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Abstract 

A sufficient condition for stability of the feedback in- 
terconnection of two nonlinear stable systems is given 
as a generalization of the standard “small-gain theo- 
rem”. Using the same input-output approach, the pro- 
posed extension reduces conservatism by relaxing the 
finite-gain stability assumption and by not requiring 
a boundedness result for all possible bounded inputs, 
and has simple geometric interpretations by utilizing 
graphs of upper-bounding functions. 

1 Introduction 
The “small-gain theorem” establishes a sufficient con- 
dition to ensure stability of the feedback interconnec- 
tion of two stable nonlinear systems [l], 141; it is central 
in many stability robustness results in the literature. 
The finite-gain setting of the theorem allows a natu- 
ral extension of results on stable linear systems to the 
nonlinear case, and associates a “gain9, with each of 
the nonlinear stable systems in the feedback intercon- 
nection. The strong result of the small-gain theorem 
requires no existence or uniqueness or continuity as- 
sumptions. Stability analysis is reduced to a simple 
scalar inequality condition: ]if the product of the gains 
is less than one, then the closed-loop feedback intercon- 
nection is finite-gain stable. A careful study shows that 
the result requires two ingredients: 1) bounded-input 
bounded-output stability of each subsystem, and 2) a 
crucial pair of inequaIity constraints resulting from the 
property of seminorms. In this note, we characterize 
bounded-input bounded-output stability of systems in 
a general form using non-decreasing upper-bounding 
functions. For a given bound on exogenous inputs, 
we state a sufficient condition to guarantee that all 
resulting signals in the feedback interconnection are 
bounded. The proposed condition is solely based on 
the crucial pair of inequality constraints and has a sim- 
ple geometric interpretation using the graphs of two 
upper-bounding functions and their translations due 
to bounds on the exogenous signals. Hence, the level 
of conservatism in the standard finite-gain small-gain 
theorem is reduced due to adopting an upper-bounding 
function more general than an affine one, and due to 
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incorporating the bound on exogenous inputs. This 
note was motivated by a generalization of the small- 
gain theorem in [3], which also allows general output- 
bounding functions. The conditions in [3] require addi- 
tional assumptions to guarantee a bounded output for 
any bounded input. 

2 Notation and Preliminaries 
All nonlinear maps are causal, multi-input multi- 
output and defined over appropriate products of causal 
extension of the set C of bounded signals. The time-set 
7 typically denotes nonnegative reals or integers. For 
T E 7, let 3 1 I ~  denote the usual truncation operator 
and ( 1  . [ [  denote the associated norm used in describ- 
ing the bounded signals in C. The causal extension 
of C is denoted by Le.  With a slight abuse of nota- 
tion, 11 . 11 is also used in describing the product set 
of bounded signals C” . For a thorough treatment of 
general extended spaces within the input-output ap- 
proach to nonlinear systems, see [I]. The extended 
space Le is a means of incorporating unbounded sig- 
nals in the analysis; however, although C c C,, the 
component (C)“\C, # 0, where (.)“ denotes the com- 
plement with respect to the set of all functions on 7. 
The nonempty intersection arises due to discontinuities 
which are not jump-discontinuities. Such signals which 
exhibit “finite escape time” are not covered within the 
scope of extended spaces; therefore domains restricted 
to a strictly proper subset of the input extended space 
might be necessary in describing the nonlinear maps. 
Hence, C describes the set of bounded signals and C,\C 
denotes the set of unbounded signals (unbounded at in- 
finity). An nl-input n~-output causal nonlinear map 
P is considered as P : U c C21 -+ L?., where U de- 
notes the domain. With appropriate domain and range 
matchings, the map FG denotes the composition of two 
nonlinear causal maps F and G. In an input-output ap- 
proach to analysis and design of nonlinear systems, the 
notions of boundedness and stability are crucial for the 
subsequent results. Unlike the finite-dimensional linear 
time-invariant case, most of the properties depend on 
the particular framework used. The following defini- 
tion sets up the framework used here [2]. 
Definition: A causal map 31 : ,C!% -+ C!o is said to 
be stable iff there exists a continuous nondecreasing 
p : IR+ ---t R+ such that 113tull 5 (p(IIull) V u  E Cnz . o 
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The bounding cp in this definition need not be strictly 
increasing, or one-to-one, or onto, or subadditive. 

