MIMO controller design with type-m integral action¹

A. N. Gündeş and M. G. Kabuli

Electrical and Computer Engineering, University of California, Davis, CA 95616 gundes@ece.ucdavis.edu kabuli@ece.ucdavis.edu

Abstract

A parametrization of all stabilizing controllers with at least m integrators achieving type-m integral action is obtained for linear time-invariant, multi-input multioutput systems. These controllers are expressed as integral terms added to any stabilizing controller.

1 Introduction

We consider the problem of designing stabilizing controllers with integral action for linear time-invariant (LTI), multi-input multi-output (MIMO) systems. The objective is to achieve closed-loop stability with (at least) type-*m* integral action in each output channel so that polynomial references up to order m-1 applied at each input would be asymptotically tracked (with zero steady-state error). The design method developed here is motivated by the well-known parametrization of all stabilizing controllers [2]. Robust asymptotic tracking is achieved by choosing the controller's poles appropriately (in this case at zero) [2], [1]. A parametrization of all stabilizing controllers with at least m integrators achieving type-*m* integral action is obtained in Theorem 2.3; these controllers are expressed as an arbitrary stabilizing controller $\widetilde{D}_{c}^{-1}\widetilde{N}_{c}$ added to integral terms involving m constant matrices. An alternate parametrization using only one constant matrix is given in Corollary 2.4.

Due to the algebraic framework, the results apply to continuous-time and discrete-time systems. Although a continuous-time setting was assumed throughout for simplicity, all evaluations and discussions involving poles and zeros at s = 0 should be interpreted at z = 1 in the case of discrete-time systems.

Notation and algebraic framework: Let \mathcal{U} be the extended closed right-half-plane (for continuous-time systems) or the complement of the open unit-disk (for discrete-time systems). The set of real numbers, the set of proper rational functions that have no poles in the region of instability \mathcal{U} , the sets of proper and strictly-proper rational functions with real coefficients are denoted by IR, \mathcal{R} , \mathbb{R}_p , \mathbb{R}_s , respectively. The set of matrices whose entries are in \mathcal{R} is denoted by $\mathcal{M}(\mathcal{R})$; M is called stable iff $M \in \mathcal{M}(\mathcal{R})$; a stable M is called unimodular iff $M^{-1} \in \mathcal{M}(\mathcal{R})$. For $M \in \mathcal{M}(\mathcal{R})$, the norm $\|\cdot\|$ is defined as $\|M\| = \sup_{s \in \partial \mathcal{U}} \bar{\sigma}(M(s))$, where $\bar{\sigma}$ denotes the maximum singular value and $\partial \mathcal{U}$ de-

¹This work was supported by the NSF Grant ECS-9257932. 0-7803-4394-8/98 \$10.00 © 1998 IEEE notes the boundary of \mathcal{U} . A right-coprime-factorization (RCF) and a left-coprime-factorization (LCF) of $P \in \mathbb{R}_p^{n_y \times n_u}$ are denoted by $P = ND^{-1} = \tilde{D}^{-1}\tilde{N}$, where $N, D, \tilde{N}, \tilde{D} \in \mathcal{M}(\mathcal{R}), D$ and \tilde{D} are biproper. Let rank P = r; $s_o \in \mathcal{U}$ is a (transmission) zero of P if and only if rank $N(s_o) = \operatorname{rank} \tilde{N}(s_o) < r$; s_o is called a blocking-zero of P iff $P(s_o) = 0$; $s_o \in \mathcal{U}$ is a blocking-zero of P iff and only if $N(s_o) = 0 = \tilde{N}(s_o)$.

