
744 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31,  NO. 8, AUGUST 1986 

Decoupling  Linear  Multiinput  Multioutput  Plants 
by Dynamic  Output  Feedback:  An  Algebraic 

Theory 
CHARLES A.  DESOER, m o w ,  IEEE, AND A. NAZLI  GUNDES 

Abstract-This paper presents  an algebraic theory  for  the  design  of  a 
decoupling Compensator for linear  time-invariant multiinput  multioutput 
systems.  The  design  method uses a  two-input  one-output  compensator, 
which gives  a  convenient parametrization of all  diagonal input-output (I/ 
0) maps and all disturbance-to-output (D/O) maps  achievable by a 
stabilizing  compensator  for  a  given  plant. It is  shown that this method  has 
two degrees of  freedom: any achievable  diagonal 110 map  and any 
achievable D/O map can  be realized simultaneously by a  choice  of  an 
appropriate compensator. The difference between all achievable diagonal 
and nondiagonal I/O maps and the "cost" of decoupling  is  discussed  for 
some particular algebraic  settings. 

I. INTRODUCTION 

I N the design theory of linear time-invariant, multiinput 
multioutput (MIMO) systems, the characterization of all designs 

which can be achieved by a stabilizing controller for a given plant 
is a subject of great interest because it shows the limitations on 
achievable performance imposed by the plant  model and the 
constraints of linearity and stability. Stabilizing compensators 
were first characterized by Youla et af. [31] for the lumped 
continuous and discrete-time cases. Later, an algebraic formula- 
tion  was given by Desoer et af. [9] to include the lumped and 
distributed continuous-time and discrete-time cases. Using alge- 
braic tools, Zames [32] considered stable plants, characterized all 
stabilizing compensators, and established bounds on closed-loop 
performance. His methods were used for design in [ 101. Further 
results in parametrized form were given in [25],  [5],  [28], [24], 
and [29] until finally a general algebraic design procedure, which 
enables design with nonsquare plants and controllers and extends 
the parametrizations of [3 11 and [25] was obtained in [ 111. 

This paper presents a general algebraic design method for all 
diQgOnCl input-output (I/O) maps which can be achieved by a 
stabilizing two-input-one-output controller for a given plant. The 
design method is referred to as two-parameter compensation [30] 
or two-degrees-of-freedom design [17]. We consider the MIMO 
configuration C (P,  K )  of Fig. 1 ,  where the plant P has an output 
yo and a measured output y, and the controller K has two inputs: 
the exogenous input u and the feedback signal e,  = u l  - y,. Such 
two-parameter controllers were used, for example, in [ 11, [25], 
and [ 1 11. This two-parameter compensation scheme enables us to 
design the 110 map independently of the DIO map and, therefore, 
requiring the compensator to diagonalize the I/O map leaves the 
stabilizing nature of the compensator intact. Furthermore, any 
plant, which satisfies the assumption to be given in Section II, can 
be stabilized and decoupled with a proper compensator, and 
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unlike in one-parameter compensation schemes, decoupling 
brings no restrictions to those parameters of the compensator that 
are used  in stabilization. 

Some of the related work in this area can be summarized as 
follows. Decoupling of linear time-invariant multivariable sys- 
tems over unique factorization domains is considered in [8]; 
necessary and sufficient conditions are established for the exist- 
ence of a decoupling dynamic or static state feedback in the case 
that  the system is internally stable and reachable. Furthermore, 
the stability preserving stable compensator is required to be 
invertible over the unique factorization domain. In the present 
paper, the plant is not assumed to be stable, dynamic output 
feedback is used, the compensator is not required to be stable, and 
if stable, it  is  not required to be invertible over the principal ring. 
Hammer and Khargonekar [16] give necessary and sufficient 
conditions for a plant P to be decoupled using a one-parameter 
compensato_r C placed in the  feedback loop, and show that, in 
the lumped continuous-time case, there is no proper compensa- 
tor which  would decouple a plant whose inverse has off-diagonal 
polynomial terms: with strictly proper plant and proper compen- 
sator, the inverse of the resulting diagonal 110 map is [P(Z + 
CP)-l] - I  = (Z + C P P - ' ,  which approaches P - '  as Is1 -+ 03; 
hence the configuration proposed introduces the unnecessary 
constraint that the polynomial part of P - '  must be diagonal. This 
problem does not arise with our two-parameter compensation 
scheme. Dion and Commault [14] study the row by row 
decoupling of a strictly proper system by dynamic state feedback 
defined by u = F(s)x + Gu where F(s) is a proper rational 
matrix and G is a constant matrix; the equivalent compensator is a 
precompensator B(s)G, where B(s) and its inverse are proper 
matrices. They give the conditions for decoupling by such a 
compensator and give the minimum McMillan degree achievable 
for the decoupled system (see [ 141 and the references therein). By 
restricting the plant P(s) to approach diagonal dominance as JsI + 

