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Abstract  

Necessary and sufficient conditions are obtained for simultaneous stabilizability of a given linear, time-invariant, multi- 
input multi-output nominal plant and a multiplicatively perturbed plant, where the multiplicative perturbation is stable. 
These conditions are d, erived from the general parity-interlacing-property applicable to any two arbitrary plants and are 
expressed explicitly in terms of the real-axis poles and zeros of the nominal plant and the perturbation. The class of 
perturbations for which simultaneous stabilization is achievable are characterized using these conditions. A special class of 
unknown diagonal perturbations is also considered and simultaneously stabilizing controllers are designed for the nominal 
plant under any such uaknown perturbation. @ 1997 Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

In the standard livear, time-invariant (LTI), multi-input multi-output (MIMO) unity-feedback system, the 
parametrization of  all stabilizing controllers is now well-known [7]. This characterization has led to increased 
interest in the problem of  simultaneous stabilization of  a set o f  plants using a single controller. In the case 
of  two given plants, necessary and sufficient conditions for existence of  simultaneously stabilizing controllers 
are available based on the parity-interlacing property of  a pair of  transfer functions associated with these two 
plants [7, 8, 1]. For the case of  three or more plants, there are no necessary and sufficient conditions available 
to check simultaneous stabilizability and this challenging topic is o f  active research interest [2, 3, 6]. 

An important special case of  simultaneous stabilization is encountered when considering a class of  plants 
generated by a givea nominal plant in different modes of  operation or under sensor or actuator failures. 
Before controller design is attempted, it is crucial to know if this class o f  plants is in fact simultaneously 
stabilizable and to cl:aracterize the perturbations for which simultaneously stabilizing controllers exist. In this 
paper we consider simultaneous stabilization of  a given nominal (unstable) plant P and a given pemarbed plant 
( I -  A)P,  where the known multiplicative perturbation A is stable. The perturbed plant ( I -  A )P  represents 
the nominal plant under various perturbations and changes, such as sensor failures. The parity-interlacing 
property, which applies to the general case o f  any two plants, now has specific implications for the special 
case o f  the second plant being a multiplicatively perturbed version of  the first one. These implications lead to 
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explicit interpretations in terms of  the poles and zeros of  the nominal plant and put restrictions on perturbations 
A for which simultaneous stabilization is in fact possible to achieve. 

The stable perturbation A is assumed to be known in Section 2, where general conditions are developed 
for simultaneous stabilizability of  this special set of  two plants (Lemma 2.2 and Corollaries 2.3, 2.4). For 
the special case of  single-input single-output (SISO) plants, these conditions lead to a characterization of  all 
perturbations such that P and ( I -  A)P are simultaneously stabilizable (Corollary 2.5). Structural constraints 
on A are imposed in Section 3, where two cases of  diagonal perturbations are considered. In the first case, 
necessary and sufficient conditions for simultaneous stabilizability are obtained assuming that every output 
channel o f  P is multiplied by the same (scalar) stable transfer function (1 - 5 ) ;  in this case, 6 is assumed to 
be known a priori as in Section 2 (Proposition 3.1 and Corollary 3.2). In the second case, the diagonal matrix 
A is assumed to have exactly one entry 6j, which may be non-zero. This important case represents possible 
unknown sensor failures at a pre-specified output channel. Although the location of  the failure is known 
to be the j t h  output, 6j may be any arbitrary stable transfer function and the simultaneous stabilizability 
conditions take into account all possible values including 6j = 1, which corresponds to the disconnection of  
the j t h  sensor. Since 6j is unknown, the necessary and sufficient conditions presented in this case are in 
terms of  the nominal plant P (Proposition 3.3). A controller design method is proposed for plants satisfying 
these conditions (Proposition 3.4). These simultaneous stabilizability conditions and the proposed class of  
simultaneously stabilizing controllers are therefore for a special class of  infinitely many plants since 6j is 
arbitrary. 

The main results o f  this paper are given in Sections 2 and 3; the proofs are collected in Section 4; brief 
concluding remarks are given in Section 5. Due to the algebraic framework described in the following notation, 
the results apply to continuous-time systems as well as discrete-time systems as in the case of  all similar 
work based on factorization methods. 

