is a r.c.f.r. of P, 

(a,, Np)  : = ( 9, BNp,) is a 1.c.f.r. of P, 

(2.20) 

(2.21) 

Comments: 1) Using (2.2), (2.3) we obtain a generalized Bezout 
where X ,  Y ,  X, P E m ( H )  are defined in (2.2), (2.3). 

identity for the doubly-coprime pair ((NprX, Y ) ,  (P, XNpI)) 

(2.22) 

Note the similarity between (2.1) and (2.22). We refer to the matrices on 

Proof of Proposition 2.5: By assumption, P = NprD-'Np,, and 
(2.2), (2.3) hold. Clearly Np,X, Y ,  P, XNp/ E m(H) .  We must show 
that (NprX, Y )  is a r.c. pair with det Y E I and that (P, XNpJ is a 1.c. 
pair with det P E I. 

By (2.22), (NprX, Y )  is a r.c. pair and (Y, XNpl) is a I.c. pair; more 
specifically, if (Np,X, Y )  : = (N,, Dp) and (Y, XNp,) : = (Dp, Np), then 

VpDp i UpNp = I.,, Np up i Bp V, = I.,, (2.24) 

where 

V, := V+UVp,Np~, Up := UU,,, up := Uplo, ~,=P+N,,V,,~. 

(2.25) 

Now P E m(G,). Postmultiplying P by Y and using NplY = DX from 
the Bezout equation (2.3), we obtain 

PY = Np,D- ' Npl Y = Np,X E m ( Gs)  . (2.26) 

and using YNp, = X D  from the Bezout equation Premultiplying P by 
(2.2), we obtain 

yP= ~ N p , D - ~ N p I = ~ N p ,  E m(Gs). (2.27) 

By (2.26), N, : = NprX E m(GJ and hence, U,Np : = UUp,,NprX E 
m(G,); then (2.24) implies that det (VpDp) = det (I,,, - UpNp) E Iand 
hence, det V, E Zand det Dp : = det Y E Z. From (2.22J-$2.24), since 
d_etMEJanddetYEI,weobtaindetYdetM=det[o , , , ] M = d e t  
Y E I .  

At this point we know that Y-l E m(G) and P-' E m(G). By (2.26), 

0 

P=N,,XY-' 
and similarly, by (2.27), 

(2.28) 

P= y - ' x N p l .  (2.29) 

Finally, since (2.28) and (2.24) hold and since det Y E Z, with Np,  Dp E 
m(H),  (NprX, Y )  = : (Np,  Dp), is a r.c. f.r. of P. Similarly, from (2.29), 
(2.24), and det P E I, with Dp, Np E m(H) ,  (P, XNPJ = : (Dp, Np), is 

U a 1.c.f.r. of P. 
Comment: If P E m(G) but not m(G,), (2.20), (2.21) still give a 

r.c.f.r. and a 1.c.f.r. of P, respectively. The only difference in this case is 
in showing that det Y E Z and det P E I: Consider the Bezout equation 
(2.2); since P E m(G), det Ypr is not necessarily E I. Choose T E 
m(H)  such that det (Vpr - T X )  E I [9]; then by (2.2), 

(2.30) 

T I  
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Since det D E I, from (2.30) we get det ((Vpr - T x ) D )  = det (I,, - 
(Upr + T n N P r )  = det (in0 - Npr(Upr + T n )  - d e t  ((P - T N p , ) n  
E I; equivalently, det (V  - TN,,) E Z atd det Y E I. So by (2.22), 
since det M E J ,  we obtain det Y = det Y det M -  I E I .  

2.6. Theorem (Set of A N  H-Stabilizing Compensators): Let P E 
m(G,) and let (N,,, D ,  Npl) be a b.c.f.r. of P, hence (2.2) and (2.3) hold. 
Then 

S (  P )  = {( V+ UVprNpl- QZN,,) - I  ( UUPr + Q p) : Q E m ( H ) } ;  

(2.32) 

equivalently, 

S(P)={ (U, ,o+YQ)(P+N, ,V , ,o -N , ,XQ)- '  : Q E m ( H ) } ;  

(2.33) 

where the matrices in (2.32), (2.33) are as in the generalized Bezout 
equation (2.22). 