3 Main Result 
Theorem 3.1 states a sufficient boundedness condition 
applying the property of seminorms on the summing- 
junction equations of the unity-feedback interconnec- 
tion: 
3.1 Theorem: Let 7 i 1  : Lrl  + L:. and ‘Hz : L:. * 
L:1 be stable maps in the unity-feedback interconnec- 
tion, where 

e l  = u1 - 7i2e2 ; e2 = uz + E l e l  . (1) 
For a given a E Et: , let llulll I a1 and IIu2JI 5 a 2  - 
Let ,B E R: be such that 

Under these assumptions, if ( e l ,  ez) E LF1 x L:. then 

As in the standard finite-gain small-gain setting, no 
assumptions of existence, uniqueness, or continuity of 
solutions are made in Theorem 3.1. Although this note 
emphasizes a map setting, the theorem is still valid for 
relations. The proof is a simple exercise using causal- 
ity, the truncation operator IIT and the property of 
seminorms on equations (1): Let (e l ,  ez) E .C:l x Lr2 . 
For any T E I 

lle1ll 5 P1 and Ile211 I P2 . 0 

llnTelll 5 IInTu111 + llnTE2e2ll I a1 + p2((lnTe2ll) 

JInTe2JJ L Il&u2ll + I l ~ T x l e l l l  5 a 2  + cpl(~JnTe1ll). 
Since ( 2 )  holds, llIITelll 5 01 and llIITezll 5 /32, for 
all T E 7, and the conclusion follows. 

4 Application and Concluding Remarks 
A simple two-dimensional graphics environment is 
all that is required in order to apply the result 
in Theorem 3.1. Optimization is not required un- 
less the least-upper-bounding /3 is sought. Two 
graphs in Et: , i.e., ( ( 2 1 ,  a2 + cpl(z1)), t i  E Q} and 
((a1 + cp2(22), 22) I 22 E IR+} , are drawn. The de- 
sired intersection is the union of possibly disjoint sets 
formed by intersecting the region below the first graph 
and above the second graph. No conditions are imposed 
on the bounding functions or their compositions. In 
the case of affine upper-bounding functions with slopes 
kl and k2 , as in the finite-gain small-gain theorem, a 
bounded intersection in the nonnegative quadrant is 
possible if and only if klk2 E [0, 1) . Changing a E R: 
corresponds to translating the two graphs appropri- 
ately. Since bounded intersections may not exist for all 
a in general, the user can easily see the effect of exoge- 
nous signal bounds and extract a tight bound before 
the sufficient condition fails. 
Consider Figure 1, where the sufficient condition of 
Theorem 3.1 is satisfied. Although there is a finite /3 
for a given a ,  the finite-gain stability setting would 
have been inapplicable since the bounding functions 
are not uniformly continuous. 
NOW consider the first plot of Figure 2 ,  where the suf- 
ficient condition of Theorem 3.1 is satisfied for cer- 
tain exogenous signal bounds, although the finite-gain 
approximation would have been inconclusive due to 
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the maximum slopes of the upper-bounding functions. 
Changing the bound a1 on the exogenous input u1 
from 0.25 to 0.75 would simply correspond to drag- 
ging the graph {(cp2(22),22) I 22 E IR+} suitably to 
the right as seen in the second plot of Figure 2.  Conse- 
quently, the sufficient condition no longer holds. Such 
a graphical interface allows the designer to visually ex- 
tract tight bounds without any use of optimization. 

T 

Figure 1: PI(.)  = cp2(.) = fl and a = [0.5 0.5IT : 
Below (21, a 2  + cpl(z1)) and above (a1 + p2(22), 2 2 ) .  

Figure 2: Feasible regions for a = [0.25 0.5IT and 
a = [0.75 0.5IT for two identical piecewise-linear upper- 
bounding functions. 
Theorem 3.1 also yields a one-dimensional graphical in- 
terpretation using for example only 2 1  5 ay1 + (p2(a2 + 
cpl(zl)). However, this approach would not have the 
same simple interpretation in terms of the graphs of 
9 1  and pz since for each a 2 ,  the graph of a new func- 
tion (p2(a2 + PI(-))  would need to be computed. The 
two-dimensional approach above uses translations of 
the same pair of graphs for all a. The one-dimensional 
approach can be further simplified at the expense of 
additional assumptions, such as sub-additivity of cp1 
or cp2. Regardless of which graphical interpretation of 
Theorem 3.1 is used, when at least one of the output- 
bounding functions cp1 or 992 is uniformly bounded, 
there exists a bounded P for any bounded a. 
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