
116 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999

Parameterization of Stabilizing
Controllers with Integral Action

A. N. Gündeş and M. G. Kabuli

Abstract— In the standard linear time-invariant multi-input/multi-
output unity-feedback system, a parameterization of stabilizing con-
trollers with integral action is obtained. These controllers guarantee
asymptotic tracking of step reference inputs at each output channel with
zero steady-state error.

Index Terms—Asymptotic tracking, controller design, integral action.

I. INTRODUCTION

Stabilizing controllers that achieve robust asymptotic tracking of
general reference signals can be designed by using the well-known
parameterization of all controllers that stabilize a given plant [4]. For
asymptotic tracking of step reference signals, controllers are designed
to have integral action (see, for example, [1] and [3]).

In this paper we parameterize controllers with integral action
in the standard linear time-invariant (LTI), multi-input/multi-output
(MIMO) unity-feedback system. We show that any stabilizing con-
troller with integral action (as defined here) is expressed explicitly as
the sum of two controllers: any arbitrary stabilizing controller and a
controller with an integral term.

The paper is organized as follows: in Section II, following the
problem description and the stability and integral action definitions,
Lemma 1 claims that any stable (MIMO) system can be stabilized
using an integral controller. Based on such an integral controller for
the stable numerator factor of any coprime factorization of the plant,
all stabilizing controllers with integral action are parameterized in
the main result, Theorem 1. The special case of this parameterization
for stable plants is given in Corollary 1. The parameterization of
all stabilizing controllers with integral action can also be derived
starting with state-space representations as explained in Comment 1.
The proofs are given in the Appendix.

Due to the algebraic framework described in the following notation,
the results apply to continuous-time as well as discrete-time systems;
for the case of discrete-time systems, all evaluations and poles at
s = 0 would be interpreted atz = 1.

Notation: Let U be the extended closed right half-plane (for
continuous-time systems) or the complement of the open unit disk
(for discrete-time systems). The set of real numbers, the set of proper
rational functions that have no poles in the region of instabilityU ,
and the sets of proper and strictly proper rational functions with real
coefficients are denoted byIR; R; Rp; Rs, respectively. The set of
matrices whose entries are inR is denoted byM(R); M is called
stable iffM 2 M(R) (a notation of the formM 2 Rn�m is used
where it is important to indicate the order of a matrix explicitly); a
stableM is called unimodular iffM�1 2M(R). ForM 2 M(R),
the normk � k is defined askMk = sup

s2@U �(M(s)), where�
and@U denote the maximum singular value and the boundary ofU ,
respectively. A right coprime-factorization (RCF) and a left coprime-
factorization (LCF) ofP 2 R

n �n
p are denoted byP = ND�1 =
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Fig. 1. The systemS(P;C).

~D�1 ~N , whereN; D; ~N , ~D 2 M(R); D, and ~D are biproper. Let
rank P = r; so 2 U is a (transmission) zero ofP if and only if
rank N(so) = rank ~N(so) < r; so is called a blocking-zero of
P iff P (so) = 0; so 2 U is a blocking-zero ofP if and only if
N(so) = 0 = ~N(so).

II. M AIN RESULTS

Consider the standard LTI MIMO unity-feedback systemS(P; C)
shown in Fig. 1 whereS(P; C) is a well-posed system andP 2

R
n �n
p and C 2 R

n �n
p represent the transfer functions of the

plant and the controller. It is assumed thatP andC have no hidden
modes corresponding to eigenvalues in the region of instabilityU .
Let Heu denote the (input-error) transfer function fromu to e, and
let Hyu denote the (input–output) transfer function fromu to y.

Definitions 1:

1) Stability: The systemS(P; C) is said to be stable iff the
transfer functionH from (u; uP ) to (y; yC) is stable, i.e.,
H 2 M(R).