Comment: By Proposition 2.5 we know how to obtain a r.c.f.r. (N,, 
D,) and a 1.c.f.r. (a,, N,) from a b.c.f.r. (N,,, D ,  N,,) of P E m(G,): 
with (N,, 0,) as in (2.20), (a,, I?,) as in (2.21), and V,, U,, V,, 0, as 
in (2.25), the generalized Bezout equation (2.22) is the same as the Bezout 
equation (2.1). Furthermore, _observe that (2.20) substituted into (2.15) 
implies that DHR = NCNp + D,Dp, and hence, H-stability using Analysis 
2.4-Case 3 is equivalent to establishing H-stability using Case 1. 
Therefore, it is no surprise that S(P) in (2.32) is the same as S(P) in 
(2.7), with (2.20) and (2.252 in mindL Similarly, (2.21) substituted into 
(2.19) implies that DxL = NpNc + DpD,, and hence, H-stability using 
Analysis 2.4-Case 4 is equivalent to Case 2. Therefore, S(P) in (2.33) is 
the same as S(P) in (2.10), with (2.21) and (2.25) in mind. 

Although the discussion above justifies Theorem 2.6, we now give a 
formal proof. 

Proof of Theorem 2.6: We only prove that the set S(P) in (2.32) is 
the set of all H-stabilizing compensators; the proof of equation (2.33) is 
entirely similar. 

If C is defined by the expression in (2.32) then C H-stabilizes P. 
Let 

C=d;;'Nc, Dc= V+UVp',,Np/-QzNp,, Nc= UUpr+QF. (2.34) 

We must show that i) C satisfies assumption B), i.e., a,, 15, E m ( H )  
with det 6, E Zand the pair (a,, I?,) is I.c., and ii) S(P, C) is H-stable, 
i.e., (2.15) holds. 

i) From (2.34), Nc E m(H).  By the generalized Bezout equation 
(2.221, 

D H R  = NcNprX+ fit Y = ( VU,,+ Q P)N,,X 

+ ( V+ UV,,N,,- Q-fNp/) Y= I.,. (2.35) 

By (2.35), (a,, Nc) is a I.c. pair. In the proof of Proposition 2.5 we 
showed that N,,X E m(G,) [see (2.26)], and hence I?,NPrX E m(G,). 
We conclude :om (2.35) that det (D,:) det (Zni - N,N,,X) E I ,  
therefore det D, E I; consequently, (D,, N,) is a 1.c.f.r. of C. 

ii) From (2.35), D H ~  = Znl; hence S(P, C) is H-stable since (2.15) 
holds. 

Any C that H-stabilizes P is an element-of '_he set S(P) defined by 
(2.32). Let C E m(G)  H-stabilize P .  Let (Dc, N,) be a 1.c.f.r. of C. By 
assumption, S(P, C) is H-stable; equivalently, by normalizing (2.15), 
DHR = Zni. Then 

675 

from (2.37), C = fi,-II?, is in the set S(P)  in (2.32) for some Q E 
H " l X " o  (in fact, there is a unique Q for each C; we prove this in Corollary 
2.7). 0 

2.7. Corollary: Let C1, C2 E S(P);  then C1 = C2 if and only if Ql = 
Q2. Equivalently, the map Q + C, Q E m ( H ) ,  C E S(P) ,  is one-to- 
one. 

Proof: Let S(P) be given as in (2.32); the proof for (2.33) is entirely 
similar. 

Let Cj = d,'Ncl, C2 = DG1Nc2; by (2.36) 

[Del ! NCs]M-'=[In ,  i Q I ] = D c l [ I n ,  ! CIIM-', 

[D,2 i Nc2]M- '=  [I,,, i QZ] = b c z [ I n z  ! C21M-I. 