Notation. Let #! contain the extended closed right-half-plane (for continuous-time systems) or the comple- 
ment of  the open unit-disk (tbr discrete-time systems). Let ~, Rp, ~ ,  and J / ( ~ )  be the set of  real numbers, 
proper rational functions with real coefficients, proper rational functions with no poles in the region of  in- 
stability ~#, and the set o f  matrices whose entries are in ~ .  A matrix M is called ~-s table  iff M E .//¢'(-~); 
M E .//{(~) is called ~-unimodular  iff M -1 is also ~-stable.  For M E ~ ' ( ~ ) ,  the norm II • II is defined as 
IIMII -- SUps c ~,  ~(M(s)), where 6, 0 ~  denote the maximum singular value of  M(s) and the boundary of  ~ ,  

n~xn respectively. A right-coprime factorization (RCF) and a left-coprime factorization (LCF) of  P E lip' ' are 

denoted by P : N D  -I : / 3 - 1 N - ;  N , D , N , / g E ~ # ( ~ ) ;  D, f) are biproper. Let r ankP  : r; S o E ~  is called a 
(transmission) ~'-zero of  P iff rankP(so) < r, i.e., rank N(so) = rankN(so)  < r; So E 91 is called a blocking 
~-zero  of  P iff P(so)= 0, i,e., N(so)= 0 = N(so); So E ~ '  is called a °g-pole of  P iff it is a pole of  some 
entry of  P, i.e., det D(so) : 0 : det Jg(So). The identity map is denoted by I ;  the j t h  column of I is denoted 
by ei. The notation a : :  b means a is defined as b. 

2. Simultaneous stabilizability conditions 

no x ni ni X no ~ n o  ×no Consider the LTI, MIMO system 5P(I - A,P, C) shown in Fig. 1, where P E Rp , C E Rp , A E 
represent the given plant, the controller and the known multiplicative perturbation. The nominal plant and the 
perturbed plant are denoted by P and (I - A)P, respectively. The nominal plant P is not necessarily ~-stable.  
The perturbed plant has the same P-poles  as P. I f  A = 0, then 6P(I - A,P, C) becomes the standard unity- 
feedback system 5P(p, C), called the nominal system. It is assumed that P and C do not have any hidden 
modes corresponding to eigenvalues in ~ ,  and that the system 5e(I - A,P, C) is well-posed. 

Definition 2.1 (~-stability, ~-stabilizin9 controller). The system 5P(I - A,P, C) is said to be ~t-stable iff 
the closed-loop transfer function H from u := [ u~ T T T X UC] to y := [y[ YC ] is ~-stable.  Similarly, the nominal 
system Y(P ,  C) is said to be .H-stable iff H : u ~ y is ~-s table  when A = 0. The controller C is said to be 

n,, xnl ni )<no an ~-stabil izing controller for P E lip iff C E Iqp and 5P(P, C) is ~-stable.  The controller C is said to 
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u p  

 c+°2Z-Zq:t , , 
Fig. 1. The system 5~(1 - A,P,C). 

n i  X n o be a simultaneously ~-stabilizing controller for P and (! - A)P iff C E Rp and the systems ~(P ,  C) and 
~ ( I  - A,P, C) are both ~-stable. The plants P and (I - A)P are said to be simultaneously ~-stabilizable iff 
there exists a simultaneously ~-stabilizing controller C. 

When A = I ,  the :~ystem 5 e ( I -  A ,P,C)  becomes open loop; by Definition 2.1, it is clear that the system 
5 e ( I -  A ,P,C)  is ~.-stable when A = I  if and only if both P and C are ~-stable. 

It is well-known (see for example [7, 5]) that the controller C E J/g(Rp) is an ~-stabilizing controller for 
P if and only if C is given by (1): 

C = ( V -  QN) I(U + Q~))=((]  + D Q ) ( ( ' -  NQ)-I  , (1) 

where Q E J/g(~) is such that ( V - Q N )  is biproper (which holds for all Q E ~ ' ( ~ )  when P is strictly proper), 
where U, V, U, l? E ~ ( . ~ )  satisfy (2): 

Lemma 2.2 (Closed-loop stability of ~ ( I -  A,P,C)).  Let ND -1, l~--l]~f be any RCF and any L CF of  
n o  X n t P E  Rp . Let A E Jg(~).  

n i X Ilo (a) Let N c Dc  1, i )c lNc  be any RCF and any LCF of  C E Rp . The system 5P(I - A,P, C) is ~-stable 
i f  and only if  

" -~Vc 
[ ( I D A )  D c ]  is~-unimodular, (3) 

equivalently, 

[DcD + Nc(I  -- A)N] is ~-unimodular. (4) 

(b) Let U, V E Jh'(~) be as in (2). The controller C is a simultaneously ~-stabilizin 9 controller for P 
and (I - A)P if  and only i f  C is 9iven by (1), where Q E ~ / ( ~ )  is such that (V - QN) is biproper and 

In, - (U + QI)) AN is ~-unimodular. (5) 

(c) Let U E J g ( ~ )  be as in (2). The plants P and (I - A)P are simultaneously ~-stabilizable i f  and 
only if  

(i) the pair {I - A,D) is right-coprime, and 
(ii) det (In, - UAN) has the same sign at all real blocking Og-zeros of  (£)AN). 

