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Proof: First of all, notice that(�1=2A;B) is stabilizable if and
only if (�1=2A; �1=2B) is stabilizable. From Lemma A1,(Ĉ; �1=2Â)
is detectable. Notice now that (5) can be written as

X = Ĵ
0

Ĵ + (�1=2A0)X(�1=2A)

� ((�1=2A0)X(�1=2B) + Ĵ
0

D̂)

� (D̂0

D̂ + (�1=2B0)X(�1=2B))�1

� ((�1=2B0)X(�1=2A) + D̂
0

Ĵ)

and the lemma follows from standard results on ARE’s (see [6, p.
263 and Appendix B]).

Proof of Proposition 2.3: Consider in (5)Y = Ŷ � Ŷ : From
Lemma A.2, if (�1=2A;B) is stabilizable and( ~C; �1=2 ~A) is de-
tectable, then there exists a unique positive semidefinite solutionX̂

to (5), and it is such that�1=2(A + BK̂) is stable, whereK̂ is as
in (A1) with X = X̂ andY = Ŷ : If we now setY = Ŷ we can
conclude similarly the existence of a unique semipositive solutionX̂

of (5) and a ~K given by (A1) withX = ~X andY = ~Y : After some
algebraic manipulation, we get that

(X̂ � ~X)� (A+BK̂)((Ŷ + �X̂)� (Y + � ~X))(A+BK̂)

= ( ~K � K̂)0(D0

D+B
0( ~Y + � ~X)B)( ~K � K̂)

and thus

(X̂ � ~X)� �(A+BK̂)0(X̂ � ~X)(A+BK̂)

= (A+BK̂)0(Ŷ � ~Y )(A+BK̂)

+ ( ~K � K̂)(D0

D+B
0( ~Y + � ~X)B)�1( ~K � K̂)

and it follows from stability of�1=2(A+BK̂) that X̂ � ~X � 0:
For a general account on the positive semidefinite partial ordering

of maximal solutions of discrete-time ARE’s, see [16].
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Reliable Decentralized Stabilization of Linear Systems

A. N. Gündeş

Abstract— Reliable stabilization of linear time-invariant multi-
input/multi-output plants is considered using a two-channel decentralized
controller configuration. Necessary and sufficient conditions are obtained
for existence of reliable controllers that maintain stability under the
possible failure of either one of the two controllers. All decentralized
controllers that achieve reliable stabilization are characterized.

Index Terms—Controller design, decentralized control, reliable stabi-
lization.

I. INTRODUCTION

We consider reliable stabilization of linear time-invariant (LTI),
multi-input/multi-output (MIMO) plants under possible sensor or
actuator failures using a two-channel decentralized feedback control
configuration. The goal is to maintain closed-loop stability when both
controllers act together and when either one of the two controllers acts
alone. It is assumed that the failure of a controller is recognized and it
is taken out of service (i.e., the states in the controller implementation
are all set to zero, the initial conditions and outputs of the channel
that failed are set to zero for all inputs). Since the introduction
of multi-controller systems in [5] and [6], reliable stabilization has
been studied for various failure models using full-feedback [2], [8]
and decentralized configurations [4], [7]. Conditions for existence of
reliable decentralized controllers were given for a class of reliable
stabilization problems using genericity arguments in [4]. The reliable
stabilization problem considered in this paper is based on the two-
channel decentralized configuration and failure model in [7]. The
necessary and sufficient conditions here for existence of reliable
decentralized controllers include generalizations of the sufficient
conditions in [7].

The main results in this paper are the explicit existence conditions
for reliable decentralized controllers. Theorem 2 gives an important
interpretation of these conditions in terms of the strong stabilizability
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Fig. 1. The decentralized systemS(P;CD):

of an associated system and states that strong stabilizability of two
of the subblocks of the plant is necessary. Proposition 1 gives a
parameterization of all reliable decentralized controllers for stable
plants, and Theorem 3 establishes explicit existence conditions when
one channel is single-input/single-output (SISO). Theorem 4 gives
important sufficient conditions when all channels are MIMO. The fol-
lowing notation is used throughout; due to the input–output approach,
the setting can be continuous-time or discrete-time.

Notation: Let U denote the region of instability;U contains the
extended closed right half-plane (for continuous-time systems) or
the complement of the open unit-disk (for discrete-time systems).
Let Rp (Rs) denote proper (strictly proper) rational functions with
real coefficients;R denotes proper rational functions with no poles
in U ; M(R) denotes the set of matrices with entries inR; M is
calledR-stable iffM 2M(R); andM 2M(R) is calledR-stable
unimodular iffM�1 2M(R). A right-coprime factorization (RCF),
a left-coprime factorization (LCF), and a bicoprime factorization
(BCF) of P 2 M(Rp) are denoted byP = ND�1 = ~D�1 ~N =
NbrD

�1

b Nbl + Gb; N; D; ~N; ~D; Nbr; Db; Nbl; Gb 2 M(R), D,
~D, andDb are biproper. LetrankP = r; so 2 U is called aU-zero
(blocking U-zero) ofP iff rankP (so) < r(P (so) = 0); the poles
of P in U are called itsU-poles. ForM 2 M(R), the normk � k
is defined askMk = sup s2@U �(M(s)); � denotes the maximum
singular value and@U denotes the boundary ofU .

II. M AIN RESULTS

Consider the LTI, MIMO, and two-channel decentralized control
systemS(P; CD) shown in Fig. 1. The plant and the decentralized
controller are represented by their transfer functionsP and CD,
respectively

P =
P11 P12
P21 P22

2 R
n �n
p ; Pjj 2 R

n �n
p

CD =
C1 0
0 C2

2 R
n �n
p ; Cj 2 R

n �n
p (1)

no = no1+no2, ni = ni1+ni2. It is assumed thatP andCD have no
hidden modes corresponding to eigenvalues inU and thatS(P; CD)
is well-posed. The failure of thejth controller channel is represented
by settingCj = 0; the correspondingjth channel outputyCj is also
set to zero. When the second (first) channel fails, the system is called
S(P; C1) shown in Fig. 2 (S(P; C2) shown in Fig. 3).

