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Abstract

All simultaneously stabilizing controllers are charac-
terized for a class of linear, time-invariant, multi-input
multi-output plants. These plants all have poles at zero
but they have no other unstable poles.

1. Introduction

The parametrization of all stabilizing controllers
for linear time-invariant (LTT), multi-input multi-output
(MIMO) plants leads to explicit necessary and sufficient
conditions for existence of controllers that simultane-
ously stabilize two given plants [4]. However, there are
no known necessary and sufficient conditions for exis-
tence of simultaneously stabilizing controllers for a class
of three or more arbitrary plants [1]. Instead of condi-
tions applicable to a completely general class of (three
or more) plants, it may be possible to conclusively an-
swer the question of simultaneous stabilizability for some
special classes [2], [5], [3]. As a special case, we consider
the class P = {P,, Pi, ..., P,} of LTI MIMO plants that
have no other poles in the region of instability except at
s = 0; furthermore, for j = 0,...,n, (s™P;) have the
same DC-gain and (s™P;)(0) is full row-rank (see As-
sumption 2.1). These plants are simultaneously stabiliz-
able; all simultaneously stabilizing controllers are char-
acterized in the main result (Proposition 2.3). The si-
multaneously stabilizing controllers are defined in terms
of a stable controller-parameter that satisfies a unimod-
ularity condition; the ‘central’ controller for which this
controller-parameter is zero is actually stable.

Due to the algebraic framework described in the
following notation, the results apply to continuous-
time as well as discrete-time systems; for the case of
discrete-time systems, all evaluations and poles at s = 0
should be interpreted at z = 1. Notation: Let U
be the extended closed right-half-plane (for continuous-
time systems) or the complement of the open unit-
disk (for discrete-time systems). The sets of real num-
bers, rational functions (with real coefficients), proper
and strictly-proper rational functions, proper rational
functions with no poles in U/ are denoted by IR, R,
Rp, Rs, R, respectively The set of matrices with en-
tries in R is denoted by M(R) M is called stable
iff M € MR) (M € R is used to indicate the
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order explicitly); a stable M is called unimodular iff
M~! € M(R). For M € M(R), the norm ||-|| is defined
as || M|| = sup,¢ sy 5(M(s)), where & denotes the maxi-
mum singular value and U denotes the boundary of I{.
2. Main Results
Consider the standard LTI, MIMO, well-posed feed-
back system S(P;,C) in Figure 1: P; € Rp"**"* and
C € R,"*™¥ represent the transfer-functions of the
plant and the controller. It is assumed that P; and C
have no hidden modes corresponding to eigenvalues in
the region of instability I/.
2.1 Assumption: P; € R,"v*"™* belongs to the class
P :={P,P1,...,P}; for j € {0,...,n}, i) s™P; have
no poles in U; i) rank(s™P;j(0)) = rank(s™P,(0)) =
ny < ny; i) (s™P;)(0) = (8™ Po)(0). o
Assumption 2.1(i) implies that the only ¢/-poles of
P; are at s = 0; (ii) implies that each P; in the class
P has at least one entry with exactly m poles at s = 0;
furthermore, P; has no (transmission) zeros at s = 0.
2.2 Definition: The system S(P;, C) is said to be sta-
ble iff the transfer-function H from (u,up) to (y,yc) is
stable, i.e., H € M(R). The controller C is said to be
a stabilizing controller for the plant P; (or C stabilizes
P;) iff C € M(Rp) and S(P;,C) is stable. The stabi-
lizing controller C is said to simultaneously stabilize all
P; e P iff S(P;,C) is stable for all j € {0,...,n}. O
We give a characterization of all controllers that si-
multaneously stabilize all P; € P in Proposition 2.3; this
characterization is based on all stabilizing controllers for
one of the plants, P,, called the nominal plant.
Proposition 2.3: Let P; € Rp"v*™* belong to the
class P := {P,, P4,..., P,} satisfying Assumption 2 1.
Fori=1,...,m, leta,E]R «; > 0. Define N,
( ITim (s + oz,) )" s™P; € R"¥*™. Let N, (0)} be
any right-inverse of N, (O)IR"”X"“ (by Assumption 2.1,
N;(0)No(0)Y =1I). Let ky €IR and for v = 2,...,m, let
k, € IR satisfy
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Define K := N,(0)) Y7, :_-H;=1 ke € R™*"v. The
controller C simultaneously stabilizes all P; € P if and
only if