By Lemma 2.2(b), the plants P and ( I -  A )P  are simultaneously ~-stabilizable if and only if there exists 
Q E d / ( ~ )  such that (5) holds. It follows from standard strong ~-stabilizability results that condition (5) 
holds if and only if the pair (I - UAN, E)AN) satisfies the well-known parity-interlacing property [7, 8, 1], 
which is equivalent to Lemma 2.2(c). However, condition (5) is not explicit, and the equivalent conditions in 
terms of the blocking ~//-zeros of ( f )AN) require the entire list of such zeros on the real axis. We now search 
for explicit conditions in terms of the poles of the given plant P and the known multiplicative perturbation 
A for simultaneous ~-stabilizability of the plants P and ( I -  A)P. Lemma 2.2(c) immediately leads to the 
following necessary conditions. 
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/1 o X r/~ Corollary 2.3 (Necessary conditions for simultaneous stabilizability). Let D-i]? be any L CF of  P E Rp 
Let A E J~(~).  I f  the plants P and (I - A)P are simultaneously ~-stabilizable, then 

(i) ( I -  A,/)) is right-coprime, equivalently, ( I -  A,£)A) is right-coprime, and 
(ii) det ( I -  A) has the same sign at all real-axis blocking dig-zeros of  I~A; furthermore, thb sign is 

positive whenever AP has real-axis blocking ~l-zeros. 

The sign test in Corollary 2.3 is performed at the real-axis blocking q/-zeros o f / )A ,  which are in fact a 
subset of the real-axis d#-poles of P. To see that P has poles (equivalently, that de t / )  is zero) at the real-axis 
blocking °//-zeros o f / )A ,  observe that the set of  blocking ~//-zeros of the product /)A is the union of the 
sets of blocking °//-zeros o f / ) ,  of  A and in addition, possibly some of the ~/-zeros that are common to both 
/) and A; clearly, ( f )A)(so)= 0 at So E ~ only if both rank ff)(So)< no and rank A(so)< no. To check the 
positivity of the sign when AP has real-axis blocking °-//-zeros, note that the sets of the blocking q/-zeros 
of  A and of P are subsets of the blocking q/-zeros of the product AP. If  P is strictly-proper, then P has 
a real-axis blocking q/-zero at infinity. For full (normal) row-rank P, if there are any additional blocking 
~//-zeros of  AP, then these would be some of the transmission q/-zeros of  P that are also ~'-zeros of A; for 
rankP < no, AP may have additional blocking q/-zeros at points other than the transmission d//-zeros of  P. 
Based on these observations, condition (ii) of Corollary 2.3 can be stated more explicitly as follows: I f  the 
plants P and ( I -  A)P are simultaneously ~-stabilizable, then det ( I -  A) has the same sign at all real-axis 
blocking ~#-zeros o f / 3  and at all other real-axis ~t-poles of P for which /)A = 0; furthermore, this sign is 
positive whenever A, or P, or the product AP have real-axis blocking ~-zeros. 

We now state that the necessary conditions for simultaneous ~-stabilizability of  P and (I - A ) P  given in 
Corollary 2.3 are also sufficient when P is full (normal) row-rank and has no real-axis pole-zero coincidences 
in the region of instability ~'. 

Corollary 2.4 (Necessary sufficient conditions for simultaneous stabilizability). Let D-1]? be any L C F  of  
#1 o X n~ P E Rp . Let rankP --- no <~ ni and let P have no coinciding poles and zeros in ~ M ~(. Let A E Jg(~).  

Under these assumptions, the plants P and (I - A)P are simultaneously ~-stabilizable i f  and only i f  the 
two conditions in Corollary 2.3 hold. 

A special case of plants which have no pole-zero coincidences on the real-axis portion of the region of 
instability ~// is the case of SISO plants. Corollary 2.4 leads to the following conditions, which characterize 
all A such that P and (I - A )P  are ~-stabilizable. 

Corollary 2.5 (Necessary and sufficient conditions when P is SISO). Let P E Rp. Let A E ~. The plants P 
and ( I -  A)P are simultaneously ~-stabilizable i f  and only i f  

(i) A :~ 1 at all ~#-poles o f  P, and 
(ii) (1 - A) has the same sign at all real-axis °ll-poles of  P; furthermore, A < 1 at all real-axis ~ll-poles 

of  P whenever P or A have real-axis °ll-zeros. 