Using any RCFP = ND�1, any LCFCj = ~D�1c
~Nc , j = 1; 2,

~DC = diag[ ~DC1; ~DC2], ~NC = diag[ ~NC1; ~NC2], D�P = eP ,
N�P = yP , uP = [uTP1u

T
P2]

T , uC = [uTC1u
T
C2]

T , yP = [yTP1y
T
P2]

T ,
yC = [yTC1y

T
C2]

T , eP = [eTP1e
T
P2]

T , the systemS(P; CD) is
described in (2) asDD�P = NLu, NR�P + Gu = y; S(P; CD)
is well-posed, i.e., the transfer-functionH = NRD

�1

D NL +G from
(uP ; uC) to (yP ; yC) is proper, if and only ifDD is biproper. The
description ofS(P; C1) asDD1�1 = NL1u1, NR1�1 = y1 is given

Fig. 2. The systemS(P;C1):

Fig. 3. The systemS(P;C2):

by (3); a similar description can be obtained forS(P; C2). The
systemS(P; C2) is described as~DD2

~�2 = ~NL2u2, ~NR2
~�2 = y2

in (4); the description forS(P; C1) is similar. For j = 1; 2,
the transfer function ofS(P; Cj) from (uP ; uCj) to (yP ; yCj) is
Hj = NRjD

�1

DjNLj = ~NRj
~D�1Dj

~NLj

( ~DCD + ~NCN)�P = [ ~DC
~NC ]

uP
uC

N

D
�P +

0 0
�I 0

uP
uC

=
yP
yC

(2)

D
�In

0

[ ~NC1 0 ]N ~DC1

�P
yC1

=
I 0
0 ~NC1

uP
uC1

N 0
0 In

�P
yC1

=
yP
yC1

(3)

~D � ~N
0

NC2

[0 Ino2] ~DC2

yP
�C2

=
~N 0
0 In

uP
uC2

I 0
0 NC2

yP
�C2

=
yP
yC2

: (4)

Reliable Stability: The systemS(P; CD) is said to beR-stable iff
H 2 M(R); similarly, S(P; Cj) is R-stable iffHj 2 M(R). The
decentralized controllerCD is said to be anR-stabilizing controller
for P iff CD is proper andS(P; CD) isR-stable. The pair(C1; C2)
is called areliable decentralized controller pairiff C1, C2 are proper
and the systemsS(P; CD), S(P; C1), S(P; C2) are allR-stable.

Lemma 1 gives necessary and sufficient conditions forR-stability
of S(P; CD) under normal operation and under the complete failure
of one of the controllers. We assume that the coprime factorizations
are in canonical forms; the denominator-matrix of any RCF, LCF can
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be put into upper (lower) triangular Hermite forms by elementary
column (row) operations [9], [1]. Without loss of generality, it is
assumed that the RCF and LCFP = ND�1 = ~D�1 ~N are given by

P =ND
�1 =

N11 N12

N21 N22

D11 0
D21 D22

�1

= ~D�1 ~N =
~D11

~D12

0 ~D22

�1 ~N11
~N12

~N21
~N22

: (5)

Lemma 1—Decentralized Stability:Let ND�1 = ~D�1 ~N be any
RCF, LCF ofP 2 Rn �n

p ; let ~D�1C
~NC = NCD

�1

C be any LCF,
RCF of CD, ~DC = diag[ ~DC1; ~DC2], ~NC = diag[ ~NC1; ~NC2],
NC = diag[NC1; NC2], DC = diag[DC1; DC2]. The system
S(P; CD) is R-stable if and only ifDD := ( ~DCD + ~NCN)
is R-unimodular. Let the RCF and LCFP = ND�1 = ~D�1 ~N
be as in (5);S(P; CD) is R-stable if and only if (6) holds. Let
C2 = ~D�1C2

~NC2 = NC2D
�1

C2
be any LCF, RCF; the systemS(P; C2)

isR-stable if and only if (7) holds. LetC1 = ~D�1C1
~NC1 = NC1D

�1

C1

be any LCF and RCF;S(P; C1) isR-stable if and only if (8) holds

~DC1D11 + ~NC1N11
~NC1N12

~DC2D21 + ~NC2N21
~DC2D22 + ~NC2N22

is R-unimodular

(6)

D11 is R-unimodular,

and ( ~DC2D22 + ~NC2N22) is R-unimodular (7)

~DC1D11 + ~NC1N11
~NC1N12

D21 D22

is R-unimodular: (8)

To obtain a parameterization of all reliable decentralized controller
pairs, we use the following characterization of alladmissible plants
for stability using one controller[1], [3]: Let P 2 Rn �n

p be
partitioned as in (1). There exists a decentralized controllerCD =
diag[C1; C2] such thatS(P; CD) andS(P; C2) areR-stable if and
only if P has an RCF and LCFP = ND�1 = ~D�1 ~N of the form

P = ND
�1 =

N11 N12

~V2 ~N21 N22

In 0
� ~U2

~N21 D22

�1

= ~D�1 ~N =
In �N12U2

0 ~D22

�1

N11 N12V2
~N21

~N22

(9)

where N11 2 R
n �n , N12 2 R

n �n , ~N21 2 R
n �n ,

(N22; D22) is right-coprime, ( ~D22; ~N22) is left-coprime, and
~U2; ~V2; U2; V2 2 M(R) satisfy (10); equivalently,P11 �
P12D22U2P21 2 M(R), P12D22 2 M(R), ~D22P21 2 M(R),
whereN22D

�1

22
is an RCF and~D�1

22
~N22 is an LCF ofP22 andU2

satisfies (10)

V2 U2

� ~N22
~D22

D22 � ~U2

N22
~V2

=
In 0
0 In

: (10)

Theorem 1—Stabilizing Controllers:Let P 2 R
n �n have an

RCF and LCFP = ND�1 = ~D�1 ~N satisfying (9). The system
S(P; C2) is R-stable if and only ifC2 is given by (11),Q2 2

R
n �n is such that~DC2 is biproper [holds for allQ2 2 M(R)

whenP22 2 M(Rs)]; S(P; CD) andS(P; C2) are bothR-stable
if and only if C2 and C1 are given by (11) and (12), andQ1 2

