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Abstract 
Pole placement by constant output feedback for single- 
input single-output, linear, time-invariant systems is 
considered. Root-loci intercepts with domain bound- 
ary for a general class of desirable closed-loop pole loca- 
tions are computed using a single generalized-eigenvalue 
problem based on state-space representations. Suitable 
output feedback gain intervals can be determined with- 
out graphics. 

1 Introduction 
Stabilization of finite-dimensional, single-input single- 
output, linear, time-invariant systems with constant 
output feedback is a rudimentary control problem that 
is covered extensively in all introductory control text- 
books. The Nyquist stability criterion and root-locus 
methods can be used to completely characterize the set 
of such constant output feedback gains. In fact, these 
standard results can also be used for closed-loop pole 
placement in desirable domains other than the ones that 
can be easily obtained by translated half-planes, unit- 
circles, set complements, and set intersections. In the 
root-locus method, root-loci are plotted by solving a suf- 
ficiently long sequence of eigenvalue problems to capture 
the curvatures. It is then a simple graphical check to 
superimpose the loci and the desired domain of closed- 
loop pole locations to characterize the solution. Deter- 
mining boundary intercept values require zooming in on 
the loci and hence solving even more eigenvalue prob- 
lems. For standard domains such as the closed-right- 
half-plane, polynomial methods like the Routh-Hurwitz 
criterion can be used to obtain a long cumbersome array 
of polynomial inequality constraints on the gain. By us- 
ing the Hermite-Biehler Theorem [3], one can describe 
these intercepts as roots of pre-determined polynomi- 
als independent of the gains, all of which are based on 
a polynomial factorization of the plant. In the case of 
the well-known Nyquist stability criterion, the problem 
is reduced to winding numbers of a directional graph 
of the plant along the directional boundary of the do- 
main. Once again, graphics provides this crucial visual 
feedback. In the root-locus method, the loci are inde- 
pendent of the domains selected, hence a single plotting 
area is sufficient to solve the problem. In the Nyquist 
plot case, however, for each boundary plot, the associ- 
ated Nyquist plot needs to  be updated and the num- 
ber of winding numbers have to be computed. In other 
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words, one now requires two plotting areas, where typ- 
ically a large number of points along the boundary is 
selected to sufficiently capture the curvatures in each 
plotting area. Both of these methods, with their current 
standard implementations, completely rely on graphics, 
which can be easily discarded by focusing on the crux 
of the problem: determine the boundary crossings us- 
ing polynomial factors (see e.g., [2], [5]),or equivalently, 
determine the real-crossings on the Nyquist plot. As 
stated in [4], the only important features of the Nyquist 
plot are the points where it crosses the real axis, and 
the signs of the crossings. 

2 Preliminaries 
2.1 Notation: A finite-dimensional, linear, time- 
invariant, single-input single-output plant is denoted by 
p ,  where a minimal state-space description (A,  b, e, d)  is 
used to evaluate p ( s )  = d + c(s1-  A)-% , for s E (I:. 
The state-space and transfer function descriptions of 
the plant p are used interchangeably. Let U c (I: de- 
note a simply connected, closed domain with nonempty 
interior, where U is symmetric about the real-axis; U 
corresponds to the undesired pole locations. The de- 
sired pole locations (I: \ U is denoted by the open set 
2). Let aU denote the directional boundary contour 
of U ,  where the direction is adopted according to the 
right-hand rule, i.e., the interior of U remains to  the 
right when traversing along the directional contour aU. 
The plant p is assumed to have no hidden modes in 
U and no poles on aU . The number of poles of p 
in U is denoted by IIu. For a given directional con- 
tour aU , let aU+ c dU be the unique directional half- 
boundary contour that satisfies the following: the di- 
rectional half-contour aU+ starts on the real-axis at a 
point in aUnIR,  continues along the direction of aU and 
traverses that entire half of 824 . Let s,( . )  be a direc- 
tional real-parametric representation of the directional 
half-boundary contour aU+ = { s,(X) I X E IR+ } , 
where s, : Et+ t aU+ is one-to-one and onto, ~ ~ ( 0 )  
is real, and traversing along the directional half-contour 
8U+ is equivalent to monotonically increasing X E R + . 
Let R(p, aU+) = { X E R, I Imag (p(s,(X))) = 0 }. 
2.2 Pole Placement: The plant p ( s )  = d + c(s1 - 
A)-'b is said to be U-stable iff p has no poles in 
U, i.e., A has no eigenvalues in U. A constant out- 
put feedback IC E IR is said to U-stabilize p iff (1 + 
ICp)-' is U-stable, i.e., a(A - &bc) c 2) , where 
a( . )  denotes the spectrum. Let the set of desir- 
able constant output feedback gains be denoted by 
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can be com6letely determined by the contLur integral 

clockwise encirclements of the point - l / k  by the graph 
p(6’U) . By the residue theorem (see e.g. [l]) , this 
contour integral is also equal to the number of U-zeros 
minus the number of U-poles of (1 + Icp) , This widely- 
used application of the residue theorem has the simple 
graphical interpretation known as the Nyquist stabil- 
ity criterion and requires only the graph of p(s,( .  )) for 
X E R+ (due to the symmetry about the real-axis) 
to determine the winding numbers. Two crucial items 
in this graphical interpretation are: i) the characteriza- 
tion of the set A ( p ,  aU+) , and ii) the winding numbers. 
Both of these items can be easily computed without any 
graphical means for the case of polynomial boundaries. 