Corollary 2.5 defines the class of all perturbations A E ~ such that P and (I  - A)P are simultaneously 
~-stabilizable. To illustrate the advantages of a necessary and sufficient condition, consider the following 
example as a comparison with the standard small-gain sufficient condition: Let q/ ----- C+ U {oo}, 

( -3s2 + 10sq- 1) 
P =  

s(s - 1 ) ( s + 7 )  

A coprime-factorization of P is 

( S - I -  1 )3  ~ q -  1 )3  " 

Using U = 1, V = 1 as a solution for (2), all ~-stabilizing controllers are given by (1) as C = 
(1 - QN)- i (1  + QD), where Q E ~ .  By (5), C also ~-stabilizes (I - A)P if  and only if Q E ~ is such that 
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I -  (U + Qr))AN is Q-unimodular. A sufficient condition to satisfy this would be to seek Q so that 
[[(U+QE))ANI[ < 1. Since P has a pole at s = 0 ,  ((U+Qf))AN)(O)=A(O); therefore [I(U+Qff))AN[I >~ IA(0)[ 
for any Q E Q. The existence of  Q E ~///(Q) satisfying (5) cannot be concluded using this small-gain condition. 
However,  the necessary and sufficient conditions of  Corollary 2.5 define the class of  perturbations explicitly: 
Since P is strictly proper, P has a q/-zero at infinity; the only q/-poles of  P are on the real-axis at 0 and 1; 
therefore, P and (I -- A)P are simultaneously Q-stabilizable for any A E Q such that A(0) < 1, and A(1) < 1. 

3. Conditions for diagonal perturbations 

In this section we consider two special cases of  diagonal perturbations. The first case assumes that each 
output channel of  the plant is multiplied by the same Q-stable transfer function (1 - 6), i.e., A = 6I. This 
case is a generalization of  constant output perturbations considered in [4]. The second case assumes that all 
but the j t h  entry of  the diagonal matrix A is zero; the nonzero entry 6j can be any arbitrary Q-stable transfer 
function. The significance of  this case is that A = ejajef can be thought of  as an unknown sensor failure in 
the j t h  output channel. 

3.1. Diagonal perturbation case A = 6I 

As shown in Lemma 2.2, necessary and sufficient conditions for simultaneous Q-stabilizability of  P and 
( I -  A)P are deriw;d based on real-axis blocking zeros (E)AN). When A = 6I, it is possible to explicitly 
characterize the exact set of  such q/-zeros based on the invariant factors of  the numerator and denominator 

no × ni matrices; we briefly summarize the Smith-McMillan form here for this purpose [7]: Let P E Iqp , where 

rank P =: r ~< min { no, hi}. There exist Q-unimodular matrices L E Qn,, × no, R E Q"' × "' such that 

I ][ ] 0]E 0 ] P = L  A 0 ~-~ 0 R = L  R, (6) 
0 O(n, --r)×(n~--r) 0 I(n~_r) 0 I(no--r) O(no--r)×(n~--r ) 

A : = d i a g [ 2 1  " " 2 r ]  , T : = d i a g [ ~ l  ' "  ~br], 

where, for j = 1 . . . . .  r, the (numerator and denominator) invariant factors 2j E Q, ~9j E Q, and ~Oj is biproper; 
for j =  1 . . . . .  r - 1 ,  2j divides 2j+1, and ~j+l divides ~kj; for j =  1 . . . . .  r, the pair (2j, ~j) is coprime, equivalently, 
there exist uj E Q, vj E Q such that 

vj~bj + uj2j = 1. (7) 

no × ni Proposition 3.1 (Necessary and sufficient conditions when A = 6I). Let P E Rp . Let A=61no, 6 E Q. Con- 
sider the Smith-McMillan form (6) of P. For i E {1, . . . ,m},  let s ic  ~ N ~1l denote a ~li-pole of  P, which 
satisfies the followin9: 
• @~(si) = 0 for some ~i E {1 . . . . .  r}, and 
• ~j(si) ~k 0 for all j C { 1 . . . . .  r} such that j >- (~i + 1 ), and 
• 2s(si) -= 0 for all j E {1 . . . . .  r} such that j >~ (~i + 1). 
The plants P and (1 - 6)P are simultaneously Q-stabilizable i f  and only i f  

(i) 6 ¢ 1  at all 41-poles of  P, and 
(ii) (1 - 6 ( s i ) )  e' has the same sign for all i E {1 . . . . .  m}; furthermore, this sign is positive whenever P has 

real-axis blocking ~¢-zeros or 6 has real-axis °g-zeros. 

Corollary 3.2 (SuffLcient conditions when A = 6I). Suppose that the assumptions of Proposition 3.1 hold. 
(a) The plants P and (1 - 6)P are simultaneously Q-stabilizable i f  6 ~ 1 at all ql-poles of  P and 6 < 1 

at all real-axis ~l-poles of  P. 
(b) The plants P and (1 - 6)P are simultaneously Q-stabilizable i f  6 ~ 1 at all ql-poles of  P and 6 < 1 

at all real-axis ~[-zeros ~r and at all coinciding real-axis ~ll-poles and Sll-zeros of P. 
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(c) The plants P and ( 1 - ~)P are simultaneously ~-stabilizable i f6  ¢ 1 at all °ll-poles of  P and 6(si) < 1 
for all i E { 1 . . . . .  m}. 

The three sufficient conditions given in Corollary 3.2 for simultaneous ~-stabilizability of P and (l - 6 ) P  
are listed in decreasing conservatism. 