R
n �n is such that~DC1 is biproper [holds for allQ1 2 M(R)

when (N11 � N12Q2
~N21) 2 M(Rs)]; S(P; CD), S(P; C2), and

S(P; C1) are allR-stable (i.e.,(C1; C2) is a reliable decentralized
controller pair) if and only ifC2 andC1 are given by (11) and (12),
whereQ1 2 R

n �n , Q2 2 R
n �n satisfy condition (13), or

equivalently (14), and~DC1, ~DC2 are biproper

C2 = ~D�1C2
~NC2

=(V2 �Q2
~N22)

�1(U2 +Q2
~D22)

=NC2D
�1

C2

=(~U2 +D22Q2)(~V2 �N22Q2)
�1 (11)

C1 = ~D�1C1
~NC1 = (I �Q1(N11 �N12Q2

~N21))
�1
Q1 (12)

D22 + (~U2 +D22Q2) ~N21Q1N12 is R-unimodular (13)

~D22 + ~N21Q1N12 (U2 +Q2
~D22) is R-unimodular: (14)

Conditions (13) and (14) lead to the conditions thatP must satisfy
for the existence of reliable decentralized controller pairs as stated
in Theorem 2. StrongR-stabilizability of pseudo-systems related to
P are important for existence of reliable decentralized controllers.
The following are well known [9]: An LTI systemP̂ is said to
be stronglyR-stabilizable iff anR-stableR-stabilizing controller
Ĉ exists for P̂ . In the standard full-feedback systemS(P̂ ; Ĉ), P̂
is stronglyR-stabilizable if and only if it has an even number of
U-poles between consecutive pairs of real blockingU-zeros. Let
P̂ = NpD

�1

p = ~D�1p
~Np = NbrD

�1

b Nbl + Gb be any RCF, LCF,
and BCF ofP̂ ; let Ĉ = ~D�1c

~Nc be any LCF;Ĉ 2 M(R) if and
only if ~Dc is unimodular. Therefore,̂P is stronglyR-stabilizable
if and only if ~X 2 M(R) exists such thatDp + ~XNp is R-
unimodular; equivalently,X 2 M(R) exists such that~Dp + ~NpX

is R-unimodular; equivalently,Xb 2 M(R) exists such that

I +XbGb XbNbr

�Nbl Db
is R-unimodular:

Lemma 2—Coprime Factorizations and Strong Stabilizability:Let
P 2 Rn �n

p , partitioned as in (1), have an RCF and LCFP =

ND�1 = ~D�1 ~N of the form (9). Let N12D
�1

22
be an RCF,

~Y �1
12

~X12 be an LCF ofP12; let ~D�1
22

~N21 be an LCF andX21Y
�1

21

be an RCF ofP21. Define P̂ := P12( ~U2 + D22Q2) ~D22P21 =
P12D22(U2 + Q2

~D22)P21.

1) N12D
�1

22
( ~U2 + D22Q2) ~N21 is a BCF, N12(U2 +

Q2
~D22)X21Y

�1

21
is an RCF, and~Y �1

12
~X12( ~U2 +D22Q2) ~N21

is an LCF of P̂ .
2) P̂ is stronglyR-stabilizable if and only ifdet ~D22 has the same

sign at all real blockingU-zeros ofN12(U2 + Q2
~D22)X21,

equivalently,det D22 has the same sign at all real blocking
U-zeros of ~X12( ~U2 +D22Q2) ~N21.

Theorem 2—Conditions for Reliable Decentralized Stabilizability:
Let P 2 Rn �n

p be partitioned as in (1).

1) If there exists a reliable decentralized controller pair(C1; C2),
then the following four necessary conditions hold: 1)P has
an RCF and LCFND�1 = ~D�1 ~N satisfying (9); 2) in (9),
N12D

�1

22
is an RCF ofP12, ~D�1

22
~N21 is an LCF ofP21; 3) P12,

P21 are stronglyR-stabilizable; and 4) the sign ofdet D22 is
the same at all real blockingU-zeros ofP12 and at all real
blocking U-zeros ofP21.

2) Let P have an RCF and LCFND�1 = ~D�1 ~N satisfying (9);
let N12D

�1

22
be an RCF ofP12, ~D�1

22
~N21 be an LCF ofP21.

a) There existQ1; Q2 2 M(R) satisfying (13), or
equivalently (14), if and only ifP̂ = P12( ~U2 +
D22Q2) ~D22P21 = P12D22(U2 + Q2

~D22)P21 is
stronglyR-stabilizable for someQ2 2 M(R).
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b) Let P22 2 M(Rs) and let P12 or P21 be strictly
proper. There exists a reliable decentralized controller
pair (C1; C2) if and only if P̂ is stronglyR-stabilizable
for someQ2 2M(R).

Condition 4) of Theorem 2-1) implies 3); the two conditions are
equivalent whenP12; P21 2 M(Rs). By Theorem 2, if a reliable
decentralized controller pair exists, thenQ2 2 M(R) exists such
thatP̂ = P12( ~U2+D22Q2) ~D22P21 is stronglyR-stabilizable. When
P 2 M(Rs), strongR stabilizability of P̂ becomes necessary and
sufficient for existence of reliable decentralized controller pairs. We
parameterize all reliable decentralized controller pairs forR-stable
plants in Proposition 1. Explicit necessary and sufficient conditions
for existence of reliable decentralized controller pairs are stated in
Theorem 3 for the important special case when at least one control
channel has only one input and one output.

Proposition 1—Reliable Decentralized Stabilization for Stable
Plants: Let P 2 Rn �n beR-stable. Then there exists a reliable
decentralized controller pair. Furthermore, all reliable decentralized
controller pairs(C1; C2) are parameterized by (15), whereCj is
proper if and only ifQj 2 M(R) is such that(I � QjPjj) is
biproper, which holds for allQj 2 M(R) whenPjj 2 M(Rs)

f(C1; C2)jCj = (I �QjPjj)
�1Qj ; Qj 2M(R); j = 1; 2;

I �Q1P12Q2P21 is R-unimodularg: (15)

By Theorem 2, if reliable decentralized controllers exist, thenP
has an RCF and LCF satisfying (9),P22 = N22D

�1

22 is an RCF,
P12 = N12D

�1

22 is an RCF, andP21 = ~D�122
~N21 is an LCF. Suppose

P22 = 0, or P12 = 0 or P21 = 0; i.e., N22 = 0 or N12 = 0 or
~N21 = 0. The pair(0; D22) is right-coprime if and only ifD22 is
R-unimodular, i.e.,P 2 M(R). So whenP22, P12; or P21 is zero,
reliable decentralized controllers exist if and only ifP is R-stable
and the parameterization of all reliable decentralized controller pairs
is given by (15), where(I �Q1P12Q2P21) is R-unimodular for all
Q1; Q2 2 M(R) if P12 or P21 is zero.