2) Integral Action: The stable systemS(P; C) is said to have
integral action in each output channel iff the (input-error)
transfer functionHeu(s) = I � Hyu(s) has blocking-zeros
at s = 0.

3) Stabilizing Controller:The controllerC is said to be a stabi-
lizing controller for the plantP (or C is said to stabilizeP )
iff C 2 M(Rp) and the systemS(P; C) is stable.

4) Stabilizing Controller with Integral Action:The controllerC
is said to be a stabilizing controller with integral action iff
C stabilizesP andDC(s) has blocking-zeros ats = 0, where
DC 2 R

n �n is the denominator-matrix of any RCFNCD
�1

C

of C.

Let P = ND�1 = ~D�1 ~N be any RCF and LCF ofP 2 R
n �n
p .

Let C = NCD
�1

C be any RCF ofC 2 R
n �n
p . The controllerC

stabilizesP if and only if ( ~DDC+ ~NNC) is unimodular for any RCF
NCD

�1

C of C [2], [4]. All stabilizing controllers forP are given by

C = (~U +DQ)(~V �NQ)�1 = (V �Q ~N)�1(U +Q ~D) (1)

whereQ 2 Rn �n is such that( ~V �NQ) is biproper, which holds
for all Q 2M(R) whenP 2M(Rs); in (1), U; V; ~U; ~V 2M(R)
are stable matrices such that

V U

� ~N ~D
D � ~U
N ~V

=
In 0
0 In

: (2)

Using the parameterization (1) of all stabilizing controllers, for
any stabilizing controllerC, the corresponding (input-error) transfer
function Heu = (In + PC)�1 is given by

Heu = In �N(U +Q ~D) = (~V �NQ) ~D: (3)

If S(P; C) is stable, the (input-error) transfer functionHeu(0) =
(In + PC)�1(0) = In � PC(In + PC)�1(0) = 0 only if
rank P = ny � nu. Also by (3), if Heu(0) = In � N(0)(U +

Q ~D)(0) = 0, then rankN(0) = ny � nu. Therefore, it is clear that
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a crucial necessary condition on the plantP for the stable system
S(P; C) to have integral action is thatrank P = ny � nu andP
has no (transmission) zeros ats = 0.

In any arbitrary RCFNCD
�1

C of a stabilizing controllerC, the
factors(NC ; DC) are given by(NC ; DC) = (( ~U +DQ)R; ( ~V �
NQ)R) for some unimodularR 2M(R); therefore,DC(0) = 0 is
equivalent to( ~V �NQ)(0) = 0. By Definition 1,C is a stabilizing
controller with integral action if and only if( ~V � NQ)(0) =
0; therefore, ifC is a stabilizing controller with integral action,
then Heu(0) = (~V � NQ)(0) ~D(0) = 0 and hence the stable
systemS(P; C) has integral action in each output channel. Although
designing the stabilizing controllers so thatDC(0) = 0 is a sufficient
condition for the stable systemS(P; C) to have integral action, it is
clearly not necessary. However, whenP has no poles ats = 0, and
in particular whenP is stable,Heu(0) = 0 if and only ifDC(0) = 0,
i.e., the stable systemS(P; C) has integral action if and only if the
controllerC is a stabilizing controller with integral action.

A simple parameterization of all stabilizing controllers with integral
action is given in Theorem 1. This parameterization is based on an
arbitrary integral controller designed for the stable numerator matrix
N in any RCFND�1 of P . Lemma 1 guarantees existence of an
integral controllerKi=s for any (MIMO) stable transfer functionN .

Lemma 1—Existence of Integral Controllers for Stable Systems:
Let N 2 Rn �n where rank N = Ny � Nu: There exists an
integral controllerKi=s that stabilizesN , whereKi 2 IRn �n ,
if and only if rank N(0) = ny � nu; equivalently, there exists a
constant controllerKi 2 IRn �n that stabilizesN=s if and only if
rank N(0) = ny � nu.