3.2, Diagonal perturbation case A = ej 6je T 

Suppose that one of the no sensor channels is multiplicatively perturbed by an unknown ~-stable failure 
and that the location of this failure is known. This failure can be modeled as a diagonal matrix A = e j  6j el, 
where j E {1 . . . . .  no} is the location of the failure and 6j E ~ is arbitrary. Under normal operation of the jth 
channel, 6j = 0; all other values of the ~-stable 6j imply a failure and, in particular, 6j = 1 corresponds to 
a disconnection failure. For this class of diagonal perturbations, we give necessary and sufficient conditions 
for simultaneous ~-stabilizability of P and ( I -  A)P = ( I - e j  6 je f )P  in Proposition 3.3. For plants satisfying 
these conditions, we propose a class of simultaneously ~-stabilizing controllers in Proposition 3.4. Note that 
since 6y E 2A is unknown, these conditions are in fact for simultaneous ~-stabilizability of a special class of 
infinitely many plants, and the controllers proposed actually ~-stabilize all plants in this class simultaneously. 

= n,, x,, ejrje T, for Proposition 3.3 (Necessary and sufficient conditions when A ejrjeT). Let P E Rp . Let A = 

some j E {1 . . . . .  no }, where 6j E ~. Let D-l  iV be any LCF of P, where ~. E ~n,, x 1 denotes the j th column of 
f). The plants P and (I - ejrjeT )p  are simultaneously ~-stabilizable for all 6j E .~ i f  and only i f  rank dj(s) 
= l Jbr all s E°?l. 

t/o X / l l  Proposition 3.4 (A class of ~-stabilizing controllers for P and (I - e j f je f )P) .  Let P E Rp . Let A = 

ejrjeT, for some j E { 1  . . . . .  no}, where 6 j E ~ .  Let F)-IN be any LCF of P, where c tyc~  n°xl denotes 

the j th column ofF). Let rankdj(s) = 1 for all sEOll, equivalently, let dj have a left-inverse denoted by 
yT E ~1 xn,,. Let U, V, (], 17" E ~//¢( ~ )  satisfy (2). The controller C given by 

C = (Z - QI7 + (V + QD)ejyTIV)-'(U + 015))(1 -- ejyflS) (8) 

simultaneously ~-stabilizes P and (I - ej6jef )P for all 6j E ~,  where 0 E J/¢(~) satisfies 

d e t ( V - 0 N ) ( ~ ) ¢ 0  and y ~ ( P - N O ) - l e j ( c x ~ ) =  l + y f N ( V - O N ) - l ( u  +o f ) ) e j (oc )¢O.  (9) 

Condition (9) holds for all 0 E JE(.~) when P is strictly proper. The controller C given by (8) is strictly 
proper when O E J// ( ~ ) satisfies 0(oc)=-U(oo) /3 -1(cx~) .  

The expression for the proposed controllers in (8) can be simplified by observing that any ~-stabilizing 
controller C for P is given by (1) as C = ( V -  Q.~)- I (U + Q/)) for some Q E ~ ' ( ~ ) .  Therefore, the controller 
design suggested in Proposition 3.4 starts with any arbitrary ~-stabilizing controller C" for P and derives the 
controller C to simultaneously ~-stabilize P and ( I -  e jr jeT)P as 

C = C(I + ejyfDPC) 1 ( i  _ ejyTD). (10) 

Since C" is any controller that ~-stabilizes P, it is proper and hence, d e t ( V -  O N ) ( o c ) 5 0 .  Condition (9) is 
then equivalent to 

1 + yfDPCej(oo) # O, (11 ) 

which ensures the properness of the proposed controller C. 
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4. Proofs 

Proof of Lemma 2.2. (a) Using an LCF P =D-1A~ and an RCF C : N c D c  1, with ~.c := Dclec,  the system 
5 ¢ ( I -  A,P, C) is de,;cribed in the bicoprime factorized form 

r 1 yp 0 yp yp 
, 

Similarly, using an RCF P = ND -1 and an LCF C = DclNc,  with ~p := D-lep, the system ~ ( I  - A,P, C) 
is described in the bicoprime factorized form 

uc ' D ~P + - u p  Yc " 

It follows using standard arguments that the transfer function H : u ~ y is ~-stable if and only if (3) holds, 
equivalently, (4) holds. 

(b) The nominal system 5e(P,C) and the system 5 P ( I -  A ,P,C)  are both N-stable if and only if C is 
an N-stabilizing controller for P and (4) holds; condition (5) follows by using the LCF C = / )c lN-c  = 
(V - Qi?) - I (U + QO) in (4). 