Theorem 3—Necessary and Sufficient Conditions WhenP22 Is
SISO: Let P 2 Rn �n

p , P11 2 Rn �n
p , P12 2 Rn �1

p ,
P21 2 R1�n

p , P22 2 Rp (i.e.,no2 = ni2 = 1). LetP22 = N22D
�1

22

be any coprime factorization. LetP12 or P21 be strictly proper. Let
�1; �2; � � � ; � (arranged in ascending order) denote the distinct real
U-zero poles ofP22 and let�j ; �j ; � � � ; �j (arranged in ascending
order) denote those distinct realU-poles ofP22 for which the sign of
N22(�j ) is not equal to the sign ofN22(�j +1), 1 � k � `. There
exists a reliable decentralized controller pair(C1; C2) if and only if
the four necessary conditions of Theorem 2-1) hold andP22 has an
even number of realU-poles in each of the intervals(�j ; �j +1),
1 � k � `� 1, and(�j ; 1).

Corollary 1—Sufficient Conditions WhenP22 is SISO: Let P 2
Rn �n
p , P11 2 Rn �n

p , P12 2 Rn �1
p , P21 2 R1�n

p ; let
P22 = N22D

�1

22 2 Rp be any coprime factorization. Let the four
conditions of Theorem 2-1) hold: 1) Let the sign ofD22 at the
real blockingU-zeros ofP12 and P21 be the same as the sign of
D22(1). Reliable decentralized controllers exist ifP22 has even
number ofU-zeros between any pairs of its realU-poles; 2) Reliable
decentralized controllers exist if the sign ofD22 is the same at all
realU-zeros ofP22 as the sign ofD22(1).

In Corollary 1-1), if P12 or P21 is strictly proper, then the sign
of D22 at the real blockingU-zeros ofP12 and of P21 being the
same as the sign ofD22(1) follows from the necessary conditions
3) and 4) of Theorem 2-1). WhenP22 2 M(Rs), the sufficient
condition in Corollary 1-2) is equivalent toP22 being stronglyR-

stabilizable; whenP22 =2 M(Rs), this condition implies P22 is
stronglyR-stabilizable.

Theorem 4—Conditions for MIMO Channels:Let P 2 Rn �n
p ,

P11 2 Rn �n
p , P12 2 Rn �n

p , P21 2 Rn �n
p , P22 2

Rn �n
p . Let the four necessary conditions of Theorem 2-1) hold.

1) Let P12 2 M(Rs) or P21 2 M(Rs). Let no2 = ni2 > 1;
let the sign ofdet D22 be the same at all common realU-
zeros ofP12 and P21 as the sign ofdet D22(1). Reliable
decentralized controller pairs exist ifrankP12 = ni2 � no1,
rankP21 = no2 � ni1.

2) Let P12 2 M(Rs) or P21 2 M(Rs). Let P22 2 Rn �n
s ;

let rankP22 = no2 = ni2, rankP12 + rankP21 > no2 = ni2;
let the sign ofdet D22 be the same at all real (transmission)
U-zeros of P12 and of P21 as the sign ofdet D22(1).
Reliable decentralized controller pairs exist if the number of
real (transmission)U-zeros ofP22 = ~D22

�1 ~N22 between any
pair of real blockingU-zeros of ~D22 is even.

3) Let P22 2 Rn �n
p , where no2 and ni2 are not both

equal to one. Reliable decentralized controller pairs exist if
P12 2 Rn �n

p has anR-stable left-inverseP I
12 2 R

n �n

and if P21 2 Rn �n
p has anR-stable right-inverseP I

21 2
Rn �n .

4) Let P21 2 Rn �n
p have anR-stable right-inverseP I

21 2
Rn �n . Let P11 2 M(Rs), P12 2 M(Rs). Let P22 be
stronglyR-stabilizable. Reliable decentralized controller pairs
exist if ~LP12 = P22 for some ~L 2 Rn �n .

5) Let P12 2 Rn �n
p have anR-stable left-inverseP I

12 2
Rn �n . Let P11 2 M(Rs), P12 2 M(Rs). Let P22 be
stronglyR-stabilizable. Reliable decentralized controller pairs
exist if P21 ~R = P22 for some ~R 2 Rn �n .

6) Let P22 2 Rn �n
s . Reliable decentralized controller pairs

exist if ~LP12 = P22 for some~L 2 Rn �n andP21 ~R = P22
for some ~R 2 Rn �n .

Other sufficient conditions for existence of reliable decentralized
controllers can be derived from the six general cases in Theorem 4.
For example, under the assumptions of case 2), reliable decentralized
controllers exist if eitherP21 has anR-stable right-inverse orP12
has anR-stable left-inverse sincerankP21 = no2 or rankP12 =
ni2 = no2 implies rankP12 + rankP21 > no2.

III. CONCLUSIONS

We considered the design of reliable decentralized controllers that
stabilize a given plantP when both controllers act together and
when either one of the controllers acts alone. We showed that reliable
decentralized controllers exist only if the subblocksP12 andP21 of
P are strongly stabilizable. We established necessary and sufficient
conditions for existence of reliable decentralized controllers when
P22 is SISO and gave sufficient conditions when all subblocks ofP
are MIMO. We characterized all reliable decentralized controllers in
the parameterizations (11), (12). Extensions to decentralized systems
with more than two channels would require additional constraints on
the plant.

APPENDIX

A. Proofs

The proof of Lemma 1 follows from (2)–(4) using standard
arguments. The proof of Theorem 1 follows by Lemma 1 from the
assumption thatP has an RCFND�1 of the form (9).

Proof of Lemma 2:

1) By (10), (D22; NC2) is left-coprime. By assumption,
( ~D22; ~N21) is left-coprime, (X21; Y21) is right-coprime,
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and V21; U21; ~V21; ~U21 2 M(R) exist such thatV21Y21 +
U21X21 = I, ~D22

~V21 + ~N21
~U21 = I, V21 ~U21 = U21 ~V21,

~N21Y21 = ~D22X21. Hence

V21 + U21DC2
~N21 U21N22

�NC2
~N21 D22

�
Y21 � ~U21 ~N22

~NC2X21
~DC2 + ~NC2

~V21 ~N22

= I

implies (D22; NC2
~N21) is left-coprime for allQ2 2 M(R).