Theorem 1—All Stabilizing Controllers with Integral Action:Let
P 2 R

n �n
p , where rank P = ny � nu. Let P have no

(transmission) zeros ats = 0. Let P = ND�1 = ~D�1 ~N be any
RCF and LCF ofP . LetKi=s be any integral controller that stabilizes
N , whereKi 2 IRn �n . Let U; V; ~U; ~V 2 M(R) satisfy (2). The
controller C is a stabilizing controller with integral action if and
only if

C = (V �Q1
~N)�1 U +Q1

~D +
Ki

s
(4)

or equivalently

C = (~U +DQ1)(~V �NQ1)
�1 In +N

Ki

s
+D

Ki

s
(5)

where Q1 2 Rn �n is such that (V � Q1
~N) is biproper

(equivalently, ( ~V � NQ1) is biproper), which holds for all
Q1 2 M(R) whenP 2 M(Rs). The corresponding (input–output)
transfer functionHyu of the stable systemS(P; C) is Hyu =
(In +N(Ki=s))

�1N(U +Q1
~D +Ki=s).

If the plant is stable, thenP = PI�1n = I�1n P is an RCF and an
LCF of P and a solution for (2) is given byV = In , ~V = In ,
U = ~U = 0. By (3),Heu = In � PQ and hence the stable system
S(P; C) has integral action if and only if the controllerC is a
stabilizing controller with integral action. The parameterization (4)
of all controllers with integral action is simplified for the special case
of stable plants in Corollary 1.

Corollary 1—All Stabilizing Controllers with Integral Action for
Stable Plants: Let P 2 Rn �n , whererank P = ny � nu. Let
P have no (transmission) zeros ats = 0, i.e., rank P (0) = ny.
Let Ki=s be any integral controller that stabilizesP , whereKi 2

IRn �n . The controllerC is a stabilizing controller with integral
action if and only if

C = (In �Q1P )
�1 Q1 +

Ki

s
(6)

Fig. 2. The systemS(P;C) whereC is a stabilizing controller with integral
action.

whereQi 2 R
n �n is such that(In � Q1P ) is biproper, which

holds for allQ1 2 M(R) whenP 2 M(Rs). The corresponding
(input–output) transfer functionHyu of the stable systemS(P; C)
is Hyu = (In + P (Ki=s))

�1P(Q1 + (Ki=s)).
Comments 1:

a) Simple interpretation of the parameterization of all stabilizing
controllers with integral action: Theorem 1 states that any stabilizing
controller with integral action is expressed as the sum of an arbitrary
stabilizing controller(V � Q1

~N)�1(U + Q1
~D) and a controller

with an integral term(V � Q1
~N)�1Ki=s: The block-diagram of

the systemS(P; C) with the stabilizing controllerC as in (4) is
shown in Fig. 2.

b) The integral controller stabilizingN : In Theorem 1,Ki 2

IRn �n is such thatKi=s stabilizesN , equivalently,Ki 2 IRn �n

is any constant controller that stabilizesN=s. Sincerank N(0) =
ny by assumption, existence of such controllers is guaranteed by
Lemma 1; in fact, as in the proof of Lemma 1,Ki can be chosen as
Ki = �N(0)I for any positive� 2 IR satisfying (12), i.e.,

0 < � <
N(s)N(0)I � In

s

�1

(7)

where N(0)I denotes any right-inverse ofN(0). Note that
rank Ki = ny for anyKi that stabilizesN=s.

c) Full-Order observer-based realization of all stabilizing con-
trollers with integral action: The parameterization in (4) of all
stabilizing controllers with integral action can also be obtained
by using the coprime factorizations ofP obtained from a state-
space representation as follows: Let(A; B; C; D) be a state-space
representation ofP = C(sIn � A)�1B + D, where (A; B) is
stabilizable and(C; A) is detectable. LetK 2 IRn �n and L 2
IRn�n be such thatAK := (sIn � A +BK)�1 2 M(R), AL :=
(sIn � A + LC)�1 2 M(R). Let rank N(0) = rank (D � (C �
DK)(A�BK)�1B)= ny � nu. LetKi=s be any integral controller
that stabilizesN = (C�DK)AKB+D, whereKi 2 IRn �n . By
Theorem 1, the controllerC is a stabilizing controller with integral
action if and only if

