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Parameterization of Stabilizing up
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Fig. 1. The systenS(P,C).

Abstract—In the standard linear time-invariant multi-input/multi-
output unity-feedback system, a parameterization of stabilizing con-

trollers V\{|th |nte_gra| action is obtaln_ed. These controllers guarantee bﬂﬁ, whereN, D, N, De M(R), D, andD are biproper. Let
asymptotic tracking of step reference inputs at each output channel with . T . .
zero steady-state error. rank P = r; s, € U is a (transmission) zero aP if and only if

. . o ] rank N(s,) = rank N(s,) < r; s, is called a blocking-zero of
Index Terms—Asymptotic tracking, controller design, integral action. P iff P(s,) = 0; s, € U is a blocking-zero ofP if and only if

N(s,) = 0 = N(s5).
|I. INTRODUCTION

Stabilizing controllers that achieve robust asymptotic tracking of Il. MAIN RESULTS
general reference signals can be designed by using the well-knowiConsider the standard LTI MIMO unity-feedback syst&gP, C')
parameterization of all controllers that stabilize a given plant [4]. F@hown in Fig. 1 whereS(P, C) is a well-posed system anB €
asymptotic tracking of step reference signals, controllers are desigmdt *"* and ¢ € Ry**"¢ represent the transfer functions of the
to have integral action (see, for example, [1] and [3]). plant and the controller. It is assumed tliaiand C' have no hidden
In this paper we parameterize controllers with integral actiomodes corresponding to eigenvalues in the region of instalility
in the standard linear time-invariant (LTI), multi-input/multi-outputLet #.,, denote the (input-error) transfer function framto ¢, and
(MIMO) unity-feedback system. We show that any stabilizing corlet H,. denote the (input—output) transfer function franto y.
troller with integral action (as defined here) is expressed explicitly asDefinitions 1:
the sum of two controllers: any arbitrary stabilizing controller and a 1) Stapility: The systemS(P, C) is said to be stable iff the
controller with an integral term. transfer functionH from (u, up) to (y, yc) is stable, i.e.,
The paper is organized as follows: in Section I, following the H € M(R).
problem description and the stability and integral action definitions, 2y |ntegral Action: The stable systen§(P, C) is said to have

Lemma 1 claims that any stable (MIMO) system can be stabilized  jntegral action in each output channel iff the (input-error)
using an integral controller. Based on such an integral controller for  transfer functionH..(s) = I — H,.(s) has blocking-zeros

the stable numerator factor of any coprime factorization of the plant, gt s = ¢.

all stabilizing controllers with integral action are parameterized in 3) stapilizing Controller: The controllerC is said to be a stabi-
the main result, Theorem 1. The special case of this parameterization |izing controller for the plantP (or C is said to stabilizeP)
for stable plants is given in Corollary 1. The parameterization of  jf ¢ ¢ M(R,) and the systens(P, C) is stable.

all stabilizing controllers with integral action can also be derived 4y stapilizing Controller with Integral ActionThe controllerC
starting with state-space representations as explained in Comment 1. js said to be a stabilizing controller with integral action iff

The proofs are given in the Appendix. C stabilizesP and D¢ (s) has blocking-zeros at= 0, where
Due to the algebraic framework described in the following notation, D¢ € R"v*"™ is the denominator-matrix of any RQFc D'
the results apply to continuous-time as well as discrete-time systems; of (. O

for the case of discrete-time systems, all evaluations and poles Aatp=ND-' = D-'N be any RCF and LCF oP € RI* X"
=] = ] - .

s = 0 would be interpreted at = 1. " N.D-! - Xy -
N(_)tation: Let U be the extended closed right half-plane_(fo};gbﬁzesé(i%gr?d Obrﬁy(’?fn (y D%CoF—i—?NIS Ve,)?; unimogaearcfg?t;ﬁg,eé%,:
contlr_luous-tlr_ne systems) or the complement of the open unit d'icD? of C [2], [4]. All stabilizing controllers forP are given by
(for discrete-time systems). The set of real numbers, the set of proper ~ ~ R B
rational functions that have no poles in the region of instability C=U+DQ)V - NQ)*1 = (V- QN)*('U +QD) (1)
and the sets of proper and strictly proper rational functions with rea naXny i 5 L .
coefficients are denoted iR, R. R,, Rs, respectively. The set of WhereQ €ER s such tha(V _."\.TQ) IS ?Iprf)psr’«\,l\lhmh holds
matrices whose entries are T is denoted byM(R); M is called forall @ € M(R) whenP € M(R.);in (1), U, V', U, V € M(R)