(c) If 5~(I - A,P, C) is N-stable, then N-unimodularity of the matrix in (3) implies that the pair ( I - A , D )  is 
right coprime; therefore this condition is necessary. By (5), P and ( I -  A )P  can be simultaneously N- 
stabilized if and only if there exists Q E J t ' (N) such that (I - UAN) - QDAN is N-unimodular; it follows 
by standard strong D~-stabilizability results that this N-unimodularity is satisfied for some Q E J [ ( N )  if and 
only if det(I  - UAN) has the same sign at all real blocking q/-zeros of (BAN),  provided that the pair 
( ( I -  U A N ) , - D A N )  is right coprime [7]. The right-coprimeness claim is shown as follows: Since ( I -  A,/)) 
is fight coprime, there exist A,B E Jt ' (N) such that A(I - A) + B/) = I; therefore, (I + UAAN)(I - UAN) + 
( - U B  + UAA I~) ( -L iAN)= I implies right coprimeness. [] 

Proof of Corollary 2.3. By Lemma 2.2(c), the right coprimeness of (I - A,D) is a necessary condi- 
tion for simultaneous N-stabilizability of P and (I - A)P. If (I - A,D) is fight coprime, then there exist 
A,B E J [ ( N )  such ti~at A ( I -  A ) +  BD = I; therefore, (A + B £ ) ) ( I -  A ) +  BDA = I implies ( I -  A,DA) is 
right coprime. Conw,~rsely, if (I - A,/)A ) is fight coprime, then there exist ~],/7 E ~ ' ( N )  such that 4(1 - A ) + 
/TDA = I; therefore, ( ~ ] - / 7 / ) ) ( I -  A ) + / 7 / )  = I implies ( I -  A,D) is right coprime. This proves condition 
(i). If P and ( I -  A)P are simultaneous N-stabilizable, then d e t ( I -  UAN)(so) has the same sign for all 
So E E N ~# such that DA(so) = 0 since these blocking ~-zeros are included in the set of real-axis blocking 
~-zeros of (BAN).  By (2), det (I - UAN)(so) = det ( I -  NUA )(So) = det ( I -  ( I -  VD)A )(So) -= det (I - A )(So). 
Furthermore, if thers exist Zo E ~ A ~ such that (AP)(zo) =(AND-1)(zo) = 0, then (DAN)(zo) = 0 implies 
d e t ( I -  UAN)(zo)=: 1; since the sign is positive at these real-axis blocking ~'-zeros of (DAN), the sign of 
det (I - A)(so) mus': also be positive and the necessity of condition (ii) thus follows. [] 

Proof of Corollary 2.4. The necessity of the two conditions in Corollary 2.3 was shown for any arbitrary 
P. The sufficiency of these two conditions for this class of plants follows by Lemma 2.2(c), from the fact 
that the only real-axis blocking q/-zeros of (DAN) are those of (DA) and of (AN): For all So E E n ~ such 
that DA (So) = 0, b.y (2), det (I - A )(So) = det (I - A + fzDA )(So) = det (I - NUA)(so) = det (I - UAN)(so). 
Therefore, when (DAN) has no real-axis blocking ~#-zeros other than those of (DA) and of (AN), Corollary 
2.3(ii) implies condition (ii) of Lemma 2.2(c). To show that (DAN) has no additional blocking ~#-zeros, 
suppose that ( D A N ) ( s ) =  0 for some s E E  n ~//. If rank/)(s)  = no and rank N ( s ) = n o ,  then D- l ( s )  exists 
and N(s) has a right-inverse ]V(s); hence D-I(s)(_DAN)(s)IV(s)= A(s)= 0 implies ( A N ) =  0. Since P has no 
coinciding poles and zeros in 0~ n ~//, either rank D(s) < no or rank N (s) < no but not both. If rank/)  ( s )=  no, 
then D- l ( s )  exists and hence, D- I ( s ) (DAN)(s )  = (AN)(s)  = 0. If rank N(s)  = no, then N(s) has a right- 
inverse A~(s) and hence, ( D A N ) ( s ) N ( s ) =  (DA) ( s )=  0. Note that the case of rank D ( s ) =  no and rank N(s) 
= no implies A(s)=: 0, which is a blocking J//-zero of both (DA) and (AN). [] 
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P r o o f  o f  Coro l lary  2.5. Since scalar plants have no pole-zero coincidences, this is a special case of  the 
class of  plants in Corollary 2.4. For scalar P = / ) - ~ N  and A, the pair (!  - A, /))  is coprime if and only if 
( I -  A)(s)#O for all s ~ '  such t h a t / ) ( s )  = 0, which is equivalent to condition (i). The set of  ~/-zeros of  
the product (/)A) is simply the union of  the corresponding sets fo r /5  and for A. Therefore, (I - A)(s) must 
have the same sign for all s ~ E ~ ~ '  such t h a t / ) ( s )  = 0 and this sign must be positive whenever (AP) has 
real-axis ~-zeros.  Again, the ~-zeros  of  the product (AP) are equivalent to the ~-zeros  of  the individual 
scalar transfer functions. [] 