C =(In +KAL(B � LD)

�Q1(CAL(B � LD) +D))�1

� KALL+Q1(In � CALL) +
Ki

s
(8)

whereQ1 2 R
n �n is such thatdet(In �Q1(1)D) 6= 0, which

holds for allQ1 2 M(R) whenP 2 M(Rs). The block-diagram
of the systemS(P; C) with the stabilizing controllerC as in (8) is
shown in Fig. 3.

Note again that, as in the proof of Lemma 1 and Comment b)
above,Ki can be chosen asKi = �N(0)I for any positive� 2 IR
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Fig. 3. The systemS(P;C) with an observer-based stabilizing controller
with integral action.

satisfying (7). In this case, a right-inverseN(0)I of N(0) is given by

N(0)I = (D � (C �DK)(A �BK)�1B)I (9)

where(A � BK)�1 exists sinceAK 2 M(R) impliesAK has no
poles ats = 0. Therefore, (7) becomes

0 <� <
N(s)N(0)I � In

s

�1

= k(C �DK)AK(A�BK)�1BN(0)Ik�1: (10)

d) Simple algorithm for parameterizing all stabilizing con-
trollers with integral action: Theorem 1, with the explanations
in Comments b) and c) above, lead obviously to the following very
simple algorithm for finding all stabilizing controllers with integral
action.

Let the given plantP = ND�1 = ~D�1 ~N satisfy the assumptions
in Theorem 1. LetC 2 M(Rp) be any stabilizing controller for
P . Find any LCFC = ~D�1C

~NC of C. Find any right-inverse
N(0)I of N(0). Let Ki = �N(0)I, where� is any positive real
constant satisfying (7). All stabilizing controllers with integral action
are parameterized byC = ( ~DC � Q1

~N)�1( ~NC + Q1
~D + Ki=s),

whereQ1 2 M(R) is any stable matrix of appropriate order such
that det( ~DC � Q1

~N)(1) 6= 0.
We can restate the algorithm more explicitly in terms of a state-

space representation of the given plant: givenP = C(sIn�A)
�1B+

D, where(A; B) is stabilizable and(C; A) is detectable.

Step 0: If

rank
�A �B
C D

= ny + n

then go to Step 1 (P has no zeros ats = 0); else, stop (P
has zeros ats = 0 and hence, stabilizing controllers with
integral action do not exist).

Step 1: Choose anyK 2 IRn �n andL 2 IRn�n such that

AK := (sIn � A+BK)�1 2M(R)

AL := (sIn � A+ LC)�1 2M(R):

Step 2: ChooseKi = �N(0)I, whereN(0)I is given by (9) and
� 2 IR satisfies (10).

Step 3: All stabilizing controllers with integral action are given
by (8) (see Fig. 3).

APPENDIX

PROOFS

Proof of Lemma 1:SupposeKi=s stabilizesN (equivalently,
Ki stabilizesN=s). Then for any� 2 IR; � > 0

s

s+ �
In +N

Ki

s+ �
=:M (11)

is unimodular. ThereforerankM(0) = rank(��1N(0)Ki)= ny �

minfrankN(0); rankKig � minfny; nug implies rankN(0) =

ny � nu. To show the converse, let rankN(0) = ny � nu; then
there exists a right-inverseN(0)I 2 IRn �n of N(0) such that
N(0)N(0)I = In . Let Ki := �N(0)I, where� 2 IR; � > 0 is
such that

� <
N(s)N(0)I � In

s

�1

: (12)

