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Abstract 
All simultaneously stabilizing controllers are charac- 

terized for a class of linear, time-invariant, multi-input 
multi-output plants. These plants all have poles at zero 
but they have no other unstable poles. 

1. Introduction 
The parametrization of all stabilizing controllers 

for linear time-invariant (LTI), multi-input multi-output 
(MIMO) plants leads to explicit necessary and sufficient 
conditions for existence of controllers that simultane- 
ously stabilize two given plants [4]. However, there are 
no known necessary and sufficient conditions for exis- 
tence of simultaneously stabilizing controllers for a class 
of three or more arbitrary plants [l]. Instead of condi- 
tions applicable to a completely general class of (three 
or more) plants, it may be possible to conclusively an- 
swer the question of simultaneous stabilizability for some 
special classes [2], [5], [3]. As a special case, we consider 
the class P = {Po, PI, . . . , Pn} of LTI MIMO plants that 
have no other poles in the region of instability except at 
s = 0; furthermore, for j = 0 , .  . .,n, (smPj) have the 
same DC-gain and (smPj)(0) is full row-rank (see As- 
sumption 2.1). These plants are simultaneously stabiliz- 
able; all simultaneously stabilizing controllers are char- 
acterized in the main result (Proposition 2.3). The si- 
multaneously stabilizing controllers are defined in terms 
of a stable controller-parameter that satisfies a unimod- 
ularity condition; the 'central' controller for which this 
controller-parameter is zero is actually stable. 

Due to the algebraic framework described in the 
following notation, the results apply to continuous- 
time as well as discrete-time systems; for the case of 
discrete-time systems, all evaluations and poles at s = 0 
should be interpreted at z = 1. Notation: Let U 
be the extended closed right-half-plane (for continuous- 
time systems) or the complement of the open unit- 
disk (for discrete-time systems). The sets of real num- 
bers, rational functions (with real coefficients), proper 
and strictly-proper rational functions, proper rational 
functions with no poles in U are denoted by IR, R, 
R,, %, R, respectively. The set of matrices with en- 
tries in R is denoted by M(R); M is called stable 
iff M E M(R) ( M  E Raxx3 is used to indicate the 
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order explicitly); a stable M is called unimodular iff 
M - l  E M ( R ) .  For h4 E M ( R ) ,  the norm II-II is defined 
as llMll = supsEau a(:M(s)) ,  where 8 denotes the maxi- 
mum singular value and 2 4  denotes the boundary of U. 

2. Main Results 
Consider the standatrd LTI, MIMO, well-posed feed- 
back system S(Pj ,C)  in Figure 1: Pj E Rpnvxnu and 
C E RpnuXnY represent the transfer-functions of the 
plant and the controlller. It is assumed that Pj and C 
have no hidden modes corresponding to eigenvalues in 
the region of instability U .  
2.1 Assumption: Pj E RpnYxnu belongs to the class 
P := {Po, P I , .  . . , Pn}; for j E (0, .  . . , n},  z) smPj have 
no poles in U ;  iz) rank(SmPj(0)) = rank(smPo(0)) = 

0 
Assumption 2.l(i) implies that the only U-poles of 

Pj are at s = 0; (ii) implies that each Pj in the class 
P has at least one entry with exactly m poles at s = 0; 
furthermore, Pj has no (transmission) zeros at s = 0. 
2.2 Definition: The system S(Pj ,  C) is said to be sta- 
ble iff the transfer-function H from (U, up) to (y, y ~ )  is 
stable, i.e., H E M(R). The controller C is said to be 
a stabilizing controller for the plant Pj (or C stabilizes 
P') iff C E M(R,) and S(Pj ,C)  is stable. The stabi- 
lizing controller C is said to simultaneously stabilize all 
Pj E P iff S(Pj ,  C) is stable for all j E (0,. . . , n}. 0 

We give a charackerization of all controllers that si- 
multaneously stabilize all Pj E P in Proposition 2.3; this 
characterization is based on all stabilizing controllers for 
one of the plants, Po, called the nominal plant. 
Proposition 2.3: Let Pj E RpnYxnu belong to the 
class P := {Po, P I , .  . . , Pn} satisfying Assumption 2.1. 
For i = 1 ,..., m, let ai E IR, ad > 0. Define N .  * -  

any right-inverse of No(0)IR*~x"u (by Assumption 2.1, 
Nj(O)N,(O)' = I ) .  L'et IC1 E IR and for v = 2,. . ., m, let 
k, E IR satisfy 

ny 5 nu; iii) (smPj)(0) = (s"P,)(O). 

