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ABSTRACT
This paper analyzes a linear time-invariant 2-channel decentralized
control system with a 2x2 strictly proper plant It presents an algorithm
for the algebraic design of a class of decentralized compensators which
stabilize the given plant.

INTRODUCTION

It is well known (see for example [Vid.1], [Des.1]) that the set of
all stabilizing full-output-feedback compensators that stabilize a given
plant P can be parametrized using coprime factorizations of P . If the sys-
tem has several local control stations and dynamic output-feedback is
allowed only from each channel output to the input of that channel, such
a parametrization is not available. It was shown in [Wan.1] that a plant
P can be stabilized using such decentralized dynamic output-feedback if
and only if P has no unstable fixed modes.

In this paper we consider a 2-channel 2x2 strictly proper plant
which has no unstable fixed modes. We present an algorithm which con-
structs a class of proper decentralized compensators which stabilize the
plant. We use a factorization approach.

Notation [Langl]: Let { < C, be a closed subset of €, symmetric
about the real axis, and let €\ U be nonempty. Let [ := U ) {eo).
Let Ry (s) be the ring of proper scalar rational functions in 5 (with
coefficients in R) which are analytic in £ . Let I be the (multiplica-
tive) set of elements f € Ry such that £ (o) = a nonzero constant;
equivalently, I < R, is the set of proper but not strictly proper rational
functions which, are analytic in U. Let Ry/1 = [ nid:
neRy ,del bethe ring of fractions associated with R, ; clearly,
this ring is the ring of proper rational functions R, (s).
Let R,,(s) be the set of strictly proper ratipnal functions; equivalently
f € Ryp(s) goes to 0 as 5 — oo, Let ] be the group of units of
Ru ; equivalently, f € ] has neither poles nor zeros in U.

ANALYSIS
Assumptions: Consider the decentralized control system S (P, Cy)
shown in figure 1.
(A) Let P and C; have no hidden I —unstable modes so that they can
be specified by their IfO representations.
(B) Let P € R,(s)** be a 2-channel plant. Let (N, D) be  righy-
N,
coprime fraction representation (r.c.fr) of P, where N = N, |
D,

D, 'N1.N2.Dy.Dye R/™? detD e I, P =ND™",
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C) Let C; = 0 C, € Rp(s)z"2 be a decentralized compensator.

1 (D', ) be a lgft-coprime fraction represeatation of C,, where D’ =
dl 0 ™ 0 ~ o~ -, -, o —yy
0 d~2',N'= 0 n~2',nl.nzeRu,d{,d{el,Cd=D"1N'.
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Comment: Assumption (B) implies that the plant P has no unstable
fixed modes [And.1, Wan.1].

Using the representations of P and C, as in Assumptions (B) and
(C), we redraw the decentralized control system as in figure 2. The sys-
tem S (P, C,) is described by equations (1)<(2) below:
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Using obvious notations we write equations (1)-(2) in the form

Dy€ =Npu NpE =y

where, by inspection, (Ng, Dy) is right-coprime (r.c) and .(DH, Np) is
left-coprime (lc). Let Hy, :u b y. If detDy € 1 (equivalently, the
system S (P, C,) is well-posed), then

H,, = NpDj'N, € MR, (s))
Definition: S (P, C;) is calld U —stable
Hy, e MRy). .
Theorem: Let Assumptions (A), (B), (C) hold. Then S(P,C,) is
U —siable if and only if detDy € ] .
Comment : This implies that S (P, C,) is U —stable if and

if and only if

diDy+ N,
only if detDy = det d—z’Dz + n_leg

d, 0 gy 0] P
<=> [0 d~2' - n~21] . is unimodular

N

dinai-0 0]l D
<=> [0 0 d~2, n~2'] . is unimodular

SYNTHESIS

Let P satisfy Assumption (B).
Definition : C; is called a U —stabilizing decentralized compensator for
P (equivalently, C; U —sabilizes P) if and only if C, satisfies
Assumption (C), and S (P, C;) is U —stable.

We now state an algorithm for finding a decentralized compensator
C4 which U —stabilizes a given strictly proper P.
Algorithm :
Given : P € Ry, (s)’“z, and a rc.fr. (N, D) of P such that Assump-
tion (B) holds.
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Find : Cq4€ Ry(s)*? satisfying Assumption (C) such that the system

S(P, Cp is Ustabje.
D
Step 1: Put N: into the Smith Form; equivalently, find unimodular

. D, 10
LI!RIERM suchthatLl Nl Rl=0M,KleRu.where
D, dy dn
A, may be 0. Let N, Ry=: ny npl

Step 2 : Find a wnimodular My € R?2 such that M

[dzl dzz]
n my 52
[dZI M]
= 0

e R where A, # 0. Find r € Ry such that the pair

N - 1r
(dzﬁ'"lz], 2.2_) = (d21 N Aq_) is COpﬁn'E. Leth =; [0 I]Ml. Then
D, 1 0
L 0 i, 0 A _
0 M. D, R= dy A’ (@21, 49) coprime.
2 1N, m 0

1
Step 3: Find a unimodular T € R such that T[__Ma-n] = [0 ]

Step 4 : For all q; € Ry, the decentralized compensator numerators and
denominators are given by

l:lql]TL’
eyt - 1 0
d m:00 10{0001 _
Oosa-zl’-i-zl=oozlo PR LR
- 0 M,
(1 qITL, © o0
0 o,

]
Comments: 1) In Step 1, A; # 1 because P € R,,(s)>? implies that
N € Ry(s)™2 Therefore, in Step 2, A% 0. 2) In Step 2, the pair
(dy+rng) » Ap) = (dy » Ay) may be coprime for more than one r € Ry
For each choice of such r, we can find a T € R,72 in Step 3. Then in
Step 4, for this 7, we find a_gho}s class of cg_r'n],)e_ril.mtor parameters
le . ﬁ-‘, N dz, N nz,where Cl = dl-l’ll andCz = ny

d;

EXAMPLE
We now follow the algorithm above to find a lé—stabilizing decen-

tralized for a given strictly propeg plant.
2(s3-27s2+6.s+2) —(s-l%)
—2) (s~ s=—2)(s—
Given P = (s+1) (Sl 26-n ¢ )1( € R,,(S)m
5=3 5-3
and a rcfxr. (N, D) of P, where
1 1 =1
s+l s+l
N=1,1 agas1|’ D= |Rom2 22-7546542) |
G+1)2  (s+1)? (s+1) (s+1)?
Step I: Ly = ;11_ (1) Ri= o Hll andheme,x,=-(is+’—61}.
s+1

S£O5+2  (5-2X5-3)

D, (+1)? (s+1)?
Then | n, ]Rl |21 s
(1?2 (s+1)?
Step 22 My = 4.'nmd‘= -2 = __1
-1 53 21 s Py ol
s+ s+l

M:ﬁ. Now we can choose any 7 € Ry, such that dy;+77i,; has no
zero at 2 (where Ay has a zero). Choose for example 7 = -1, Then

dy = s‘: is coprime with A,.

F .
o (s+1)
Step 4 :Forall gy € Ry, [d] m1=11 ¢ -3 52 and
(s+1)® st
- = s+2  3s+7
d; m)= |2 2t
(42 n) [ prepiieee ]
s
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