(2.38) 

(2.39) 

But C1 = C2 in (2.38), (2.39) implies [I,,, i CI]M-' = 6c;1[Zn, j PI] = 
6;1[Z,,l i Q2] and hence, 

Now suppose Cl is given by a 1.c.f.r. (Del, I?,,) but C2 is given by a 
r.c.f.r. (Nc2, DC2); then by (2.33) and (2.22), 

= dc2; cons_equently, Ql = Q2. 

r 

=: [I,,, i Q ]  (2.36) 1 Y - up/o 
Np,X P+ Npr V,, ii 

[Dc i Nc] 

where Q :=  up,^ + I?,(P + NprVplO) E Hnix"o .  Postmultiply 
both sides of (2.36) by the H-unimodular matrix M defined in (2.22), 
(2.23) 

(2.40) 

By (2.40), (2.38), and (2.23) we obtain 

[Del : N c I ] M - ' M  [ =[I,, i Q I ]  [ . (2.41) 

But CI = C2 implies r3,1D,2 = ~ , l N c 2 ;  therefore by (2.41), ( -  aCINc2  
+ NcjDc2) = QI - Q2 = 0. We conclude that for each C E S(P),  there 

0 
2.8. Example: Let H = R,(s) as in Example 1.2. Let P = $&p(s)"oxnf 

be represented by its state-space representation 1 = Ax + Eu, y = Cx, 
where (C, A, B) is stabilizable and detectable in P. Then P = (s + 
a)-IC[(s + a)-'(sZ - A)]-IE, where a E W, - U  E @\a. The pair ((s 
+ a)- 'C, (s + a)-'(sZ - A)) is r.c. in R,(s), the pair ((s + a)-l(sI - 
A), E) is 1.c. in R,(s), and det [(s + a)-'(sI - A)] E I .  Therefore, 
(N,,, D ,  Np/) = ((s + a)-IC, (s + a)-l(sZ - A), B) is a b.c.f.r. of P. 
Choose K E Wnix"  and F E Wnx"o such that (A - BK) and (A - FC) 
have all eigenvalues in @? \ U ;  Let GK : = (SI,, - A + EK ) -  I and let GF 
:= (SI,, - A + FC)-l; then(s + a)(sZ,, - A + B K ) - '  = (s + u)GK 
and (s + a)(sI,, - A + FC)-l = (s + a)GFare E m(R,(s)). For this 
special b.c.f.r., (2.2), (2.3) and (2.22) become 

is a unique Q E m ( H ) .  

- CGF I n ,  - CGF F (s + a)  - I c I", 

(2.2s) 

= I" + ", ; 1 (s+a) - ' (s I , -A )  - B ]  [ ( s + a ) G K  ( ~ + u ) G K B  

(s + U )  - I  K In, - KGK In, - KGKB 

(2.3s) 

= I", + n ~. 

(2.22s) 

Note that (2.228) gives the coprime factorizations obtained in [8, eq. (1)- 

1 In,+KG,B KGFF ] [In,-KGKB -KGKF 

-CGFB I,,-CGFF CFKB I,,+CGKF 

( 4 ~ .  

111. CONCLUSIONS 

From a given b.c.f.r. (NprLD, N,J for P E m(G,), we obtain a r.c.f.r. 
(N,, D,), a 1.c.f.r. (a,, N,), and the associated generalized Bezout 
identities. We find the class of all H-stabilizing compensators for P based 
on (N,,, D, NPJ: with V, U, Vpr, Upr, A?, P a s  in (2.22), C E Gnixno, 

given by 

C = D; 'Nc = ( V+ UV,,Np, - QzN,,,) -' ( UU,, + Q p) (3.1) 

H-stabilizes P, where Q E m ( H )  is a free parameter. If we design a two- 
degrees-of-freedom compensator C : = IC2, ! C,,] (as in [3], [41, [91, for 

--Ti I 
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example), then C = d;I[Qzl ! Rc], where QZ1 E m ( H ) ,  and6;lNc is 
given by (3.1); in this case there are two free parameters. 
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A Sufficient Condition for Output Feedback 
Stabilization of Uncertain 

Dynamical Systems 

AVRAHAM STEINBERG 

Abstract-A different proof than the one given in [6] is given for the 
existence of an output feedback controller which stabilizes an uncertain 
single-input single-output dynamical system with a linear nominal part 
and matched uncertainties. Yet there is no need to assume that the 
nominal system is stable. A simple expression is obtained for the feedback 
gain which is necessary for the closed-loop nominal system to become 
strictly positive real. 