Note thatKi=s = ((�=s+ �)N(0)I) ((s=s+ �)In )�1 is an RCF
of Ki=s. With � as in (12), we have

s

s+ �
In +N

�

s+ �
N(0)I

=
s

s+ �
In +

�

s+ �
N(0)N(0)I

+
�

s+ �
(N �N(0))N(0)I

= In +
�s

(s+ �)

(N �N(0))N(0)I

s
(13)

is unimodular sincek(�s=s + �)k = �. ThereforeKi=s stabilizes
N . Equivalently,N=s = ((s=s+ �)In )�1(N=s+ �) is an LCF of
N=s and it follows similarly from (13) thatKi stabilizesN=s.

Proof of Theorem 1:Let P = ND�1 = ~D�1 ~N be any RCF
and LCF ofP . By Lemma 1, there existsKi 2 IRn �n such that
Ki=s stabilizesN . Now Ki=s stabilizesN if and only if, for any
� 2 IR; � > 0, the matrixM 2 M(R) in (11) is unimodular,
equivalently

In
Ki

s+ �

�N
s

s+ �
In

In �
Ki

s+ �
M�1N �

Ki

s+ �
M�1

M�1N M�1

=
In 0
0 In

: (14)

By (1), (NC ; DC) in any arbitrary RCFNCD
�1

C of a stabilizing
controllerC are given by(NC ; DC) = (( ~U+DQ)R; ( ~V �NQ)R)

for some unimodularR 2M(R); therefore,DC(0) = 0 if and only
if ( ~V � NQ)(0) = 0. By Definition 1,C is a stabilizing controller
with integral action if and only if( ~V �NQ)(0) = 0; hence, finding
all stabilizing controllers with integral action is equivalent to finding
all solutions forQ 2 Rn �n andD̂c 2 R

n �n of the equality

~V �NQ =
s

s+ �
D̂c (15)

for any � 2 IR; � > 0. But (15) is equivalent to

In
Ki

s+ �

�N
s

s+ �
In

�Q

D̂c

=
�Q1

~V

for someQ1 2 R
n �n . By (14), all solutions of (15) are given

�Q

D̂c

=
�Q1 �

Ki

s+ �
M�1(~V �NQ1)

M�1(~V �NQ1)

: (16)

Plugging Q = Q1 + (Ki=s + �)M�1(~V � NQ1) = Q1 +

(Ki=s)(In +N(Ki=s))
�1(~V �NQ1) 2 M(R) given by (16)
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into (1), the controller becomes

C =(~U +DQ)(~V �NQ)�1

= ~U +DQ1 +D
Ki

s+ �
M�1(~V �NQ1)

� ( ~V �NQ1)
�1M

s+ �

s

=(~U +DQ1)(~V �NQ1)
�1 In +N

Ki

s
+D

Ki

s

=(~U +DQ1)(~V �NQ1)
�1 + (V �Q1

~N)�1
Ki

s

=(V �Q1
~N)�1(U +Q1

~D) + (V �Q1
~N)�1

Ki

s
as claimed in (4) and (5). The controllerC is proper if and only
if ( ~V � NQ) = (s=s + �)D̂c = (s=s + �)M�1(~V � NQ1) is
biproper, equivalently,( ~V�NQ1) is biproper sinceM is unimodular.
Using the sameQ 2 M(R) in Hy = N(U + Q ~D)= In �

( ~V � NQ1) ~D, the corresponding (input–output) transfer function
of the stable systemS(P; C) becomesHyu = In � (In +

N(Ki=s))�1(~V � NQ1) ~D = (In + N(Ki=s))
�1N(U + Q ~D +

(Ki=s)) as claimed.
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[2] A. N. Gündeş and C. A. Desoer,Algebraic Theory of Linear Feedback
Systems with Full and Decentralized Compensators,Lecture Notes
in Control and Information Sciences, vol. 142. Berlin, Germany:
Springer-Verlag,1990.