stable iff M € M(R) (a notation of the form\ € R™*™ is used are stable matrices such that

where it is important to indicate the order of a matrix explicitly); a { 4 l[} [D —L:’} _ [[nu 0 } @)
stable}M is called unimodular iffM/ =" € M(R). For M € M(R), -N D] [N V 0 I,
the norm|| - || is defined ag|M|| = sup,cn, o(M(s)), Whereo  ysing the parameterization (1) of all stabilizing controllers, for

anddi{ denote the maximum singular value and the boundady,of any stabilizing controllex”, the corresponding (input-error) transfer
respectively. A right coprime-factorization (RCF) and a left coprimeynction H,, = (I,,, + PC)~" is given by
factorization (LCF) ofP? € Ry*™"* are denoted by’ = ND~! = ! '

. . . . H.,=1,,—NU+QD)= (V- NQ)D. (3)
Manuscript received April 3, 1997. This work was supported by the NSF Y
under Grant ECS-9257932. If S(P, C) is stable, the (input-error) transfer functidi.,(0) =

The authors are with the Department of Electrical and Computer E —1 _ - , —1 _ ;
gineering, University of California, Davis, CA 95616 USA (e-mail: gun-?I”y + PC)TH0) = L, PC(I.’W +PC)7(0) = 9 On|¥ if
des@ece.ucdavis.edu). rank P = n, < n,. Also by (3), if H..,(0) = 1., — N(O)(U +

Publisher Item Identifier S 0018-9286(99)00573-5. QD)(0) = 0, then rankV(0) = n, < n,. Therefore, it is clear that

0018-9286/99$10.00 1999 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999 117

a crucial necessary condition on the pldntfor the stable system
S(P, C) to have integral action is thatink P = n, < n, and P
has no (transmission) zeros at= 0.
In any arbitrary RCFN-Dg' of a stabilizing controllerC, the u €
factors(N¢, D) are given by(Ne, De) = (U + DQ)R, (V —
NQ)R) for some unimodula? € M(R); therefore,Dc(0) = 0 is -
equivalent to(V — NQ)(0) = 0. By Definition 1,C is a stabilizing
controller with integral action if and only iV — NQ)(0) =
0; therefore, if C' is a stabilizing controller with integral action,
then H.,(0) = (V — NQ)(0)D(0) = 0 and hence the stable
systemS(P, C') has integral action in each output channel. Although
designing the stabilizing controllers so tHat: (0) = 0 is a sufficient
condition for the stable systetf( P, C') to have integral action, it is Fig. 2. The systen§(L, C') whereC' is a stabilizing controller with integral
clearly not necessary. However, whé&nhas no poles at = 0, and action.
in particular whenP is stable H...(0) = 0 if and only if D¢ (0) = 0,
i.e., the stable systedi(P. C') has integral action if and only if the whereQ, € R™+*"+ is such thatl,, — Q1 P) is biproper, which
controllerC' is a stabilizing controller with integral action. holds for allQ, € M(R) when P € M(R.). The corresponding
A simple parameterization of all stabilizing controllers with integrafinput—output) transfer functiod,. of the stable systens(P, C)
action is given in Theorem 1. This parameterization is based on B, = (I, + P(Ki/s)) ' P(Q1 + (K/s)). O
arbitrary integral controller designed for the stable numerator matrix comments 1:
N in any RCFND™" of P. Lemma 1 guarantees existence of an  a) Simple interpretation of the parameterization of all stabilizing
integral controllerk;/s for any (MIMO) stable transfer functioV.  controllers with integral action: Theorem 1 states that any stabilizing
Lemma 1—Existence of Integral Controllers for Stable Systemgntroller with integral action is expressed as the sum of an arbitrary
Let N € R"¢*"« whererank N = N, < N.. There exists an stapilizing controller(V — Q;N)"*(U + QD) and a controller
integral controllerk’;/s that stabilizesV, where K'; € R™**"*,  ith an integral term(V' — Q; N)~' K, /s. The block-diagram of
if and only if rank N(0) = n, < n.; equivalently, there exists a the systemS(P, C) with the stabilizing controllerC’ as in (4) is
constant controlleds; € IR"™**"v that stabilizesV/s if and only if  shown in Fig. 2. '

rank N(0) = n, < Pu. ) ] b) The integral controller stabilizingv: In Theorem 1,K; €