03, Zames and Bensoussan [33] include a study of decoupling with 
an arbitrarily small tolerance using a compensator in the feedback 

The system C (P,  K )  shown in Fig. 1 represents a general 
configuration in whichy,, the output-of-interest, is not necessarily 
the same as the measured-output y,, which is the feedback input 
to the compensator; furthermore, the disturbance d is applied 
directly to the pseudostate of the plant rather than being an 
additive input as,  for example, in [ l l ] .  The paper is organized as 
follows. 

Section 11 defines the problem and states the stabilizability 
conditions. Section 111 builds the structures used for decoupling 
the I/O map, and presents the main results: the achievable 
diagonal I/O maps and the achievable DIO maps. Some examples 
and the conclusions are in Section IV. 

loop. 

The following is a list of the commonly used symbols. 
a : = b means a denotes b. 8, is the n-vector of zeros. W.1.o.g. 

means without loss of generality. U.t.c. means under these 
conditions. If X is a ring, then &(X) denotes the set of matrices 
having all entries in X. 'u denotes the proper rational functions 

OO18-9286/86/0800-0744$01 .OO 0 1986 IEEE 



DESOER AND G U N D S :  DECOUPLING  LINEAR  MULTJINPUT  MULTIOUTPUT  PLANTS 
745 

analytic in the  region (u c C, a symmetric  subset of  which 
contains e+ and 3 : = U U { 03 } . W(s) denotes the scalar 
rational functions in s with real coefficients, and Fils] denotes the 
scalar polynomials  in s with real coefficients. 

Throughout  the  paper,  the  properties of groups  and of 
commutative  rings  are  used;  these and other  standard  algebraic 
terms  can  be  found,  for  example; in [2], [7], 1181, [211, [22], and 
[34]. n e  algebraic structure used here is similar  to that of [l 11. 
Algebraic Structure [2, p .  5.51, [I& p.  3931, [21, p .  691: 

X: A principal  ring (principal ideal domain),  i.e., an entire 
conputative ring in  which every ideal is principal  (e.g., a%). s: The field of fractions over X [e.g., El@)]. 

9: A multiplicative  subset  of X, equivalently, 9 C X, 0 @ 4, 
andx,y, E 9impliesthatxyE  9.W.l.o.g. 1 E g(e.g. , fE 9if 
f E (Ru andf(G) = 1) .  
I: : = {n /d :n  E X, d E g } ,  a subring  of 6 (e.g., Fip(s), the 

ring of proper scalar rational Gnctions). 
U ( X )  := { m  E X: m-'  E X}, the  group of  units  in X 

(e.g., f E U ( X )  iff E and f ( s )  # 0 for all s E 3). 
6, : = {x E 6:(1 + xu)-' E 9, V y E S }  (Jacobson  radical 

of 6) (e.g., RP&), the set of strictly proper scalar rational 
functions). 

Four  examples of this algebraic structure are given in [l 1 , 
Table I]. 

II. DE~IGN THEORY 

A .  Problem  Description 

We  consider the MIMO linear, time-invariant  system B (P,  
K)('C (P,  K ) )  shown in Fig. 1 (Fig. 2). Given  a  plant P,  we  wish 
to design a controller K with two inputs and one  output  such that 
the resulting feedback  system is stable, K has  elements in s, and 
the I/O map u - yo is nonsingular  and decoupled, i.e., 
diagonal. We make the  following  assumptions  on C (P,  K ) .  

Assumptions on  the System C (P, K): 
(P) P = [$I E S k x n ,  and det Po # 0. Consequently, let 

with Dpr E X""", N;r,  N; E X""" and  detD,, E 9, det Nir # 
0, be  a right-coprime  factorization (r.c.f.) of P.  

(K) K E snx2". Consequently, let D;'  [Nrli Nfl] with Dcl E 
X""", Nz1 E X""", Nfl E XnX", and  det Dcl E 9 be  a left- 
comime factorization 0.c.f.) of K ;  we further  assume that det 
(DclDpr + NflN;) E 3. . 

