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Abstract- The design of MIMO PI controller 
is formulated as an LQR problem. The weighting 
matrices of the quadratic performance index are 
chosen so that tuning can be done for each input- 
output channel and for tradeoff between transient 
response and robustness with respect to modeling 
error. The number of tuning parameters is the 
same as that of a decentralized PI controller. A 
d&ign example is given to demonstrate the feasi- 
bility of the proposed approach. 

1 Introduction 

The PI (proportional plus integral) controller is 
probably the most commonly used controller in 
the industry. that Arguably the PI controller is 
the simplest practical controller that provides in- 
tegral action which is required in many process 
control applications for asymptotic tracking of set- 
point commands and rejection of constant load dis- 
turbances [3],[11],[8]. There is much research on 
the design (or tuning) of PI  controllers for SISO 
systems but very little is done on MIMO design. 
Proportional plus integral state feedback design, 
in the LQR framework, is discussed in [l] and [2], 

however the state estimator included for output 
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feedback implementation gives away the simplicity 
of PI control. So far almost all the MIMO PI con- 
trollers proposed have a decentralized structure, 
although some design include static precompen- 
sation to achieve diagonal dominance at steady- 
state [13], [4], [5]. In general decentralized struc- 
ture limits performance although, being simpler, it 
may have some advantage in real-time implemen- 
tations, e. g., fewer tuning parameters and easier 
to make the design fault-tolerant [lo], [7]. 

In this paper, the design of MIMO PI controller 
is formulated as an LQR problem. The weighting 
matrices of the quadratic performance index are 
chosen so that tuning can be done for each input- 
output channel and for tradeoff between transient 
response and robustness with respect to modeling 
error.There are two tuning parameters for each 
input-output channel. For low order plants, the 
number of inputs equals the number of states, the 
PI controller implements exactly the optimal state 
feedback. For high order plants, the design in- 
volves approximations: either model reduction of 
the plant or approximation of the feedback gain 
matrix or both. The error in the approximation 
is taken into account in robustness consideration 
and tuning can be done accordingly. A design ex- 
ample is given to demonstrate the feasibility of the 
proposed approach. 
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The paper is organized as follows. Section 2 de- 

scribes the design problem and shows that, under 

the assumptions, a stabilizing PI controller exits . 
Section 3 discusses the proposed design approaches 

A design example is given in Section 4 and conclud- 
ing remarks is given in Section 5.  

2 Problem Formulation 

Consider the linear time-invariant multi-input 
multi-output plant 

where A E IRnXn, B E Rnxm and C E EtmXn.  The 

plant has m inputs and m outputs and the input- 
output transfer matrix is P ( s )  = C(s1 - A)-'B. 
We make the following assumptions throughout 
(Al)  The plant is controllable, observable and 

(asymptotically) stable, and 
(A2) The plant has no transmission zero at s = 0, 
that is, P(0) = -CA-lB is nonsingular. 
It follows from (A2) that A is nonsingular and both 
B and C are full rank. We note also that (A.2) 

is equivalent to that [ -: t ]  is nonsingular. 

The problem studied in this paper is the following. 

Given the MIMO plant (2.1) and (2.2) and a fixed 
PI controller structure, how do we design the PI 
gain matrices so that the closed-loop system is sta- 

ble and achieves some performance requirements? 
The block diagram of the feedback system is shown 
in Figure 1, where Kp and Ki are respectively the 
proportional gain matrix and the integral gain ma- 

trix. We note that in decentralized PI controllers 

these gain matrices are constrained to be diago- 
nal; in our proposed design they are in general full 
matrices. 

Refer to Figure 1, the equation of the PI con- 

Figure 1: Closed-loop system with PI controller 

troller are 

where T is the command input, e is the tracking 

error, Kp E RmXm and Ki E EtmXm. For design 

purpose we will assume that the command input 

is a vector of step functions, i.e., ~ ( t )  = f l ( t )  and 

F E  IRm. 
If the closed-loop system is stable, then 

Ki is nonsingular and the system reaches con- 
stant steady-state as t 3 00. In steady- 
state, y(00) = F, e ( m )  = 0, U ( W )  = 

-(CA-'B)-'F, .(CO) = -KtF'(CA-'B)-'F and 

.(CO) = A-'B(CA-'B)-'f. Define the deviation 
variables 2 = z - z(m), ij = w - w(w), ii = 

U - U ( C O )  and y" = y - f and rewrite the state 
equations of the closed-loop system as 

where 

A.=[ -c A 0 '1 
We note that e = -y". We can think of the de- 
sign problem as one of constrained state feedback 
design or if we take ij as part of the output (in 
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addition to @), as one of output feedback design. 