Let P̂ := P12NC2
~D22P21; since(N12; D22) is right-coprime

and (D22; NC2
~N21) is left-coprime,P̂ = N12D

�1

22 NC2
~N21

is a BCF. For P12 = N12D
�1

22 = ~Y �112
~X12, there are

V12; U12; ~V12; ~U12 2 M(R) such thatV12D22 + U12N12 =
I, ~X12

~U12 + ~Y12 ~V12 = I, V12 ~U12 = U12 ~V12. Hence

V21 + U21(DC2 +N22V12NC2) ~N21 U21N22U12
� ~X12NC2

~N21
~Y12

�
Y21 � ~U21 ~N22

~U12
N12

~NC2X21
~V12 +N12( ~DC2 + ~NC2

~V21 ~N22) ~U12
= I

implies (N12
~NC2X21; Y21) is right-coprime, ( ~Y12;

~X12NC2
~N21) is left-coprime.

2) SinceN12
~NC2X21Y

�1

21 = ~Y �112
~X12NC2

~N21 is an RCF and
LCF of P̂ , becauseP22 = N22D

�1

22 = ~D�122
~N22, P21 =

~D�122
~N21 = X21Y

�1

21 , P12 = N12D
�1

22 = ~Y �112
~X12, P̂ is

strongly R-stabilizable if and only ifdet Y21, equivalently
det ~Y12, det ~D22, or det D22; has the same sign at all real
U-zeros ofN12

~NC2X21, equivalently, of ~X12NC2
~N21.

Proof of Theorem 2:

1) If reliable decentralized controllers exist, Condition 1) holds
by (9). By Theorem 1, (13) and (14) hold; (13) and (14)
imply (N12; D22) is right-coprime, and( ~D22; ~N21) is left-
coprime. By (9), Condition 2) holds sinceP12 = N12D

�1

22 ,
P21 = ~D�122

~N21. Conditions 3) and 4) are shown as follows:
P12 is strongly R-stabilizable if and only if for any RCF
P12 = N12D

�1

22 , ~X 2 M(R) exists such thatD22 +
~XN12 is R-unimodular; with ~X = NC2

~N21Q1, (13) implies
P12 is stronglyR-stabilizable. Similarly,P21 is stronglyR-
stabilizable if and only if for any LCFP21 = ~D�122

~N21, X 2
M(R) exists such that~D22 + ~N21X is R-unimodular; with
X = Q1N12

~NC2, (14) impliesP21 is stronglyR-stabilizable.
Since (13) impliesdet (D22+NC2

~N21Q1N12) has noU-zeros,
det D22(z12) has the same sign asdet D22(z21) for all real
z12; z21 2 U , N12(z12) = 0 and ~N21(z21) = 0.

2) a) By Lemma 2, P̂ = N12D
�1

22 NC2
~N21 is a BCF;

therefore,P̂ is stronglyR-stabilizable if and only if
X̂ 2 M(R) exists such that(D22 + NC2

~N21X̂N12)
is R-unimodular, equivalently (13) holds.

b) By Theorem 1-3), reliable decentralized controllers exist
if and only if Q1; Q2 2 M(R) exist satisfying (13),
such that ~DC1; ~DC2 are biproper. It was shown that
Q1; Q2 2 M(R) satisfying (13) exist if and only if
P̂ is strongly R-stabilizable. SinceP22 2 M(Rs),
(V2 � Q2

~N22) is biproper. If P12 2 M(Rs) or
P21 2 M(Rs), then P̂ = P12D22

~NC2P21 2 M(Rs);
hence, P̂ is strongly R-stabilizable if and only if
for any �a 2 IRnU , (s + a)�1P̂ is strongly R-
stabilizable, equivalently,~Q1 2M(R) exists such that
D22+NC2

~N21(s+ a)�1 ~Q1N12 is R-unimodular. Let
Q1 := (s + a)�1 ~Q1 2 M(Rs); then (13) holds and
~DC1 is biproper.

Proof of Proposition 1: By Lemma 1, (7) and (8) hold if
and only if Cj = ~D�1Cj

~NCj is an R-stabilizing controller for
Pjj , j = 1; 2. Therefore, allC1, C2 are given by (15). By
(6), S(P; CD) is alsoR-stable if and only ifI � Q1P12Q2P21
is R-unimodular. The controllers are proper if and only if~DC

is biproper. We give a solution forQj 2 M(R) such that
I � Q1P12Q2P21 is R-unimodular and(I � QjPjj) is biproper.
ChooseQ1; Q2 2 M(R) strictly proper; letQ1 = ��1Q1, where
� 2 IR, j�j > kQ1P12Q2P21k; choosing strictly properQ1; Q2

is sufficient to make(I � QjPjj) biproper, and choosing� that
guaranteesk��1Q1P12Q2P21k < 1 is sufficient to satisfy (6).
This shows existence of reliable decentralized controllers for any
R-stableP . The expression forC1 in (15) is equivalent to (12).
By (12), C1 = (I � Q̂1(P11 � P12Q2P21))

�1Q̂1; by (13), � :=
(I + Q̂1P12Q2P21) is R-unimodular. WithQ1 = ��1Q̂1, C1 =
(I + Q̂1P12Q2P21 � Q̂1P11)

�1Q̂1 = (I � ��1Q̂1P11)
�1��1Q̂1

is equivalent to (15) and��1 = (I � ��1Q̂1P12Q2P21) is
R-unimodular if and only ifI �Q1P12Q2P21 is R-unimodular.