Theorem 1—All Stabilizing Controllers with Integral Actiotcet R« *"y is such thafk, /s stabilizesV, equivalently,k; € IR"=*"s

My Xy

Pe Ry, whererank P = n, < M Le~t71; ~Yhave NO s any constant controller that stabiliz§/s. Sincerank N(0) =
(transmission) zeros at = 0. Let P = ND™" = D™ "N be any , by assumption, existence of such controllers is guaranteed by
RCF and LCF Ofp. LetI{i/S be anyjnteigral Controllel’ that Stabi”ZESLemma 1, in fact’ as in the proof of Lemmaﬂ'd can be Chosen as
N, wherek; € R™*"v. LetU, V. U, V € M(R) satisfy (2). The g, = 3N (0)! for any positive € IR satisfying (12), i.e.,
controller C' is a stabilizing controller with integral action if and
only if

7 N r_ -
0<3< NENO) = 1n, ©)

s

i
s

C=(V-Q N <U—|—QJ)—|— K ) (4)
where N(0)' denotes any right-inverse ofV(0). Note that
or equivalently rank K; = n, for any K; that stabilizg&W’/s. o
i i c) Full-Order observer-based realization of all stabilizing con-
C = (fr+DQ1)(f,f_ NQ1)_1<I,,9 +N£> +D£ G trolle_r_s_with integral act_ion:_The parameterization in (4) of gll
s s stabilizing controllers with integral action can also be obtained

h Rrexny h that (V" V) is b by using the coprime factorizations df obtained from a state-
where @, € A Y Is such t at(V — Q.N) is biproper space representation as follows: Let, B, C, D) be a state-space
(equivalently, (V' — N@.) is biproper), Whlch hqlds for all representation o = C/(sI, — K)flg_i_ D, where (4, B) is
@1 EfM(fR) V.Vhe;[P € fJMtSRg). 'Ig;e corresn%or}gilr;g ('_np;;_om_pm)stabilizable andC, 4) is detectable. Lett € R"*" and L €
t’rlans erV UIQ.Ctlc.mfiyKr 2" the %a (-ar/"sy;ste (P, C)is Hyu = IR"*" be such thatd := (sI, - A+BK) '€ M(R), Ay =
( nfy :l s h/.b)) E)|( I’Trgl— ;—I_X{/—b).f_]P . c d (s, —A+LC) ' € M(R). Letrank N(0) = rank (D — (C —

If the plant is stal e thed = ra T Any IS an RNYF and an pry(A-BK)"'B)=n, < n.. LetK;/s be any integral controller
LF:F (zf P and a solution for (2) is given by = I..,, V = L.,, that stabilizesV = (C—DK)AxB+D, wherek; € R"**"v. By
U=U=0.By@3),Hcu = I, - PQ and hence the stable systemrpeorem 1, the controllef' is a stabilizing controller with integral
S(P. C) has integral action if and only if the controller is a action if and only if

stabilizing controller with integral action. The parameterization (4)

of all controllers with integral action is simplified for the special case C=n,+KAL(B-LD)
of stable plants in Corollary 1. - Qi(CAL(B-LD)+ D))"
Corollary 1—All Stabilizing Controllers with Integral Action for B _ K;
Stable Plants: Let P € R™#*"«, whererank P = n, < n,. Let X <I‘ AL+ Qi(In, = CALL) + T) ®
P have no (transmission) zeros at= 0, i.e., rank P(0) = n,.

Let K, /s be any integral controller that stabilizd® where &; € ~WhereQ, € R™*"¢ is such thatlet(I,, — Q1(c0)D) # 0, which
IR"=*"v_ The controllerC' is a stabilizing controller with integral holds for all@: € M(R) when P € M(R.). The block-diagram

action if and only if of the systemS(P, C') with the stabilizing controlleC' as in (8) is
: shown in Fig. 3.
C= I, —Q:P)" <Q1 + I”) (6) Note again that, as in the proof of Lemma 1 and Comment b)
s above,K; can be chosen a&; = 3N (0)” for any positived € IR
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is unimodular. Thereforeank (0) = rank(a™' N(0)K;)= n, <

min{rankN(0), rankK;} < min{n,, n,} implies rankN(0) =

ny < ny. To show the converse, let raNK0) = n, < n,; then
there exists a right-invers&’ (0)? € R™**"v of N(0) such that
N(O)N(0)" = I,. Let K, := 3N(0)', where3 € R, 3 > 0 is
such that

—1

N(s)N(0)! - I,

s

(12)