The design goal here is to obtain good dynamic re- 

sponse of the tracking error e while maintaining a 

certain degree of robustness. Before discussing the 

design approaches, we show first that a stabilizing 

design exists, that is, there is always a nontrivial 

(Ki # 0) PI controller which stabilizes the closed- 

loop system. 

Proposition 1 Under the assumptions (A.  1)  and 
(A.2), there is a PI controller with Ki nonsingular 
so that the closed-loop system shown in Figure 1 i s  

stable. 

Remarks: (a) Assumption (A2) is also necessary 

since otherwise there would be unstable pole-zero 

cancellations at s = 0. (b) The result is also true 

for rectangular plants with more inputs than out- 

puts. 

Proof: Let K E Etmx" be positive definite. Then, 

for any Ki nonsingular, 

K p  + 5 = [(Kps + Kz)(sI + K)-'] [+I+ K )  -y 

is a right coprime factorization of the controller. 
Since P ( s )  is stable, the closed-loop system is sta- 

ble if and only if M ( s )  := P(s)(K,s + &)(SI  + 
K)-l  + s (s I+ K)-' is unimodular. Choose Ki = 

P(O)-lK, which is nonsingular, and Kp = l?K for 

some I? E Etmx". Then 

) sK(sI+K)  -' P ( s ) ( K s  + P(O)-l) - I 
S 

M ( s )  = I+( 

Since lls(sI + K)-'lloo 5 1, M ( s )  is unimodular,if 

It&'. Hence there is 

a stabilizing PI controller with Ki nonsingular. 0 

P(s) (ks+P(o)- l ) - I  
%"K) < It S 

3 Design Approach 

We discuss the determination of the gain matrices 
Kp and Ki by LQR design . Consider the system 
defined in (2.6). Let G = diag[a:, ' .  . , a&] > 0 and 

let the quadratic performance be defined as 

J = L W ( [ 5 ( t ) T  a(t)T]4? [ ;;;; ] +fi(t)TP(0)TRP(O)fi(t))dt 

where 

CTGC 0 
Q = I 1 and R = diag[Pf,. . . ,&] > 0 

L J 

Since e = -8 = 4 ' 2 ,  the first term of the perfor- 

mance index is simply the weighted sum of square 

tracking error and sum of square integrated error. 

The choice of the second term requires some ex- 

planation. Define 

iqt) = P(O)U(t) 

then the second term inside the integral becomes 

ii(t)TRii(t). If we think of U as the input to the 

plant P(s )  with output Q, then ii is the input to 

the 'normalized plant' P(O)-'P(s) to produce the 

same output Q. Since P(O)-'P(s) is diagonal at 

s = 0, it is nearly decoupled at low frequencies. 

Hence, roughly speaking, weighting a component 

of ii has the effect of weighting the control input 
required for the performance of the corresponding 

component of output Q. The performance index 
can be written as 

where the subscripts i indicate the ith component 

of the respective vector. The parameters ai and 

pi are to be selected for the trade-off between the 

tracking error response and the control effort re- 

quired in each channel. If the response of every 

channel is of the same importance then G and R 
can be chosen as a multiple of identity matrix (to 

start with.) Roughly, increasing R and decreasing 

G improves robustness at the expense of deterio- 

rating dynamic response. The LQR solution gives 

a state feedback control law 

C ( t )  = -(K12(t) + K2iqt)) (3.10) 
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where K1 E E"'" and K2 E E t m X m .  The follow- 

ing result shows that the LQR control law (3.10) 
always gives a stable closed-loop system. 

Proposition 2 {A, ,  Bo} is controllable and 

(Q112, A,} is  observable. 