2 Main Results

Consider the LTI, MIMO, unity-feedback system, where $P: e_P \mapsto y, C: e \mapsto y_C, e = u - y, e_P = y_C + u_P;$ $P \in \mathbb{R}_p^{n_y \times n_y}$ and $C \in \mathbb{R}_p^{n_u \times n_y}$ represent the transferfunctions of the plant and the controller, respectively. It is assumed that P and C have no hidden modes corresponding to eigenvalues in \mathcal{U} . Let H_{eu} denote the (input-error) transfer-function from u to e, H_{uu} denote the (input-output) transfer-function from u to y, H denote the transfer-function from (u, u_P) to (y, y_C) . 2.1. Definitions: a) The system S(P,C) is said to be stable iff the transfer-function H from (u, u_P) to (y, y_C) is stable, i.e., $H \in \mathcal{M}(\mathcal{R})$. b) The stable system $\mathcal{S}(P,C)$ is said to have integral action in each output channel iff H_{eu} has blocking-zeros at zero, i.e., $H_{eu}(0) = 0$. The system $\mathcal{S}(P, C)$ is said to have type-m integral action (where $m \ge 1$ is an integer) iff H_{eu} has (at least) m blocking-zeros at zero, i.e., if $(s^{-(m-1)}H_{eu})(0) = 0$. c) The controller C is said to be a stabilizing controller for the plant P (or C is said to stabilize P) iff $C \in \mathcal{M}(\mathbf{R}_p)$ and the system $\mathcal{S}(P,C)$ is stable. d) The controller C is said to be a *stabilizing* controller with integral action iff C stabilizes P, and D_c has blocking-zeros at zero, where $D_c \in \mathcal{R}^{n_y \times n_y}$ is the denominator-matrix of any RCF $N_c D_c^{-1}$ of C. The controller C is said to be a stabilizing controller with type-m integral action iff C stabilizes P and D_c has (at least) m blocking-zeros at zero.

Let $P = ND^{-1} = \tilde{D}^{-1}\tilde{N}$ be any RCF and LCF of $P \in \operatorname{R_p}^{n_y \times n_u}$. Let $C = N_c D_c^{-1}$ be any RCF of $C \in \operatorname{R_p}^{n_u \times n_y}$. The controller C stabilizes P if and only if $(\tilde{D}D_c + \tilde{N}N_c)$ is unimodular [2]. All stabilizing controllers for P are $C = (\tilde{U} + DR)(\tilde{V} - NR)^{-1} = (V - R\tilde{N})^{-1}(U + R\tilde{D})$, where $R \in \mathcal{R}^{n_u \times n_y}$ is such that $(\tilde{V} - NR)$ is biproper (holds for all $R \in \mathcal{M}(\mathcal{R})$ when $P \in \mathcal{M}(\operatorname{R_s})$); $U, V, \tilde{U}, \tilde{V} \in \mathcal{M}(\mathcal{R})$ are such that $VD + UN = I, \tilde{D}\tilde{V} + \tilde{N}\tilde{U} = I, V\tilde{U} = U\tilde{V}$. For any stabilizing

controller C, the corresponding (input-error) transferfunction $H_{eu} = (I_{n_y} + PC)^{-1} = I_{n_y} - PC(I_{n_y} + PC)^{-1}$ $= I_{n_y} - N(U + R\widetilde{D}) = (\widetilde{V} - NR)\widetilde{D}$. If $\mathcal{S}(P,C)$ is stable, $H_{eu}(0) = 0$ only if rank $P = n_y \leq n_u$ and rank $N(0) = n_y \leq n_u$. Therefore, in order for the stable system $\mathcal{S}(P,C)$ to have integral action, the necessary conditions on the plant P are that rank $P = n_y \leq n_u$ and P has no zeros at zero.

In any arbitrary RCF $C = N_c D_c^{-1}$ of a stabilizing controller, $D_c(0) = 0$ if and only if $(\tilde{V} - NR)(0) = 0$. By Definition 2.1, if C is a stabilizing controller with integral action, then $H_{eu}(0) = (\tilde{V} - NR)(0)\tilde{D}(0) = 0$ and hence, the stable system $\mathcal{S}(P,C)$ has integral action in each output channel. Although designing the stabilizing controllers so that $D_c(0) = 0$ is sufficient for the stable system $\mathcal{S}(P,C)$ to have integral action, it is clearly not necessary since $H_{eu}(0) = 0$ also when $\widetilde{D}(0) = 0$. However, when P has no poles at zero, and in particular when P is stable, $H_{eu}(0) = 0$ if and only if $D_c(0) = 0$; in these cases, the stable system $\mathcal{S}(P, C)$ has integral action if and only if the controller C is a stabilizing controller with integral action. Similarly, if $(s^{-(m-1)}D_c)(0) = 0$, then H_{eu} has m blocking-zeros at zero; this is again a sufficient condition for type-mintegral action in $\mathcal{S}(P, C)$.