P r o o f  o f  Propos i t ion  3.1. The plants P and (1 - /~)P are simultaneously ~-stabil izable if  and only if 
Lemma 2.2(c) holds; now ((1 - 6 ) , / ) )  is right coprime if and only if (1 - 6(s))~O for all seal// such 
that r a n k / ) ( s )  < no, equivalently, condition (i) o f  Proposition 3.1 holds. Next we investigate the sign of  
det (/,,, - U6N) at the real blocking ~//-zeros o f / ) 6 N .  Consider the Smith-McMillan form (6) of  P. Any RCF 
ND -j and any L C F / ) - l ~  of  P is given in terms of  this Smith-McMil lan  form as 

0(~,_0×(~ _~ ) 0 I(~-r)  

0 O(eo_r)X(ni_r) 

for some ~-unimodular  M E ./¢[(~) and for some ~-unimodular  M c ~ ( ~ ) .  Let UD := diag [ul . . .  ur], 
VD := diag [vl " vr]; then by (7), (V~ ~ + UDA) = L. A solution for U, V, U, V satisfying (2) is 

0(n~-r) × (n,,--r) ' 0 I(~ i _~) 

U : = R - ~  [ Up 0 ] M - '  V : = L [  VD 0 J J l ) - '  (14) 
O(n _r)×(no_r) ' 0 I(n, _r) " 

By (14), 

det(I~ -U6N)=det(I~ -6UN)=det  In , -6  A 0 =H(1-bu j2 j ) .  (15) 
O(n~--r)×(n'--r) j = l  

Since 6 is scalar, so E ~ll is a blocking ~/-zero of  (6 / )N)  if  and only if so is a ~#-zero of  ~ or a blocking 
O#-zero of  ( / )N).  By (12) and (13), since M,  3~¢ E ~ t ' ( ~ )  are ~-unimodular ,  (6DN)(so)= 0 if and only if 
(~PA)(so) = 0, equivalently, (~bj2j)(so)=0 for j = 1 . . . . .  r. Since (2j,~j) is coprime, (~jA#)(so)= 0 means that 
for each j ,  either ~j(So) = 0 or ),j(So) = 0, but not both. For any So E ~ A oll such that (DN)(So) = 0, there are 
two cases to consider: 

Case 1: Suppose that ~j(So)¢O for all j E{1 . . . . .  r}, equivalently, d e t / ) ( S o ) S 0 ;  then (DN)(so)= 0 
implies N(so)= 0, i.e., So is a blocking ~//-zero of  P. Therefore d e t ( I -  bUN)(so)= 1. 

Case 2: Suppose that ~b~(so)= 0 for some ( E { 1  . . . . .  r}, but ¢j(So)¢O for j > { ;  then ~j(So)= 0 
for all j ~< ( because ~j+l divides ~'S. Since (2j ,  ~bj ) is coprime, 2¢(So)# 0. But (~bj2j)(So)= 0 for j = 1 . . . . .  r 
implies therefore 2y(so)= 0 for all j ~> (# + 1). By (7), (uj2j)(So)= 1 for all j ~< E and (ujAj)(so)= 0 for all 
j ~> ( ( +  1). By (15), 

F 

de t ( I  - bUN)(so) = H ( 1  - 6(ujAj)(So)) = (1 - b(So)):; (16) 
j = l  

Note that if  E = r, then the smallest invariant-factor ~(so)= 0 and hence, 2 j (So)#  0 for j = 1 . . . . .  r. 
Suppose t h a t / ) N  has m real blocking ~-zeros  Sl . . . . .  Sm as described in Case 2 and that the corresponding 

indices are #1, . . . ,  #m, i.e., ~,(si)= 0 for i E {1 . . . . .  m}. By (16), the sign of  det ( I -  bUN) remains the same 
at all s~ if and only if the sign of  (1 - 6 )  ~ remains the same for all i ~  {1 . . . . .  m}. Furthermore, if  P has 
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any blocking real-axis q/-zeros as in Case 1, or if 6 has any zeros in R ~ ~//, then this sign must match the 
positive sign of det (I - fUN)  = 1. [] 

Proof of Corollary 3.2. The plants P and (1 - 6)P are simultaneously ~-stabilizable if and only if the two 
conditions of Proposition 3.1 hold at the ~/-poles si of P. If the sign of (1 - 6(si)) > 0 at all these poles, 
then (1 - 6 ( s i ) )  ~' obviously has the same sign regardless of the indices ?i. Therefore, part (c) of Corollary 
3.2 is a sufficient condition. But since the q/-poles described as si are a subset of those described in part (b), 
and these in turn are a subset of all real-axis ~/-poles of P, the sufficiency of part (a) and part (b) are also 
obvious. [~ 