It is understood that the  subsystems P and K, specified  by their 
transfer functions,  do not have any unstable hidden  modes [3, 
sect. 4.21. 

Under  assumptions (P) and (K), the  system C (P, K )  in Fig. 1 

J +  

Fig. 2. The system 'C (P ,  K ) .  

is completely described by 

L 

r O  0 0 0 1  

L J  

... . ... . ... . ... 
+ 0 :   0 :  O : - N : r  

0 ;  0 :  0 1 - N ;  
. . . . . . . . . . . . 

L -I 

Let u :=  (u', UT, u:, d T ) T ,  [ := cy:, tilT, y := ( Y r , Y , i  
y;)'. Then (2.1) and (2.2) are of the  form 

where  the  matrices D ,  Nl, N,, E, defined in  an obvious  manner 
from (2.1) and (2.2), have all their elements in X. 

For any DcI E X n x n  and any NJ E X""", define 

Note that det D = det Dh and, by assumption (K), det D E 9. 
Let  assumptions (P) and (K) hold;  then  from (2.3) and (2.4) we 

obtain 

Thus,  det D E 9 is a sufficient condition  for the  well-posedness of 
(P,  K ) .  
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Definition 2. I-(X-stability): The system C (P, K )  is said to 
be X-stable if and only if H,, : u - y satisfies Hyu E &(X). 

Definition 2.2 (Stabilizing Controller): Let the plant P satisfy 
(P); the controller K is said to stabilize P iff K satisfies 
assumption (K) and the resulting system C (P,  K )  is X-stable. 

Proposition 2.3 (Stabilizability of P): Let P satisfy (P), and 
in addition let Pm E 6:"". Then 

i) K stabilizes P if  and  only  if det Dh E u(X); 
ii) there is a compensator which stabilizes P if and  only if (N" 

Dpr) is a rightcoprime (r.c.) pair,  i.e., there are matrices 
V; E E(X) such that 

UF'N; + V,"rDp, = I,. 

Remark (Normalization) P O / :  W.1.o.g. K stabilizes P if  and 
only  if 

Dh = I. 

Proof of Proposition 2.3: See [13]. 

III. ACHIEVABLE PERFORMANCE OF (P,  K )  

In order to characterize all diagonal 110 maps which  can be 
achieved by 'X (P,  K )  for the given plant P, we introduce two 
diagonal matrices: AL and AR. 

Construction of AL and AR: Let P E G l n x n ;  K E S n x h .  
Let npk  E X denote the kth row of N;r E X""". For k = 

1, - * e ,  n, define ALk as a greatest common divisor (g.c.d.) over 
X of the elements of npk [21, p. 711: such ALk is  well defined 
within a unimodular factor since X is a principal ring. k t  the 

X"" " be defined as the matrix which has f i p k  as its kth row. fhen 
row-vector fipk E X I x n  be defined by npk = ALkjipk. k t  Nor E 

N;,=diag (ALL, ' * ', ALk, * * ', &")N;, = : ALrjp  (3.1) 

where AL and Ngr are not unique, since each A L ~  is  only defined 
within a factor in U ( X ) .  (In the -case that X = CRq, ALk 
"bookkeeps" the plant zeros in 21 that are common to all 
elements of the kth row of N;r .) A similar factorization is used  in 
rg1. 

The matrix N;r is not necessarily invertible over X"""; but by 
assumption (P), and from (3. l) ,  (Nir)-l has elements in  the  field  of 
fractions [X] [X \ 01 of the _entire ring X since det Nir E X, 
and det Nir  = det AL det N;,, where AL is nonsingular by 
co-mtruction [21, p. 691. Let m,/dv denote the 0th element of 
(Ngr)-I, i ,  j = 1, * - * ,  n ,  where mu, db E X are coprime; thus 

- yo and the D/O map Hyod:d - yo are given by 

Hyou=N;rD, lNx~  (3.5) 

H y o ~ = N ~ , [ ~ - D ~ l N ~ ~ ~ ] = N ~ r D ~ ' D , ~ D p r .  (3.6) 

Now  if K stabilizes P,  by (2.8),  (2.5), and (3.1) we obtain 

H y o u  = N;rh'xl = AL N;,N,I (3.7) 

Hyod=N;r[I-NflNFrI=N;,Dc~Dpr. (3.8) 

We now use the relationships between the stabilizing controller K 
and det Dh to give global pararnetrizations of a) the family of all 
diagonal I/O maps possible for a given plant with some stabilizing 
controller, and b) the family of all disturbance-to-output (DIO) 
maps possible for a given plant with some stabilizing controller. 