2.2. Lemma: Let $G \in \mathcal{R}^{n_y \times n_u}$, where rank $G = n_y \leq n_u$. There exists a constant controller $K_i \in \mathbb{R}^{n_u \times n_y}$ that stabilizes $\frac{G}{s}$ if and only if rank $G(0) = n_y \leq n_u$. **2.3. Theorem:** Let $P \in \mathbb{R}_p^{-n_y \times n_u}$, rank $P = n_y \leq n_u$. Let P have no zeros at zero. Let $P = ND^{-1} = \tilde{D}^{-1}\tilde{N}$ be any RCF and LCF. Let $U, V, \tilde{U}, \tilde{V} \in \mathcal{M}(\mathcal{R})$ satisfy $VD + UN = I, \tilde{D}\tilde{V} + \tilde{N}\tilde{U} = I, V\tilde{U} = U\tilde{V}$. Let $K_1 \in \mathbb{R}^{n_u \times n_y}$ be any constant controller that stabilizes $\frac{N}{s}$. Let m be an integer; for $n = 2, \ldots, m$, let $K_n \in \mathbb{R}^{n_y \times n_y}$ be any constant controller that stabilizes $\frac{N}{s}$, where

$$N_n := (I + N \sum_{j=1}^{n-1} \frac{1}{s^j} \prod_{\ell=1}^j K_\ell)^{-1} \frac{N}{s^{n-1}} \prod_{j=1}^{n-1} K_j \in \mathcal{R}^{n_y \times n_y}$$

Under these assumptions, C is a stabilizing controller with type-m integral action if and only if

$$C = (V - Q\tilde{N})^{-1} (U + Q\tilde{D} + \sum_{j=1}^{m} \frac{1}{s^{j}} \prod_{\ell=1}^{j} K_{\ell})$$

where $Q \in \mathcal{R}^{n_u \times n_y}$ is such that $(V - Q\tilde{N})$ is biproper (holds for all $Q \in \mathcal{M}(\mathcal{R})$ when $P \in \mathcal{M}(\mathbb{R}_s)$). \Box **2.4 Corollary:** Under the assumptions of Theorem 2.3, C is a stabilizing controller with type-m integral action if and only if

$$C = (V - \tilde{Q}\tilde{N})^{-1} (U + \tilde{Q}\tilde{D} + \frac{K_1}{s} \sum_{j=1}^{m} (I + N \frac{K_1}{s})^{j-1}),$$

where $\tilde{Q} \in \mathcal{R}^{n_u \times n_y}$ is such that $(V - \tilde{Q}\tilde{N})$ is biproper (holds for all $\tilde{Q} \in \mathcal{M}(\mathcal{R})$ when $P \in \mathcal{M}(\mathbf{R}_s)$).