Note thatX;/s = ((3/s+ B)N(0)") ((s/s + B)I,,) " is an RCF
of K;/s. With 3 as in (12), we have
Fig. 3. The systenS(P,C) with an observer-based stabilizing controller

with integral action. s I N Je N '())I
s+ 0 ny + s+,3‘(
satisfying (7). In]this ?se,irigﬂ-inve_rsé(o_)f of AIO} is given by _ s L, + B N ()N (0)
N(@©) =(D-(C-DK)A-BK)"'B) 9) s+ s+
_ 3 .
where(4 — BK) ! exists sincedx € M(R) implies Ax has no + _/'_ 5 (V- N(0))N(0)"
poles ats = 0. Therefore, (7) becomes C . _ o
. _p 4B (N NO)N©) (13)
- I = Iny .
0<8< N(s)NO)” = In, Y (s+8) s
S
_ . P is unimodular since|(8s/s + 3)|| = 3. ThereforeK’; /s stabilizes
=€ = DE)Ax(A = BK) " BNO)[7.  (10) N, Equivalently,N/s = ((s/s+ 3)T.,)~" (N/s + 3) is an LCF of

d) Simple algorithm for parameterizing all stabilizing con-N/s and it follows similarly from (13) thafy; stabilizesN/s. O
trollers with integral action: Theorem 1, with the explanations Proof of Theorem 1:Let P = ND~' = D~'N be any RCF
in Comments b) and c) above, lead obviously to the following verind LCF of P. By Lemma 1, there exist&; € IR™*"+ such that
simple algorithm for finding all stabilizing controllers with integraI[;i/s stabilizesN. Now K;/s stabilizesN if and only if, for any

action. o . a € R,a > 0, the matrix M € M(R) in (11) is unimodular,
Let the given plant® = ND~' = D' N satisfy the assumptions

; e equivalently
in Theorem 1. LetC' € M(R,) be any stabilizing controller for
P. Find any LCFC = DZ'Nc of C. Find any right-inverse I; K. K

I S Y : + n I _M'N LMt
N(0)" of N(O).. Let I; = ,{m*((.)). , Where 3 is any positive reall " s+ T e Y Tsxal
constant satisfying (7). All stabilizing controllers with integral action _N 5 7 V-LN M-l
are parameterized by = (D — Qi N) *(N¢ + Q1D + K;/s), i s+a Y -
where @1 € M(R) is any stable matrix of appropriate order such _ L,, 0 (14)
that det(Dc — Q1N )(oc) # 0. 0 I,

We can restate the algorithm more explicitly in terms of a state- ) . ) o
space representation of the given plant: giver: C(sI,, —A)"'B+ By (1), (Nc, D¢) in any arbitrary RCENc D~ of a stabilizing

D, where(A4, B) is stabilizable andC, 4) is detectable. controllerC' are given b Ne, Dc) = (U+DQ)R, (V -NQ)R)
Step 0: If for some unimodulaf? € M(R); therefore,D(0) = 0 if and only
41 _B if (V—NQ)(0)=0.By Definiti0~n 1,C is a stabilizing controller

faﬂk{ el 5} =nytn with integral action if and only i{V — NQ)(0) = 0; hence, finding

all stabilizing controllers with integral action is equivalent to finding

then go to Ste has no zeros at = 0); else, sto . A .
9 p 1I¢ ) pr all solutions forQ) € R"=*"» andD. € R™*"+ of the equality

has zeros at = 0 and hence, stabilizing controllers with

integral action do not exist). 5 o4

Step 1: Choose any’ € IR"***™ and L € IR™*"¥ such that V-Ne= s+a D. (15)
A — A a1 —1 %
A =(sI, —A+BR)" € M(R) for any o € IR, a > 0. But (15) is equivalent to
Ar :=(sl, — A+ LC)™' € M(R). K
<
Step 2: Choosek’; = 3N (0)’, whereN (0)! is given by (9) and Inw Ta -Q | |-G
8 € IR satisfies (10). N 5 g D.| Vv
Step 3: All stabilizing controllers with integral action are given o s+a "

by (8) (see Fig. 3).
for some@Q; € R™«*"v. By (14), all solutions of (15) are given

APPENDIX

K; -
- - - MYV -N
PROOFS Q _ Q1 P ( Q1) . e
Proof of Lemma 1: Supposek’; /s stabilizes N (equivalently, D, M—l(f’ —NQy)
K; stabilizesN/s). Then for anya € R, o > 0
s K, Plugging @ = Qi + (Ki/s + o)M~'"(V — NQi) = Qi +