Proof of Proposition 3.3. By Lemma 2.2 (c), the plants P and ( I - e j  6j e f )P  are simultaneously ~-stabilizable 

if and only if ((I - ej6je~),D) is right-coprime and det(I  - Uej6je~N) = 1 - i3je'fNUej has the same sign 

at all s E R A ~// such that (£)ej6je~N)(s) = (6jdje~N)(s) = O. If ((I - 6jeje~),[)) is right-coprime for all 

6j E ~ ,  then it is right coprime for 6j = 1, i.e., the entries of the jth column o f / )  cannot all become zero 
for some s E ~//. This proves necessity of rank dj(s) = 1 for all s E ~//. To prove sufficiency, observe that if all 
entries of dj do not become zero for some s E ~//, then (6jdje~N)(s)= 0 if and only if either 6j(s)= 0 or the 
j th  row of N(s), e'fN(s) = 0. Since 1 - (6je~NUej)(s) = 1 for all such s, the sign is always positive for all 

real-axis blocking @'-zeros of (f)AN) as required. [] 

Proof of Proposition 3.4. Let 0 E J g ( ~ )  be such that (9) holds, i.e., d e t ( V -  0 R ) ( c ~ ) ¢ O ,  equivalently, 
( I ? - N Q )  (cx~) ¢ 0. If P is strictly-proper, then det (V-0R)(c<~) ¢ 0 for all 0 E ~ ( ~ ) .  By (9), 0 also satisfies 
(y~(P - NO)- le j ) (~)  ¢ 0 ;  by (2), (17 - NO) -~ = / 3  + R(I? - N 0 ) - I ( u  + 213) and hence, since yfE)ej 

= y~dj = 1, this corLdition is equivalent to ( y ~ R ( P -  NO)-1(U + 0 / ) ) e j ) ( c x D ) ~ -  1. If P is strictly-proper, 

equivalently, R E ~ ' ( ~ ) ,  then this condition holds for all 0 E J/{(fl). To show that 0 E J g ( ~ )  satisfying 
condition (9) exists for any P, one solution would be to restrict Q ( o o ) =  --U(~x~)/)-l(zxD), which implies 
( u  + OzS)(~)  = o. 

Define Nc := (U + 0/}), /9c := (V - ON), Nc := (U + DO), Dc := (V - NO), C := D c 1 R c  = NcDc  1. 
Let Q E J///(~) be defined as 

Q : 0 - (U + Q[))ejy T : 0 - Ncejyf .  (17) 

Let C := (V - Q R ) - ' ( U  + Q/)) =( / )c  + N c e j y f R ) - l ( R c  - Rcejy~D), as proposed in (8); note that C is 

in the form given by (1). Now apply Lemma 2.2(b); using Q given by (17) in (5), I - (U + QD)6jejefN 

: 1  - # ( U  + OD)(r - e j y fD)e je fN  = I  - 6jNcej(1 - y fDe j )e fN  = I since yfDej = Yf4  = 1. Therefore, 
(5) holds for all 6j < ~ .  It remains to show that (V - QR) is biproper to establish that C is a simultaneously 
°~-stabilizing controller for the plants P and ( I -  6j ej e f )P  for all 6j E ~:  Since/9c = ( V -  0 N )  is biproper by 

(9), ( V - Q R )  = (Dc+Nc ejyfR) = (I+Nc esyfNDc 1 )Dc is biproper if and only if det ( I+Ncejy f  R D c  1 )(oo) 
¢ 0, equivalently, l+(y fN[)c 'Ncej ) (oc  ) (= 0. But as shown above, this is equivalent to ( y f ( P - N Q ) - l e j ) ( o o )  
¢ 0 ,  which holds since 0 satisfies (9). Note that NL)clRc = R C  = D P d .  [] 

5. Conclusions 

There exists a single controller that simultaneously ~-stabilizes two given plants P1 and P2 if and only if a 
pair of matrices associated with these two plants satisfy the parity-interlacing property [7]. While the parity- 
interlacing property test requires calculation of this pair of matrices to answer the question of simultaneous 
~-stabilizability foi two arbitrarily selected plants, it may be possible to arrive at a conclusion without 
this calculation for special cases, such as the one considered in this paper. Motivated by the importance of 
designing controllers for a plant under different modes of operation, necessary and sufficient conditions are 
obtained for the existence of simultaneously ~-stabilizing controllers in the case that the second plant (I - A)P 
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represents the nominal plant P under a known N-stable multiplicative perturbation A. These conditions are 
important for determining the class of perturbations for which a single controller can be designed to achieve 
simultaneous ~-stabilization. A special class of diagonal unknown perturbations, A = ejrje~, is also con- 
sidered and controllers ~-stabilizing the entire class (1 - e j r j e ~ ) P  simultaneously with the nominal P are 
proposed. Possible extensions of this work include developing similar explicit design methodologies for the 
general cases of A using the simultaneous ~-stabilizability conditions given here. 
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