Proof of Theorem 3:Since P22 = N22D
�1

22 = ~D�122
~N22 is

scalar, N22, ~N22, D22, and ~D22 are used interchangeably. By
Theorem 2,Q1; Q2 2 M(R) satisfying (13) and (14) exist if
and only if P̂ = P12D22

~NC2P21 is strongly R-stabilizable for
someQ2 2 R, i.e., ~D22 has the same sign at all real blocking
U-zeros ofN12

~NC2X21 by Lemma 2-2). Since the onlyU-zeros
of P12 2 Rn �1 and P21 2 R1�n are their blockingU-zeros,
so 2 U is a blockingU-zero ofP12 ~NC2X21 if and only if it is a
blockingU-zero ofP12, i.e.,N12(so) = 0, or of ~NC2 or of P21, i.e.,
X21(so) = 0. The four conditions of Theorem 2-1) are necessary
for the existence of reliable decentralized controllers. TheU-poles of
P22 are theU-zeros ofD22. By (10), the signs ofU2 andN22 are
the same at all realU-zeros of ~D22. Supposefj1; � � � ; j`g is empty.
Then ~Q2 2 R exists such that(U2 + ~Q2

~D22) has noU-zeros [9].
Since the only blockingU-zeros ofN12(U2+ ~Q2

~D22)X21 are those
of P12 andP21, the conditions of Theorem 2-1) are sufficient for (13).
If P22 2 M(Rs), then(V2 � ~Q2

~N22) is biproper. If ~N22(1) 6= 0,
let Q2 := ~Q2 + Q̂2, Q̂2 2 R, Q̂2(1) 6= (V2 � ~Q2

~N22) ~N
�1

22 (1),
kQ̂2k < k ~D22(U2 + ~Q2

~D22)
�1k�1. Then ~DC2 is biproper, i.e.,

C2 2 M(Rp), and ~NC2 is a unit inR. SinceP12 2 M(Rs) or
P21 2 M(Rs), Q1 satisfying (13) can be chosen strictly proper
so that ~DC1 is biproper. Therefore, the conditions of Theorem 2-1)
are sufficient for the existence of reliable decentralized controllers.
Supposefj1; � � � ; j`g is not empty; thenN22 has an odd number
of zeros in each interval(�j ; �j +1), 1 � k � `. By (10),
~NC2(�j )N22(�j ) = 1 at theU-zeros�j of ~D22; hence, ~NC2 =
(U2 + Q2

~D22) has an odd number of zeros because~NC2 has even
number of zeros in(�j ; �j +1), 1 � k � `. Note that�j is the
first zero of ~D22 immediately to the left of the realU-zero of ~NC2 in
(�j ; �j +1) and�j +1 is the first zero of~D22 immediately to the
right of the realU-zero of ~NC2 in (�j ; �j +1). If Q2 2M(R)

exists such that~D22 has the same sign at all realU-zeros of ~NC2, then
~D22 must have an even number of zeros between�j and�j +1

since ~NC2 has at least one realU-zero in each of these intervals. Since
eitherP12(1) = 0 or P21(1) = 0, the sign of ~D22 at theU-zero
of ~NC2 in the last interval(�j ; �j +1) must agree with the sign of
~D22(1); hence,~D22 must have even number of zeros in(�j ; 1).
This proves necessity. For anyQ2 2R, the minimum number ofU-
zeros of ~NC2 is `, which is the number of intervals whereN22 has an
odd number of zeros between realU-zeros of ~D22. There is ~Q2 2 R
such that(U2+ ~Q2

~D22) has exactlỳ realU-zeros, with exactly one in
each of(�j ; �j +1), 1 � k � `, because(U2+ ~Q2

~D22) has an odd
number of zeros in each of these intervals. If~D22 has even number of
realU-zeros in each of(�j ; �j +1), 1 � k � `�1, and(�j ; 1),
then P̂ = P12D22(U2 + ~Q2

~D22)P21 is stronglyR-stabilizable. Let
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Q1 2M(R) be such thatM1 := ~D22+ ~N21Q1N12(U2+ ~Q2
~D22) is

R-unimodular;Q1 can be chosen strictly proper. If~N22(1) 6= 0, let
Q2 := ~Q2 + Q̂2, Q̂2 2 R, Q̂2(1) 6= (~V2 �N22

~Q2)(1) ~N�122 (1),
kQ̂2k < k ~D22M

�1
1

~N21Q1N12k
�1. Then ~DC2, ~DC1 are biproper,

i.e., C1; C2 are proper. Since~D22 + ~N21Q1N12
~NC2 = M1 +

~N21Q1N12Q̂2
~D22 is R-unimodular,(C1; C2) is a reliable decen-

tralized controller pair.
Proof of Corollary 1:

1) If P22 has an even number of realU-zeros between consecutive
real U-poles, the sign ofN22 is the same at all realU-
zeros of ~D22. Sincefj1; � � � ; j`g is empty,Q2 2 R exists
such that ~NC2 has noU-zeros (the only blockingU-zeros of
N12

~NC2X21 are those ofP12, P21) and ~DC2 is biproper,
i.e., C2 is proper. For thisQ2, P̂ = P12D22

~NC2P21 is
strongly R-stabilizable. Since(s + a)�1P̂ is strongly R-
stabilizable for any�a 2 IRnU , ~Q1 2M(R) exists such that
D22 + (~U2 +D22Q2) ~N21(s+ a)�1 ~Q1N12 is R-unimodular;
Q1 = (s+ a)�1 ~Q1 satisfies (13) and~DC1 is biproper.

2) By assumption, the sign ofD22 is the same at all realU-zeros
of P12, P21, andP22 as the sign ofD22(1); hence,P22 is
stronglyR-stabilizable. LetQ2 2 R be such that~DC2 is R-
unimodular, then~D22 has the same sign at all realU-zeros
of ~NC2N22. The sign ofD22 at the realU-zeros of ~NC2 is
the same as that ofD22(1); hence,P̂ = P12D22

~NC2P21 is
stronglyR-stabilizable. As in the proof of 1),(s+ a)�1P̂ is
also stronglyR-stabilizable, sinceQ1 can be chosen strictly
proper, the controllers are proper.