5+ a Iny +N sta M (11) (Ki/s)(IL., + N(K;/s))™"(V = NQ:) € M(R) given by (16)
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into (1), the controller becomes I. INTRODUCTION
C=({U+DQ)(V-NQ)™ During the recent years, the design and analysis of nonlinear con-
. K . trol systems has been pursued by several investigators [5], [9]-[11].
T 7 =1/~ T ) . .
= <D + D+ D —— M (V=N QU) These designs and results are based on the assumption that the nonlin-
- L os+a earities are known and the plant is free of disturbances and unmodeled
(V-NQ)™ M . dynamics. More recent efforts are focused on adaptive techniques
' - to deal with parametric uncertainties and techniques to deal with
= v T —1 T I‘z I‘z . . e
=U+DQ)(V-NQ) (L., +N - +D . unknown disturbances and classes of unknown nonlinearities [3], [2],

[8], [6], [7], [1], [15], [12], [16]. The issue of unmodeled dynamics
has been addressed in [13] and [14], where global results are obtained
under the assumption that the “input unmodeled dynamics” are linear
time invariant and small in all frequencies. In practice, however,
unmodeled dynamics are often small in the low-frequency range,
which is usually the range of interest, and are allowed to be large
relative to the modeled part in the high-frequency range. Obviously if
the unmodeled dynamics are large in the frequency range of interest,
then they should be part of the model. It is therefore of interest
% examine whether nonlinear control systems that are developed

1 K
S
—1 Ill'i

=(U+DQ)V -NQ)™"+(V-Q:iN)~

(V=) NU+ QD)+ (V = QuX)

as claimed in (4) and (5). The controlléf is proper if and only
if (V-NQ)=(s/s4+a)D. = (s/s+ )M~ (V - NQi) is
biproper, equivalently,V'— N (), ) is biproper sincél is unimodular.
Using the samel € M(R) in H,, = N(U + QD)= I,, —
(V — NQ1)D, the corresponding (input-output) transfer functio

Ot tr]'e Sta—tzle?sysFern'ﬁ(% < becomefsl{w =_1I/';y T_ (I,"a to guarantee global stability for a nonlinear system in the absence

) ’(;A?/s” (‘/' — NQOD = (L, + N /)T NU QD+ of modeling errors can maintain such property in the presence of

2/ s clamed Hoa general class of unmodeled dynamics that are likely to appear in
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Robustness of Nonlinear Control Systems T
with Respect to Unmodeled Dynamics

. ROBUSTNESS OF AFIRST-ORDER SYSTEM
In this section, we consider the robustness of a first-order system.

Youping Zhang and Petros A. loannou ) ]

A. A Simple Linear System
Abstract—In theory, it can be established that nonlinear control laws Let us consider the linear time-invariant (LTI) system
for linear or nonlinear plants can be used to meet strict performance
requirements. The success of these control designs in practical situations
will very much depend on whether they can still meet the expected perfor- . . . .
mance characteristics in the presence of inevitable modeling errors. In this where G(s) = (1/s) is the. plant n_or.nlnz.il transfer _functlon,
paper, we develop necessary and sufficient conditions for a general class®wm (jt,5) = (=2ps/(1 + ps)) is a multiplicative uncertainty, and
of nonlinear control laws in the presence of high-frequency unmodeled p > 0 is a small constant.
dynamics, under which global signal boundedness or asymptotic stability  The above system can be written in the following state space form:
is guaranteed. We show that a wide class of nonlinear control laws
does not satisfy these conditions and therefore does not guarantee global
stability in the presence of high-frequency unmodeled dynamics.

x=G(5)(14+ Ap(s))u (1)

T=u-+n

- _ un =—n — 2ui. 2)
Index Terms—Global stability, nonlinear control system, robustness,

unmodeled dynamics. We note that the multiplicative uncertainty,, (y, s) is small for

small i in the low frequency range but is large in the high-frequency
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the University of Southern California Powell Fellowship program. : m

Y. Zhang is with the United Technologies Research Center, East Hartfofigh-frequency galn_and Its sign of the modeled plat), rendering
CT 06108 USA. the overall plant being nonminimum phase.

P. A. loannou is with the Department of Electrical Engineering-Systems, Let us consider the reduced-order system
University of Southern California, Los Angeles, CA 90089-2562 USA.
Publisher Item Identifier S 0018-9286(99)00592-9. T=u 3)

0018-9286/99$10.00 1999 IEEE