Definition 3. I (Achievable Maps): Let P be a given plant that 
satisfies assumption (P); Roughly speaking, let Xyo,(P) denote 
the set of all achievable diagonal I /O maps of C (P,  K )  and let 
XYod(P) denote the set of a l l  achievableD/O maps  of X (P ,  K ) ;  
more precisely, 

Xyo,(P) : = { Hyo, : K stabilizes P and the  resulting 110 
map H,,, is diagonal and  nonsingular} 

(3 -9) 
x y o d ( P )  : = ( f f y o d  : K stabilizes P and the resulting 110 

map Hyo, is  diagonal and nonsingular). 

(3.10) 
The following theorem characterizes all the achievable diagonal 

nonsingular I10 maps  and all the achievable D/O maps for C (P,  
K ) .  

Theorem 3.2 (Achievable Diagonal I/O Maps and Achieva- 
ble D l 0  Maps): Consider the system C (P, K )  of Fig. 1 .  Let P 
satisfy assumption (P) and let (N",  Dpr) be r.c. Let  D;'  N; be  an 
1.c.f. of P", where Dpl, Ny E d?nxn and det Dp, E 9. Let AL, AR 
be defined by (3.1) and (5.3) above. Then 

i) any map H, E X""" is an achievable diagonal, nonsingular 
110 map of the X-stable system X (P,  K )  if  and  only  if Hu E 
3Cyot,(P), where 

X,,,(P)= {ALAR& : Q d  E X""" is  diagonal  and  nonsingular) 

(3.11) 

ii) any map H d  E x""" is  an achievable D/O map of the X- 
stable system C (P,  K )  if and only if Hd E Xy0AP), where 

F o r j  = 1, * - a ,  n, let AR, be a least common multip!e 0.c.m.) of X y o d ( P ) =  {N;r[r-(U~r+RDpl)Npmrr] 
dl,,  dlj, * * , dl, the elements of the j t h  column of (N;)- [21, p. 
721. Each AR, 1s defined within a factor in V(X). Define = N i r (  V,"r-RN,7)Dpr : R E X n X "  S.t. 

det ( Vg-RN;) E 4 
AR : = diag ( A R ~ ,  - e ,  ARj,  . . ., A R ~ )  E X""". (3.3) 

where Vp",, Up", satisfy (2.7)}.  (3.12) 
An extraction of a diagonal factor analogous to AR is done in [ 101. 

Lemma 3.1: Let N O  and be defined by (3.1) and (3.3). Comments: 1) If decoupling were not required, the set of all 
Then (N;J- 'AR E Xgkn. achievable 110 maps of C (P,  K) would be given by 

we have some do E X such that x y O u ( ~ ) =  { N ; , Q = A ~ N ; , Q  : Q E x n X n )  (3.13) 

(3.12) [ 1 13. Requiring the I/O map to be diagonal adds a number 
Then the ijth element of(N;r) - lAR is (m,/dQ)AR, = mudu E X of constraints to the set of maps in (3.13): i) g d  E X n x n  must be 
by (3.2) and (3.4). H diagonal; ii) we have ALAR as a left factor of the I/O map Hyo, 

instead  of just AL. In the case that X = CRQ, we  can interpret the 
The 1/0 Map Hyo, and the D / O  Map Hyod cost of decoupling as follows: the %-zeros of P0:e2 - yo will 

always be the zeros of Hyou whether the I/O map is decoupled or 
For any system C (P, K )  satisfying (P) and (K) (hence, for not. However, yith decoupling, the multiplicity (as a zero of det 

which det Dh E g),  (2.1) and (2.2) show that  the I/O map Hyou:u HyoJ of these %-zeros may be greater than the multiplicity as a 