Proof of Theorem 4:Let P22 2 Rn �n
p , rankP22 =: r,

� := diag[�1 � � ��r], and 	 := diag[ 1 � � � r]; there existR-
unimodularL 2 Rn �n , R 2 Rn �n satisfying (16), where
�j ;  j 2 R,  j is biproper,(�j ;  j) is coprime, i.e.,uj ; vj 2 R
exist satisfyingvj j + uj�j = 1, j = 1; � � � ; r; �j divides�j+1,
 j+1 divides j , j = 1; � � � ; r�1 (see [9], Smith–McMillan form).
By (16), any RCF and LCFP22 = N22D

�1
22 = ~D22

�1 ~N22 are given
in (17) and (18) for someR-unimodularM; ~M 2M(R); letUD :=
diag[u1 � � � ur], VD := diag[v1 � � � vr]; then (VD	 + UD�) = Ir;
U2; V2 in (9) are given by (19), wherêA 2 Rn �n

P22 =Ldiag[�; 0(n �r)�(n �r)] diag[	
�1
; I(n �r)]R

=Ldiag[	�1; I(n �r)] diag[�; 0]R (16)

(N22; D22) = (Ldiag[�; 0(n �r)�(n �r)]M;

R
�1diag[	; I(n �r)]M) (17)

( ~D22; ~N22) = ( ~Mdiag[	; I(n �r)]L
�1
;

~Mdiag[�; 0(n �r)�(n �r)]R) (18)

U2 =M
�1diag[UD; 0(n �r)�(n �r)]L

�1 + Â ~D22

V2 =M
�1diag[VD; I(n �r)]R� Â ~N22: (19)

Let Q11 2 R
r�r be any upper-triangular matrix whose nondiagonal

entries qij 6= 0 are constants, fori; j = 1; � � � ; r, j > i. For
j = 1; � � � ; r, chooseqjj 2 R as follows: Let Z12, Z21 be
the sets of all realU-zeros ofP12 and of P21, respectively; let
Z := Z12 Z21 = fz1; � � � ; z`g. Let Zj = fzj1; � � � ; zj` g � Z
be such thatuj(z) 6= 0 for z 2 Zj . Define qjj 2 R as qjj =

qjj(1)
`

k=1(s � zjk)(s + a)�1; �a 2 IRnU, qjj(1) 2 IRnf0g
is such that(vj � qjj�j)(1) 6= 0; this holds for allqjj(1) when
�j 2 Rs; when�j 62 Rs, takeqjj(1) 6= vj�

�1
j (1). If Zj is empty,

thenqjj = qjj(1) 2 IR. With this qjj 2 R, (uj + qjj j) does not
have zeros at any of the realU-zeros ofP12 or P21. If uj = 0, then
 j is a unit inR and if u1 = 0, thenP22 2 M(R).

1) Choose

Q2 = �Â +M
�1 Q11 Q12

0 Q22

~M�1

Q12 2 Rr�(n �r), Q22 2 R(n �r)�(n �r) has no real
blockingU-zeros and no zeros at any realU-zeros ofP12 and
P21; obvious choices forQ22 are anyR-unimodular matrix or
the identityIn �r. By construction,~NC2 = (U2+Q2

~D22) has
no real blockingU-zeros and noU-zeros coinciding with any
realU-zeros of eitherP12 orP21. SincerankP12 = ni2 = no2,
zo 2 U is a U-zero of P12 = N12D

�1
22 if and only if

rankN12(zo) < no2. Similarly, zo 2 U is aU-zero ofP21 =
X21Y

�1
21 if and only if rankX21(zo) < no2. By Lemma 2,P̂ is

stronglyR-stabilizable if and only ifdet ~D22 has the same sign
at all real blockingU-zeros ofN12

~NC2X21, which are the real
blockingU-zeros ofP12, of P21 and possibly some of the real
U-zeros common toP12 andP21. We prove that no other real
blockingU-zeros exist by contradiction: Supposezo 2 IR\U is
such thatN12

~NC2X21(zo) = 0 but N12(zo) 6= 0, X21(zo) 6=

0, andzo is not a common zero ofP12 andP21; sincezo may
be a zero of one ofP12 or P21, there are two cases: 1) If
P12(zo) 6= 0, P21(zo) 6= 0, thenrankN12(zo) = ni2 = no2,
rankX21(zo) = no2; hence,N12(zo) 2 IRn �n has a left-
inverse N̂12 and X21(zo) 2 IRn �n has a right-inverse
X̂21. Therefore,N12

~NC2X21(zo) = 0 implies ~NC2(zo) = 0,
which is a contradiction; and 2) Ifzo is a zero of eitherP12
or P21, then rank ~NC2(zo) = no2. Either X̂21 2 IRn �n

exists such thatX21(zo)X̂21 = I (if P21(zo) 6= 0) or N̂12 2
IRn �n exists such that̂N12N12(zo) = I (if P12(zo) 6= 0).
Therefore,N12

~NC2X21(zo) = 0 implies eitherN12(zo) = 0,
or X21(zo) = 0; again we have a contradiction. SinceP12
or P21 is strictly proper, the sign ofdet D22 is the same at
all of these real blockingU-zeros as the sign ofdet D22(1);
thereforeP̂ := P12D22

~NC2P21 is stronglyR-stabilizable. By
(16) and (19), ~DC2 in (11) is biproper, i.e.,C2 is proper
since det (VD � Q11�)(1) 6= 0. SinceP12 2 M(Rs) or
P21 2 M(Rs), Q1 2 M(R) satisfying (13) can be chosen
strictly proper so thatC1 is proper.

2) If rankP22 = rank(N22D
�1
22 ) = no2 = ni2, thenrankN22 =

no2. By (10), det U2 anddet N22 have the same sign at all
real blockingU-zeros ofD22. By (16), the real blockingU-
zeros ofD22 are those of its smallest invariant factor n .
Since theU-zeros ofP22 are those ofdet N22, the sign of
det N22 is the same at all realU-zeros of n . Therefore,
q 2 R exists such that(det U2 + q n ) is a unit of R
implies Q2 2 M(R) exists such that~NC2 is R-unimodular
[9]. We show that since~NC2 is R-unimodular, the only real
blockingU-zeros ofN12

~NC2X21 are the blockingU-zeros of
P12, or P21 and possibly some of the realU-zeros ofP12 or of
P21: If zo 2 IR \ U is such thatP12(zo) 6= 0, P21(zo) 6=
0, then rankN12(zo) + rankX21(zo) � no2 > 0. There-
fore, rankN12

~NC2X21(zo) � rankN12(zo)+rankX21(zo)�

no2 > 0 implies N12
~NC2X21(zo) 6= 0. Since the signs of

det D22 anddet D22(1) are the same at all realU-zeros of
P12 andP21, by Lemma 2,P̂ is stronglyR-stabilizable. Since
P22 2 M(Rs), the existence of proper controllers follows
from Theorem 2-2)-b).