_ s™ _ -1 >
0= ey~ (Q+K), ©)
where @ € R™**™¥ is such that, for j € {1,...,n},
. -1
Dj =1+ Q (Nj—No) (I+KNj> (4)

is unimodular, and (I — @QN,) is biproper (holds for all
Q € M(R) when P, € M(Ry)). o
Comments: a) A block-diagram of S(P;j,C), where
C is given by (3), is shown in Figure 2. The stable
controller-parameter @ in the simultaneously stabiliz-
ing controller characterization (3) must be such that
D; in (4) is unimodular. This condition is obviously
satisfied for @ = 0. The simultaneously stabilizing
controller corresponding to @ = 0 is denoted by Cqq;
note that Cgqo is stable and strictly-proper. A suf-
ficient condition to make D; in (4) unimodular is to
choose @ € M(R) ‘sufficiently small’, ie., ||Q] <
minjego,...a} |(Nj — No)(I + KN;)7H|7!. In addition,
choosing @ € M(R) strictly-proper is sufficient to make
(I — QN,) biproper; the simultaneously-stabilizing con-
troller is strictly-proper if and only if @ € M(R) N
M(R;). b) For j € {0,...,n}, the (input-output)
transfer-function Hy; = PC(I+ PC)~! from u to y and
the (input-error) transfer-function H.; = I — H,; from
u to e are achievable using the controllers in (3) if and
only if Hyj = Nj(I -+ I{Nj + Q(NJ — No))“l(Q + K)
= Nj(I+ KN;))™'D;Y(Q + K), Hoj = (I + N;(I —
QN,)"HQ + K))™1, where @ € R™*™¥ is such that
D; in (4) is unimodular and (I — @N,) is biproper. The
expressions for these transfer-functions are simplified for
the nominal plant P, as Hy, = (I+ N,K)"1N,(Q+ K),
Heo = (I + N,K)"Y(I — N,Q). Note that H,;(0) =0
due to the poles of P; at zero. This guarantees that step
inputs (and polynomial inputs of order up to m — 1) at
each channel of u are tracked asymptotically with zero
steady-state error due to the m plant poles at zero. Ad-
ditional design goals may be achievable by appropriately
selecting the controller-parameter @ in (3). O
We give two design examples based on Proposi-
tion 2.3. The class P in Example 1 has in fact infinitely
many plants that all have one pole at s = 0.
Example 1: Consider P := {57 (s + 1)"(a;s? — 25 —
4.5), s7Hs+2)"(bjs —9) | -3<a;<2,-4<b; <
2}. With m = 1, P; € P satisfy Assumption 2.1.
Choosing an arbitrary member of P as the nominal
plant, let P, = —9s7'(s + 2)~!. Choosing a; = 10,
No = =9(s +2)"' (s +10)~}, N; € {(s+ D) Y(s +
10)~!(ajs% — 2s — 4.5), (s + 2)~*(s + 10)~(bjs — 9) |
-3 <a; £2,-4<b; <2}. Choose k1 € IR satisfy-
ing (1) as by = 1.2 < min; [|s~1 (14 9720N;)||~. By

(3), the simultaneously stabilizing controllers are C =
(s+10)7 (1+9(s+2) (s 10)Q)~1(Q — 8(35)-2),
where ) € R is such that D; in (4) is unimodular;
(1 —=QN,) is biproper for all @ € R since P, is strictly-
proper. The controller Cgo € M(R) corresponding to
Q =01is Cgo = —8(3(s + 10)) 1. O
Example 2: Consider P := {P, = —60s~2, P,
s72(s + 7)"1(s + 8)~1(5s — 112)(s + 5)(s + 6), Ps
357%(3s + 10)~1(2s + 5)~}(2s? — 49s — 300)(s + 5)(s +
6)}. With m = 2, P,,P,,P, € P satisfy Assump-
tion 2.1. Choosing a; = 5, az = 6, N, = ~60(s +
5)1(s + 6)~L, Ny = (s + 7)~Y(s + 8)~(5s — 119),
Ny = (3(3s + 10))71(2s + 5)7(2s% — 49s ~ 300).
Choose ky € IR satisfying (1) and ky € IR satis-
fying (2) as ky = 1.5 < min;||s71(1 + 0.5N;)[7%,
ky = 1 < minje{g’l’z} ”3—1(1 — 0.5]018‘1]\]]' )—1“—1'
By (3), the simultaneously stabilizing controllers are
C = (s4+5)71(s+6) "1 s2(14+60Q(s+5) "1 (s+6)~ 1)~} (Q—
3(4s*)1(s+1)), where Q € R is such that D; in (4) is
unimodular; (1 — @N,) is biproper for all Q € R since
P, is strictly-proper. The controller Cgo € M(R) corre-
sponding to @ = 0is Cgo = —3(4(s+5)(s+6)) " *(s+1).
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Figure 1: The system S(P;,C)
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Figure 2: The stable system S(P;, C), where P; € P
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