Proof: We will show that rank[XI - A, Bo] = 

m + n for all X E (E From (2.9), 
I- 7 

It follows from (A.2) that the rank condition holds 

for X = 0. Since { A , B }  is controllable, the rank 

condition holds for all X # 0. The proof of observ- 
ability is similar. 0 

Comparing (2.8) and (3.10), if we assign Ki := 

-K2 and if the proportional gain matrix is such 

that 
KpC = K1 (3.11) 

then the PI control law and the state feedback law 
are identical. The equation (3.11) has a unique so- 

lution if m = n, the number of outputs equals the 
number of states. In this case, Kp = K1C-l. We 
note that there are many processes which can be 
adequately represented by low order models stais- 

fying the above condition[lO], including models for 
rapid thermal processing systems [12], [9]. 

If the plant has more states than outputs, that 

is, m < n, then the equation (3.11) have no solu- 
tion in general. So the LQR control law can not 
be implemented as a PI controller. One way to 

approach this problem is the following. Perform 

a balanced model reduction on the plant to ob- 
tain a reduced plant model with the number of 
states equals the number of outputs, and then de- 
termine the gain matrices Kp and Ki by the LQR 
design with reduced model. The PI controller de- 
signed will guarantee stability and performance of 

the reduced system. How good the design is for 

the original system depends on the model reduc- 
tion error. If the plant can be approximated well 
by the low order model, then this seems a good 
approach. Suppose A(s) is the additive model re- 
duction error transfer matrix, then a condition for 

robust stability is 

(3.12) 

If condition (3.12) is satisfied with some mar- 

gin, then the design can be expected to perform 

well for the original model. In general increase 

R will decrease ~ ~ H u T ~ ~ m .  Of course we have to 
make sure that the reduced model (which is sta- 

ble) has a nonsingular dc-gain. A sufficient con- 

dition for the balanced reduced model to have a 
nonsingular dc-gain is given as follows. Suppose 

01 2 2 a, are the Hankel 

singular values of the plant and 5 1  2 2 em 
are singular values of P(0). If &,, > Cjn,,+,aj, 
then the reduced model obtained using balanced 
realization by keep m states h& a nonsingular dc- 
gain. 

2 a, > am+l 2 

Another way to determine the gain matrices 

is to set Ki = -K2 and Kp as the least square 
solution of (3.11), that is, 

where K = [Kl K2] is the gain matrix obtained by 
solving the original LQR problem. Error is now in- 

troduced to the supposedly optimal state feedback 
controller. Performance of this approximated de- 

sign depends on the error Kl(I  - CT(CCT)-lC),  
small error ensures good performance. A combi- 

nation of the two approaches above is to do model 
reduction keeping enough states (> m) to ensure 
small reduction error and to determine K p  by least 

square approximation. 
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4 A Design Example 

We illustrate the proposed design approach by the 

following example. 

Example(l0, p. 4411 Consider the 2-input 2- 

output stable transfer matrix describing a high- 

purity distillation column near certain operating 

point, 

1.4 108.2 ---- 

87.8 

108.2 
1+194s 1+194s 1+15s 

The design specifications are:(&) Each channel 

should have a step response that settles to within 

10% of the desired final value within 40 minutes. 

(b) The design should allow for a worst-case time 

delay of one minute on the control action and for 
f20% uncertainty in the actuator gains. 

We note that the plant is ill-conditioned with 

the condition number 140 at s = 0. Since the un- 

certainty and unmodeled dynamics occur at the in- 

put, plant input relative uncertainty model is used. 

We will take the worst plant model as 

Pa(s) = P ( s ) ( ~  + A,) exp(-s) = P(s) ( I  + Li(s)) 
where A, = diag[0.2 0.21 and Li(s) = 

exp(-s)(A, + I) --I. The design is to remain 
stable for the worst plant and to satisfy the time 

response specification. Let C(s) = K p  + %. A 
sufficient condition for roust stability is 

for all w 

(4.13) 

1 
a,,(CP(I + C q - y j w ) )  < 

omax (hi (3.J)) 
- 

This condition is checked as we tune the design 
parameters. A minimal realization is 