3) First we show thatP12 = N12D
�1
22 has anR-stable left

inverse if and only ifN12 2 Rn �n has anR-stable left
inverseN I

12 2 Rn �n ; if P I
12 2 Rn �n exists such

that P I
12P12 = I, thenP I

12N12 = D22. Since(N12; D22) is
right-coprime,(V12P I

12 + U12)N12 = I implies (V12P
I
12 +

U12) 2 M(R) is a left-inverse ofN12. Conversely, ifN I
12 2
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Rn �n exists such thatN I
12N12 = I, thenN I

12P12 = D�122

impliesD22N
I
12P12 = I; hence,D22N

I
12 2 M(R) is a left-

inverse ofP12. It can be shown similarly thatP21 = ~D�122
~N21

has anR-stable right-inverse if and only if~N21 2 R
n �n

has a right-inverse~N I
21 2 R

n �n . ConstructQ11 2 R
r�r

with qjj chosen as above; sincerankP12(s) = ni2 and
rankP21(s) = no2 for all s 2 U , P12 and P21 have no
U-zeros. Therefore,Q11 is chosen so that the nondiagonal
entries qij 6= 0 are constants, andqjj 2 R are such that
(vj � qjj�j)(1) 6= 0. To guarantee that~NC2 has no real
blocking U-zeros, let

Q2 = �Â+M
�1 Q11 Q12

Q21 Q22

~M�1 2 Rn �n

Q12 2 Rr�(n �r), Q21 2 R(n �r)�r, Q22 2
R(n �r)�(n �r) can be arbitrary if bothno2 > 1 and
ni2 > 1; if ni2 = 1, let Q12 2 IR1�(n �1) be nonzero
real; if no2 = 1, let Q21 2 IR(n �1)�1 be nonzero
real. Let Q1 := ~N I

21Q̂1N
I
12 2 M(R). Since ~NC2 has

no real blockingU-zeros, Q̂1 2 M(R) exists such that
~D22 + ~N21

~N I
21Q̂1N

I
12N12

~NC2 = ~D22 + Q̂1
~NC2 is R-

unimodular, i.e., (14) holds. Since~DC2 is biproper,C2 is
proper. There isQ̂1 2 M(R) such that ~D22 + Q̂1

~NC2

is R-unimodular if and only if ~Q1 2 M(R) exists such
that ~D22 + (s + a)�1 ~Q1

~NC2 is R-unimodular; choosing
Q1 = (s+ a)�1 ~Q1 2 M(Rs) impliesC1 is proper.

4) Let CS be anyR-stableR-stabilizing controller forP22.
Without loss of generality, let the RCFP22 = N22D

�1
22 satisfy

D22 + CSN22 = I; hence,N22D22 = (I � N22CS)N22.
Then U2 = CS + T (I � N22CS), V2 = I � TN22, ~U2 =
CS + D22T , ~V2 = I � N22T , T 2 M(R) satisfy (10). By
assumption,P21 = ~D�122

~N21 implies ~N21 has a right-inverse
~N I
21 2 M(R). Also, ~LP12 = ~LN12D

�1
22 = P22 = N22D

�1
22

implies ~LN12 = N22. Let C1, C2 be given by (11) and
(12), Q1 = ~N I

21
~L 2 Rn �n , Q2 = �T . Then (13)

becomesD22 + CSN22 = I. Since P11, P12 2 M(Rs),
(N11 �N12Q2

~N21) 2 M(Rs) implies ~DC1 is biproper, i.e.,
C1 2 M(Rp). SinceC2 = CS 2 M(R), (C1; C2) is a
reliable decentralized controller pair.

5) Let CS be as in 4); letD22 + CSN22 = I. By assumption,
P12 = N12D

�1
22 impliesN12 has a left-inverseN I

12 2 M(R).
Also, P21 ~R = ~D�122

~N21
~R = P22 = ~D�1 ~N22 implies

~N21
~R = ~N22 = N22. Let C1, C2 be given by (11) and (12),

Q1 = ~RNI
12 2 R

n �n , Q2 = �T . The conclusion follows
as in 4).

6) ChooseCS as in 4). By assumption,~LP12 = P22 implies
~LN12 = N22, and P21 ~R = P22 implies ~N21

~R =
~N22 = N22. Let Q2 = �T , Q1 = ~RQ̂1

~L, Q̂1 =
k

m=2 rmk
�m(CSN22)

m�2CS; k is any integer such
that k > kCSN22k and rm are the binomial coeffi-
cients. By (13)D22 + CSN22Q̂1N22 = I � CSN22 +

k

m=2 rmk
�m(CSN22)

m = (I � k�1CSN22)
k is R-

unimodular. ThenC1 2 M(Rs) since Q̂1; Q1 2 M(Rs).
SinceC2 = CS is proper,(C1; C2) is a reliable decentralized
controller pair.
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Useful Nonlinearities and Global Stabilization of
Bifurcations in a Model of Jet Engine Surge and Stall

Miroslav Krstíc, Dan Fontaine, Petar V. Kokotović,
and James D. Paduano

Abstract—Compressor stall and surge are complex nonlinear insta-
bilities that reduce the performance and can cause failure of aircraft
engines. We design a feedback controller that globally stabilizes a broad
range of possible equilibria in a nonlinear compressor model. With a
novel backstepping design we retain the system’s useful nonlinearities
which would be cancelled in a feedback linearizing design. The design
control law is simple and, moreover, it is optimal with respect to a
meaningful nonquadratic cost functional. As in a previous bifurcation-
theoretic design, we change the character of the bifurcation at the stall
inception point from subcritical to supercritical. However, since we do not
approach bifurcation control using a normal form but using Lyapunov
tools, our controller achieves not only local but also global stability. The
controller requires minimal modeling information (bounds on the slope
of the stall characteristic and the B-parameter) and simpler sensing
(rotating stall is stabilized without measuring its amplitude).

Index Terms—Axial flow compressors, backstepping, bifurcation con-
trol, jet engines, rotating stall, surge.

I. INTRODUCTION

In control engineering the importance of qualitative low-order
nonlinear models is twofold. First, they can capture the dominant
dynamic phenomena; second, they are testbeds which help refine
new nonlinear design methods. One such model, the Moore–Greitzer
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