INTRODUCTION 

Recently [ 11, a condition was given for the existence of a static output 
feedback stabilizing controller for an uncertain dynamical system with a 
linear nominal part and matched [2]-[5] uncertainties with known bounds. 
For a single-input single-output system, the condition requires that the 
input-output transfer function g(s) of the nominal linear system be strictly 
positive real (SPR) [l]. Consider the output feedback stabilization of the 
following single-input, single-output system: 

x ( t ) = A x ( t ) + b [ u ( t ) + e ( t , x ) ] ;  x ( t )  E R”, b E R”, u(t )  E R 

y ( t ) = C T x ( t ) ;  C E R” (1) 
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where the known triple (Cr, A ,  6)  defines a nominal linear system and 
e:R X R “  + R models all uncertainty which is assumed matched. The 
input-output transfer function g(s) for the nominal linear system in (1) is 
given by 

g(s) 6 CJ(sZ-A)- lb .  (2) 

In [l] it is established that if g(s) is SPR, then stability (in the sense 
defined in 111) can be achieved, in the presence of arbitrary admissible 
uncertainty e ( t ,  x ) ,  by linear static output feedback 

u ( t ) =  - 7 . w  (3) 

with sufficiently large gain y > 0. 
A less restrictive sufficient condition for the existence of a stabilizing 

controller was given in 161. In [6] it is assumed that the nominal system is 
stable and that its transfer function g(s): 

a) has a positive leading coefficient, 
b) satisfies g(s) # 0 for Re [s]  2 0, 

and 
c) g(s) has relative degree one, i.e., if its denominator polynomial is of 

order n ,  then its numerator polynomial is of order (n - 1). 
It was shown in [6] that a nominal system satisfying conditions a)-c) 

can always become SPR by applying negative constant gain output 
feedback U = - ky. Once the nominal system becomes SPR, additional 
gain is necessary to stabilize system (1) with uncertainties. 

In this note we provide a different proof for the lemma in 161, yet there 
is no need to assume that the nominal system is stable, as assumed in the 
Introduction and in the example in [6]. Furthermore, the proof we give 
allows us to obtain a simple expression for the feedback gain K which is 
necessary for the closed-loop nominal system to become SPR. Thus, it is 
not necessary to solve Lyapunov’s equation as was done in 161. 

FREQUENCY DOMAIN CONDITIONS FOR SPR FUNCTIONS [7] 

A transfer function $(s) for a linear single-input, single-output system, 

a) $(s) is analytic in Re [s] 2 0, 
b) Re [ $ ( j w ) ]  > 0 V w E (-03, w), 

c) liW+- w 2  Re [$ ( jw) ]  > 0. 
Allowing A in (1) to be unstable, we prove the following lemma and 

derive an expression for the gain K that is necessary to make the closed- 
loop nominal system SPR. 

with relative degree m = 1, is SPR if and only if 

and 

Lemma: Given a transfer function 

Assume the roots of n(s) = 0 are in Re [s] < 0. Then, for a sufficiently 
large gain K z K, the closed-loop transfer function 

(4) 

is SPR. 
Proof: We have to show that the SPR conditions are satisfied. 

Consider the function 

By assumption, n(s) has no roots on the imaginary axis, thus, n( jw)  # 
0 and Re d(jw)/n( j w )  is finite for all finite w .  Furthermore, it can be 
easily verified that Iimw+- Re d( jw) /n(  j w )  = a, - I - b, - 2 .  

Hence, the following is well defined: 
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