Proof: Sinse ARj is an 1.c.m. o f  (d,);= ,, for i = 1, - * - , n, 

ARj=d..d. .  ?I U' (3.4) and the set of all achievable D/O maps  would still be given by 
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zero of Po.  This is due to AR: indeed, AL is extracted directly from 
NZr, and if NZr is invertible over X "  the resulting I/O map  will 
have-the same  %-zeros  as  the original P o  assuming  that Qd brings 
no- %-zeros; but since AR is constructed so that N,/ = 
(NZ> --'ARQd E &(X), det AR has a  greater multiplicity  of  the 
same  %-zeros than N" has. It  is shown  in the Appendix  that  if n 
= 2,  det AR = (det d;J2 within  unit factors in X. If (N;) -' E 

2) The  diagonalization of the I/O map is achieved by choosing 
N,I; this choice is independent of the  choice of D,! and Nfl, which 
appear in  the D/O  map.  Similarly, N,/ does  not appear in  the D/O 
map. Thus,  the UO map  and the D/O map  of the  X-stable C (P,  
K )  can be specified independently: it is a two-degrees  of freedom 
design [ 171. The  parameter R appearing in the D/O map is related 
to the system stability, but the  parameter Qd in (3.11) is ody  used 
in shaping  the  output. 

3) It is important to note  the  constraints imposed on Hy d by the 
%-zeros and the  %-poles of the plant  when X = 6i %. If f (P, K )  
is X-stable and  if PF : = PD;'Nfl is full normal rank in aP(s), 
then: 

a) I f  zo is a  %-zero of N;r (equivalently, l a  # 8, such  that 
a*N;,(z,) = a,) then 

X n x n  , the diagonal I/O maps are of the  form ALQd. 

CY*N;,(Z-N~~NF~)(ZO) = CY*Hy,d(Zo) = 8,. (3.14) 

b) If N; has full normal  rank and if zm is a  %-zero of N:r 
(equivalently, 3/3 # 8, such that N;(z,)P = an), then 

N ~ , ( Z - N ~ N ~ ) ( Z r n ) P = N ~ , ( Z m ) B = H y o d ( Z m ) P .  (3.15) 

c) Ifp,  is a %-pole of P (equivalently, 3y # 8, such that DpApo)y 
= a,,), then 

N;,Dc/Dpr(Po)y = Hy,d(Po)Y = 8,. (3.16) 

Thus,  whenever either N;, or N; has  a '%-zero or when P has a 
%-pole, the D/O map is constrained by a  vector-equality  such  as 
(3.14)-(3.16), respectively. 

Proof of Theorem 3.2: (= >) We are given P satisfying 
(P) and  any diagonal  nonsingular I/O map Hv E X" " and  any D/ 
0 map Hd E X""" achieved by the X-stable system (P, K ) .  
Since H" is an  achievable I/O map, K satisfies assumption 6). 
We must  show  that H,  is of the  form  for  some  diagonal, 
nonsingular Qd E X n X n  and Hd is of the  form N;JZ - ( U;r + 
RDpI)N;] = N;,( V;  - RN,",)Dpr for  some R E X""" 
satisfying det (V;  - RN,",) E 9. 

Since C (P,  K )  is X-stable, using (2.8), ( 3 3 ,  (3.7), and (3.1), 
we see that the  diagonal  matrix AL E X""" is  obviously a left- 
factor of H,. It remains to show  that AR is also  a factor. For a 
contradiction,  suppose that for all diagonal Qd E X"" ,, H ,  is of 
the form 

H, = ALAR Qd (3.17) 

where AR is aproper factor of AR, and Qd E X" is  nonsingular 
and diagonal. W.1.o.g. suppose,  for  example, that 

AR=diag ( A R ~ ,  ..A, A ~ j - 1 ,  &,, A R , + ~ ,  . - . ,  AR") (3.18) 

where,  for  a nonunit prime element 6, E X [21, p.  721, 
- 

AN = 6, A , .  

Then by (3.7) and  (3.17) 

ALN;rNr/=AL&Qd. 

Since X is a  principal ring, we may cancel 
factor AL and invert NZr in (3.20) to obtain 

Nr/=(N;r) - l&Qd-  

(3.19) 

(3.20) 

the nonsingular left- 

(3.21) 

By (3.2) and (3.18) 

Nr/=  [z] diag . . a ,  &,, . * e ,  AR,) . Qd. (3.22) 

Recalling  that Alci is by defmition  a  1.c.m. of (d& and  by 
(3.19), for  some i ,  we have 

- 
dy = 6, dv (3.23) 

where gj E X is a  factor of ARj; i.e.,  there is a pU E X, possibly 
a unit, such  that 

ARj=di.E.. - -  
J V' (3.24) 