A =  [ -0.0052 " 1  B = [ i  -:] 0 -0.0667 

1 0.4526 0.0933 
C =  [ 

0.5577 -0.0933 

Since the channels are treated as of equal impor- 
tance, G and R are chosen scalar multiples of iden- 
tity matrix. Initially they are chosen equal. The 
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final design is 

R = [  'i2 39.4 ] G'=[ ':' 1640 ] 

1 Ki = 0.060 -0.057 
0.059 -0.057 

2.105 -2.089 
2.052 -2.133 

Figure 2 shows the robustness condition (4.13) is 

satisfied. The one minute time delay practically 

limits the bandwidth of the closed-loop system to 

about 1 rad/min. Step responses of the closed- 

loop system is shown in Figure 3 and Figure 4. 
The design satisfies the time response requirement. 

Note that the response is better for the case where 

the step commands are of opposite signs. 

5 Conclusions 

We have described .a MIMO PI controller design 

method based on LQR formulation. The choice 

of tuning parameters allow tuning of individual 

input-output channel and tradeoff between dy- 

namic response and robustness. The number of 
tuning parameters is exactly the same as that of 

a decentralized PI controller. Although only set- 
point command are considered in the design, the 

same formulation is also applicable to design for 

load disturbance rejection. 

References 

B. D. 0. Anderson and J. B. Moore, Optimal 
Control: Linear Quadratic Methods, Prentice- 
Hall, 1980. 

P. Dorato, C. Abdallah and V. Cerone, 

Linear Quadratic Control: A n  Introduction, 
Prentice-Hall, 1995. 

K. J. Astrom and T. Hagglund, PID Con- 
trollers Design: Theory, Design, and Tuning 
Instrument Society of America, 1995. 



[4] J.M. Galvez and L. P. de Araujo, “A mul- 
tivariable PI  controller for nonlinear ill- 

conditioned electrical tubular ovens,” Proc. of 
39th Midwest Symposium on Circuits and 
Systems, pp. 1005- 1008, 1997. 

[5] E. Gagnon, A. Desbiens and A. Pomerleau, 

“Selection of pairing and constrained robust 
decentralized PI  controllers,” American Con- 

100 IO1 
hsqw,w m Ram 

10-7 

trol Conference, pp.4343-4347, 1999. 
IO* 10‘‘ 

[6] M. Green, D. J. N, Limebeer, Linear Robust 

Figure 2: Design for robustness Control, Prentice-Hall, 1995. 
[7] A. N. Gundea and M. G. Kabuli, “Reliable 

stabilization with integral action in decentral- 
ized control systems,” Automatica, vol. 32, 

no. 7, pp. 1021-1025, 1996. 

[8] A. N. Gundeg and M. G. Kabuli, “Parameter- 
ization of stabilizing controllers with integral 

action,’’ IEEE Trans. Automatic Control , vol. 

44, no. 1, pp. 116-119, 1999. 
[9] C. A. Lin and Y. K. Jan, “Control system 

design for a rapid thermal processing system,” 

IEEE Trans. Semiconductor Manufacturing, 

1 4 ,  , , , , , I ,  , , , 

Control, Prentice-Hall, 1989. channel 

[ll] H. Panagopoulos, K. J. Astrom and T. Hag- 
glund, “A Numerical method for design of PI  

controllers,” IEEE international Conference 
on Control Applications, pp.417-422, 1997. 

% a 4  i:: g o 2  

[12] C. D. Schaper, T. Kailath and Y. J. Lee, “De- 

centralized control of wafer temperature for 
multizone rapid thermal processing systems,” 

IEEE fians. Semiconductor Manufacturing, 

0 1 0 2 0 ) D W O Y ) 7 O m D 9 0 W  
flminmn 

vol. 12, no. 2, pp. 193-199, 1999. ! 
& a / \  , , , , , , 1 

’o ~ o m s o u , u l e o m a o a r r m  
a m  ln mn 

[13] C. Vlachos, D. Williams and J. B. Gomm, 

“A genetic approach to decentralized PI  con- 
troller tuning for multivariable processes,” 
IEE Proc. Control Theory Appl., vol. 146, 
no.1, pp.58-64, 1999. ’ 

Figure 4: Step responses with positive and nega- 
tive step commands 

3707 