Comments: a) (All controllers with type-m integral action for stable plants): The parametrization in Theorem 2.3 (similarly in Corollary 2.4) is simplified for stable plants by substituting $N = \tilde{N} = P$, $D = I_{n_u}, \ \widetilde{D} = I, \ V = I, \ \widetilde{V} = I, \ \widetilde{U} = 0 = \widetilde{U}.$ (Construction of the constant matrices K_1, \ldots, K_n): By Lemma 2.2, for any stable system $G \in \mathcal{R}^{n_y \times n_u}$ such that rank $G = n_y \leq n_u$, there exists a constant controller $K_i \in \mathbb{R}^{n_u \times n_y}$ that stabilizes $s^{-1}G$ if and only if $\operatorname{rank} G(0) = n_y$. Note that $\operatorname{rank} K_n = n_y$ for any K_n that stabilizes $s^{-1}N_n$. A choice for $K_1 \in \mathbb{R}^{n_u \times n_y}$ that stabilizes $s^{-1}N$ is $K_1 = \beta_1 N(0)^I$, where $N(0)^{I}$ denotes any right-inverse of N(0) and $\beta_1 \in \mathbb{R}$ is any positive real constant satisfying $0 < \beta_1 < \|s^{-1}(N(s)N(0)^I - I)\|^{-1}$. For n = 2, ..., m, each $N_n \in \mathcal{R}^{n_y \times n_y}$ in Theorem 2.3 is a stable system such that $N_n(0) = I$. Since $N_n(0)^I = N_n(0)^{-1} = I$, a choice for $K_n \in \mathbb{R}^{n_y \times n_y}$ that stabilizes $s^{-1} N_n$ is $K_n = \beta_n I_{n_y}$, where $\beta_n \in \mathbb{IR}$ is any positive real constant satisfy-ing $0 < \beta_n < ||s^{-1}(N_n(s) - I)||^{-1}$. The constant $K_1 \in \mathbb{R}^{n_u \times n_y}$ that stabilizes $s^{-1}N$ in Corollary 2.4 can also be chosen as above. c) (Observer-based realization of all stabilizing controllers with type-m integral action): The parametrization in Theorem 2.3 and equivalently Corollary 2.4 can also be derived by using the coprime factorizations of P obtained from a statespace representation [2]. We state the parametrization in Corollary 2.4 as a simple algorithm to design stabilizing controllers with type-m integral action: Given: A state-space representation $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ of $P(s) = \overline{C}(sI_n - \overline{A})^{-1}\overline{B} + \overline{D} \in \mathbb{R}_p^{n_y \times n_u}, n_y \leq n_u,$ where $(\overline{A}, \overline{B})$ is stabilizable and $(\overline{C}, \overline{A})$ is detectable. Step 0: If rank $\begin{bmatrix} \bar{A} & \bar{B} \\ \bar{C} & \bar{D} \end{bmatrix} = n + n_y$, then go to step 1 (P(s) has no zeros at s = 0; else, stop (P(s) has zeros at s = 0 and hence, stabilizing controllers with integral action do not exist). Step 1: Choose any $K \in \mathbb{R}^{n_u \times n}$ and $L \in \mathbb{R}^{n \times n_y}$ such that $A_K := (sI_n - \bar{A} + \bar{B}K)^{-1} \in$ $\mathcal{M}(\mathcal{R}), A_L := (sI_n - \bar{A} + L\bar{C})^{-1} \in \mathcal{M}(\mathcal{R}).$ Step 2: Choose any $K_1 \in \mathbb{R}^{n_u \times n_y}$ that stabilizes $\frac{N}{s}$, where $N = (\bar{C} - \bar{D}K)A_K\bar{B} + \bar{D}$. Step 3: The controller C is a stabilizing controller with integral action if and only if $C = \left(I + (K - \tilde{Q}\bar{C})A_L(\bar{B} - L\bar{D}) - \tilde{Q}\bar{D}\right)^{-1}$ $\cdot (KA_LL + \tilde{Q}(I - \tilde{C}A_LL) + \frac{K_1}{s}\sum_{j=1}^{m} \left(I + N\frac{K_1}{s}\right)^{j-1})$ where $\tilde{Q} \in \mathcal{R}^{n_u \times n_y}$ is such that $\det(I - \tilde{Q}(\infty)\bar{D}) \neq 0$. At step 2, K_1 can be chosen as $K_1 = \beta_1 N(0)^I$, where $N(0)^{I} = (\bar{D} - (\bar{C} - \bar{D}K)(\bar{A} - \bar{B}K)^{-1}\bar{B})^{I}; (\bar{A} - \bar{B}K)^{-1}\bar{B}^{I}$ $\bar{B}K$)⁻¹ exists since A_K has no poles at zero; β_1 satisfies $0 < \beta_1 < \| (\tilde{C} - \tilde{D}K) A_K (\bar{A} - \tilde{B}K)^{-1} \tilde{B}N(0)^I \|^{-1}.$

References

[1] M. Morari, E. Zafiriou, *Robust Process Control*, Prentice-Hall, 1989.

[2] M. Vidyasagar, Control System Synthesis: A Factorization Approach, M.I.T. Press, 1985.