3 Main Results 
3.1 Proposition ( Undesirable domain with polynomial 
boundary): Let the directional half-contour of a simply 
connected, closed domain U with nonempty interior be 
given by aU+ = {su(X) 1 X ER+} , where su(X) = 

smXm = f R ( X ) + j  f i (X) for fixed real polynomials 
fR  and fl, with fi(0) = 0, and S M  # 0. Let p have no 
poles on aU+. Let A(p,  8U+) = { 0 ,  00 } U A+ be the 
disjoint partitioning of h ( p ,  aU+) . The members of A+ 
are the nonzero finite positive real eigenvalues (includ- 
ing multiplicities) of the generalized eigenvalue problem 

- 2:j sau &ds , which is equal to the number of 

0 O l  
XI -I 0 . . .  0 
0 XI -I . . .  0 

det I o  0 . . .  X I  -I 0 

k 0 A 1  0 . . .  ‘ . .  0 

3.2 Coroll&y- (Undesirable domain with a f i n e  bound- 
ary ): Consider the piecewise-linear boundary of a 
translated wedge domain described by su(X)  = 

a1 + X(a2 + ja3) , where al,a2,a3 are fixed re- 
als with a3 # 0. The set of intercepts A+ 
are obtained by the generalized eigenvalue problem 

det [ xa31 X ~ ~ I + ( C X ~ I - A )  o = 0. 

3.3 Corollary ( Undesirable domain: translated half- 
plane): Consider the translated half-plane described by 
s,(X) = a1 + X ( j a 3 )  , where a1 and a3 are fixed reals 
with a3 # 0. The intercepts X E A+ are obtained by 
X = Jii/la31 , where the positive square-root is taken 
over positive nonzero finite generalized eigenvalues Q of 

C -“I 0 

Xazl+(ni i -A)  - A m 3 1  

0 

3.4 Algorithm: The following steps determine the 
number of U-poles of (l+Icp)-l over the disjoint open in- 

tervals of suitable k values for the specific class of bound- 
aries in Proposition 3.1 . The pole-placement problem, 
i.e., deriving K ( p , U )  , is a special case of returning dis- 
joint open intervals that have zero U-pole counts. 
[Step 01 Given minimal (A ,  b,c ,d)  and the directional 
half-contour aU+. 
[Step 11 Determine A+ with N 2 0 distinct values (see 
Proposition 3.1). Evaluate p ( A ( p ,  aU+)). N + 1 evalua- 
tions ( ~ ( c o )  = d ), determine all real-axis crossings. 
[Step 21 Determine the counter-clockwise winding num- 
ber in each consecutive open interval determined by the 
points in p(A(p ,  aU+)> . The simplest approach requires 
at most one more p evaluation between each consecu- 
tive point in A+ . Hence, at most 2(N + l ) ,  evaluations 
of p will suffice to compute the winding numbers. A 
more refined approach is to use the type of multiplici- 
ties (odd or even) in A+ (not required at 0 and CO) and 
the fact that the graph is a continuous-curve to weave 
the directions between the real intercepts. 
[Step 5’1 Determine IIu . Express the winding numbers 
obtained over the -; valued intercepts in terms k’s. 
[Step 41 Return open intervals of k values and the as- 
sociated number of U-eigenvalues of ( A  - &bc) , i.e., 
the difference between the winding number and llu . 

4 Concluding Remarks 
A simple algorithm for deriving the set K ( p ,  U) for poly- 
nomial parametrized boundaries is provided. The over- 
all computational effort is one generalized eigenvalue 
problem (to determine all of the real-axis intercepts), 
one eigenvalue problem (to determine IIu) and at most 
2(N + 1) evaluations of p ,where N is the number of 
distinct members of A+. No graphics is required. Since 
contour direction reversal is equivalent to complemen- 
tation of the original 23, utilizing this polynomial class 
of boundaries together .with the widely used conformal 
mappings (e.g., half-plaine translations, linear fractional 
transformations), one can easily generate intersections 
that result in a wider class of domains and easily solve 
problems of the type n,“=, n:==, K(pe, Um) for multiple 
plants for a union of undesired domains. 
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