( n g l ( s  + ai) )-ls"Pj E R"Yx"". Let No(0)  f be * -  

U-1 - i 

U-2 - i 
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Define 2 := No(0)' fnf=, kf E R n u X n y .  The 
controller C simultaneously stabilizes all Pj E P if and 
only if 

C =  Sm (I-QNo)-' ( Q + k ) ,  (3) nZ& + ai) 
where Q E Rnuxnv is such that, for j E (1,. . . ,n} ,  

-1 
Dj := I + Q (Nj - N o )  ( I  + k N j )  (4) 

is unimodular, and ( I  - &No) is biproper (holds for all 
0 

Comments: a) A block-diagram of S(P j ,  C), where 
C is given by (3), is shown in Figure 2. The stable 
controller-parameter Q in the simultaneously stabiliz- 
ing controller characterization (3) must be such that 
Dj in (4) is unimodular. This condition is obviously 
satisfied for Q = 0. The simultaneously stabilizing 
controller corresponding to Q = 0 is denoted by CQO; 
note that CQO is stable and strictly-proper. A suf- 
ficient condition to make Dj in (4) unimodular is to 
choose Q E M ( R )  'sufficiently small', i.e., 11&11 < 
minjE.{O,...,n) ll(Nj - No)( I  + kNj)-ll/-l.  In addition, 
choosing Q E M ( R )  strictly-proper is sufficient to make 
(I - &No) biproper; the simultaneously-stabilizing con- 
troller is strictly-proper if and only if Q E M ( R )  n 
M(%).  b) For j E (0 , . . . ,  n},  the (input-output) 
transfer-function Hyj = PC(I+ PC)-l  from U to y and 
the (input-error) transfer-function Hej = I - H,j from 
U to e are achievable using the controllers in (3) if and 

Q E M ( R )  when Po E M(%)) .  

only if Hyj = N j ( I  + KNj + Q(Nj - N0))-l(Q + I?) 
= Nj( I  + kNj)-'DY1(Q + I?), Hej = ( I  + Nj( I  - 
QN0)-l(Q + I?))-', where Q E R " U X n ~  is such that 
Dj in (4) is unimodular and ( I  - &No) is biproper. The 
expressions for these transfer-functions are simplified for 
the nominal plant Po as Hyo = ( I+Nok) - lNo(Q+I?) ,  
H e o  = (1 + N O R ) -  ( I - No&). Note that Hej (0 )  = 0 
due to the poles of Pj at zero This guarantees that step 
inputs (and polynomial inputs of order up to m - 1) at 
each channel of U are tracked asymptotically with zero 
steady-state error due to the m plant poles at zero. Ad- 
ditional design goals may be achievable by appropriately 

0 

We give two design examples based on Proposi- 
tion 2.3. The class P in Example 1 has in fact infinitely 
many plants that all have one pole at s = 0. 
Example 1: Consider P := { s-l(s + 1)-l(ajs2 - 2s - 

2).  With m = 1, Pj E P satisfy Assumption 2.1. 
Choosing an arbitrary member of P as the nominal 
plant, let Po = -9s-'(s + 2)-'. Choosing a1 = 10, 

selecting the controller-parameter Q in (3). 

4.5) s - ~ ( s  + 2)-'(bj~ - 9) I -3 5 a j  5 2 ,  -4 5 b j  5 

No = -9(s + 2)-1(s + 10)-1, Nj E { (s + l)-l(s + 
l0)-'(ajs2 - 2s - 4.5), ( S  + 2 ) - ' ( ~  + lO)-l(bjS - 9) I 
-3 5 a j  5 2 ,  -4 5 b j  5 2 }. Choose k1 E IR satisfy- 
ing (1) as k1 = 1.2 < minj 11s-l (1 + 9-120Nj)ll-1. By 

(3), the simultaneously stabilizing controllers are C = 
s(s+ lO)-l(l+ 9(s+ 2)-'(s+ lO)-'Q)-'(Q - 8(3s)-l), 
where Q E R is such that Dj in (4) is unimodular; 
(1 - &No) is biproper for all Q E R since Po is strictly- 
proper. The controller CQO E M ( R )  corresponding to 

0 
Example 2: Consider P := {Po =  OS-^, PI = 
s - ~ ( s  + 7)- ' (~ + 8)- '(5~ - 112)(s + 5)(s + 6) ,  Pz = 
3 ~ - ~ ( 3 s  + lO)-l(2s + 5)-'(2s2 - 49s - 300)(s + 5)(s + 
6)). With m = 2, Po,P1,P2 E P satisfy Assump- 
tion 2.1. Choosing a1 = 5, a2 = 6, No = -6O(s + 
5)-'(s + 6)-', N1 = ( S  + 7)- ' (~  + 8 ) - l ( 5 ~  - 112), 
N2 ( 3 ( 3 ~  + 10))-'(2~ + 5)-l(2s2 - 49s - 300). 
Choose k l  E IR satisfying (1) and k2 E IR satis- 
fying (2) as kl = 1.5 < minj Ils-l(l + 0.5Nj)ll-1, 
kz = 1 < minjE{0,1,2} (IS-l(l - 0.5kl.~-~Nj )-'I\-'. 
By (3), the simultaneously stabilizing controllers are 
C = (s+5)-l (s+6)-l s2( 1+6OQ(s+5)-l (s+6)-l)-' (Q- 
3(4s2)-'(s + l ) ) ,  where Q E R is such that Dj in (4) is 
unimodular; (1 - &No) is biproper for all Q E R since 
Po is strictly-proper. The controller CQO E M ( R )  corre- 
sponding to Q = 0 is CQO = -3(4(~+5)(~+6))- l (s+l) .  
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Figure 1: The system S(P j ,  C) 

Figure 2: The stable system S(Pj ,  C), where Pj E P 
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