[3] M. Morari and E. Zafiriou,Robust Process Control.Englewood Cliffs,
NJ: Prentice Hall, 1989.

[4] M. Vidyasagar,Control System Synthesis: A Factorization Approach.
Cambridge, MA: M.I.T. Press, 1985.

Robustness of Nonlinear Control Systems
with Respect to Unmodeled Dynamics

Youping Zhang and Petros A. Ioannou

Abstract—In theory, it can be established that nonlinear control laws
for linear or nonlinear plants can be used to meet strict performance
requirements. The success of these control designs in practical situations
will very much depend on whether they can still meet the expected perfor-
mance characteristics in the presence of inevitable modeling errors. In this
paper, we develop necessary and sufficient conditions for a general class
of nonlinear control laws in the presence of high-frequency unmodeled
dynamics, under which global signal boundedness or asymptotic stability
is guaranteed. We show that a wide class of nonlinear control laws
does not satisfy these conditions and therefore does not guarantee global
stability in the presence of high-frequency unmodeled dynamics.

Index Terms—Global stability, nonlinear control system, robustness,
unmodeled dynamics.
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I. INTRODUCTION

During the recent years, the design and analysis of nonlinear con-
trol systems has been pursued by several investigators [5], [9]–[11].
These designs and results are based on the assumption that the nonlin-
earities are known and the plant is free of disturbances and unmodeled
dynamics. More recent efforts are focused on adaptive techniques
to deal with parametric uncertainties and techniques to deal with
unknown disturbances and classes of unknown nonlinearities [3], [2],
[8], [6], [7], [1], [15], [12], [16]. The issue of unmodeled dynamics
has been addressed in [13] and [14], where global results are obtained
under the assumption that the “input unmodeled dynamics” are linear
time invariant and small in all frequencies. In practice, however,
unmodeled dynamics are often small in the low-frequency range,
which is usually the range of interest, and are allowed to be large
relative to the modeled part in the high-frequency range. Obviously if
the unmodeled dynamics are large in the frequency range of interest,
then they should be part of the model. It is therefore of interest
to examine whether nonlinear control systems that are developed
to guarantee global stability for a nonlinear system in the absence
of modeling errors can maintain such property in the presence of
a general class of unmodeled dynamics that are likely to appear in
applications.

In this paper, we develop necessary and sufficient conditions
for a general class of nonlinear control laws in the presence of
high-frequency unmodeled dynamics, under which global signal
boundedness or asymptotic stability is guaranteed. We show that a
wide class of nonlinear control laws that guarantees global stability in
the absence of unmodeled dynamics does not satisfy these conditions
and therefore does not guarantee global stability in the presence
of high-frequency unmodeled dynamics. Moreover, These nonlinear
controllers can lead to unbounded solutions in the presence of high-
frequency unmodeled dynamics that are arbitrarily small in the low
frequency range. These controllers, however, guarantee local stability
provided the unmodeled dynamics are small in the low-frequency
range.

II. ROBUSTNESS OF AFIRST-ORDER SYSTEM

In this section, we consider the robustness of a first-order system.

A. A Simple Linear System

Let us consider the linear time-invariant (LTI) system

x = G(s)(1 + �m(s))u (1)

where G(s) = (1=s) is the plant nominal transfer function,
�m(�; s) = (�2�s=(1 + �s)) is a multiplicative uncertainty, and
� > 0 is a small constant.

The above system can be written in the following state space form:

_x =u+ �

� _� =�� � 2� _u: (2)

We note that the multiplicative uncertainty�m(�; s) is small for
small� in the low frequency range but is large in the high-frequency
range and has a 180� phase shift. Moreover,�m(�; s) changes the
high-frequency gain and its sign of the modeled plantG(s); rendering
the overall plant being nonminimum phase.

Let us consider the reduced-order system

_x = u (3)
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