Hence, with qj E X denoting the jth (nonzero)  diagonal  entry of 
some  general  nonsingular  diagonal Qd E X"" ,, we obtain  the 
0th element  of NZ/ from  (3.22)-(3.24)  as 

(3.25) 

Since 6, @ U ( X )  and  in general 6, is not a factor of qj, (3.25) is 
not  in X. Therefore,  except when the  prime nonunit Sj IS a factor 
of qj, N,, @ X""", thus with N,/ as in (3.21), there is a  diagonal, 
nonsingular Qd E X""" such that K does not  satisfy  assumption 
(K). This  contradicts  the assumption  that K stabilizes P. There- 
fore, H,  must  be  an element of the set  in (3.1 1). 

Now consider Hd. By (2.5) and (2.8), 

NJ N:r + D,/ Dpr = 1. (3.26) 

Viewing (3.26) as a linear matrix  equation in &(X), we solve  for 
(Dc/,  Nfl) subject to det D,/ E 9 so that 0;' Nfl E 6"" ": since 
(N;, Dpr) is  an r.c.  pair,  from (2.7)  we have 

UF Np"l+ V,",DP, = 1 (3.27) 

and since N,",D;' = Dpl'N,", = Pm,  we have 

Dp/N:,-NpmlDpr=O. (3.28) 

The  pair ( UT,, V;) in (3.27) is a particular solution to (Nfl,  D,/) in 
(3.26) and the  pair (Dp/,  - N,",) is a  particular  solution to the 
homogeneous equation (3.28). Hence, any general solution of 
(3.26) is given by 

Nfl = U; + RDp/ (3.29a) 

DcI= Vg-RN;.  (3.29b) 

We now  show  that R E &(X). Since K satisfies (K), det DcI E 9; 
therefore,  det (V; - RN,",) E 5. Since (Dpl, N,",) are I.c., there 
exist Vpl, Up, E &(X) such that 

Dp/ Vp/ + N;  Up/ = Z .  (3.30) 

Thus, by (3.29a),  (3.29b) and (3.30), we see that R = R(Dp/Vp/ 
+ N ;  Up/) = (NJ - u;) vp/ + (V:  - Dc/) u p /  = Nfl vp1 - 
D,) E &(X) since N ~ ,  D,~, vP,, rpP, E &(X). 

From (3.9) and (3.29a),  (3.29b) Hd = Nir[1  - (u; + 
RDp/)N;] = N;r( V;  - RN,",)Dpr. Therefore,  the given Hd is 
an element of the set (3.12). 

(< = ) For some  diagonal  nonsingular Qd E X""", we are 
given H,  = ALAR&, and for  some R E X "  "", we  are given Hd 
= N;,[Z - (U: + RD,,/)N;] = N;,( V;  - RNm)DPr, where 
det (V; - R%;) E 9. We must  show  that &;re exists a 
compensator K which stabilizes P and  the  X-stable C (P,  K )  
achieves the  given H ,  and Hd. 

Choose the controller K : = O_i I [NZ/iN,l] with Nfl and D,/ as 

E X""". Clearly, DcI,  Nfl E qX). Note  that det DCl E 9 is 
in (3.29a),  (3.29b) and N,/ = (NO) - ' A & / .  By Lemma 3.1, Nr/ 
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paranteed by the R that was chosen. (Note that  if pm E s:xn, 

then det DcI E 9 for all R E X n x n  since N;, Np7 E s y . )  
Now, by (2.5) 

Dh = ( V; - RN;) Dpr + ( Up7 + RDp/) Np7. (3 .31)  

By (3.26) and (3.27), Dh = I .  Rewriting (3.31) as 

we see that (Dc/, [N,/i N J ] )  are l.c., and this K satisfies (K). Since 
det Dh E u(x), (P, K )  is X-stable by Proposition 2.3 i). 

By (3.7), we calculate the 110 map: Hyou = NirNX/ = 
ALN;r(N;r)-lARQd = H,. By ( 3 4 ,  we calculate the D/O map: 
Hyod = Nir[I  - N'N;] = Nir[I - (U; + RDp/)Np7] = 
NirDc/Dpr = qr (v ;  - RN;)Dpr = Hd. 

Summary: Given the setup of Theorem 3.2 and, in particular, 
the Qd and the R of (3.11) and (3.12), the compensator K that 
achieves the specified diagonal, nonsingular H, and the specified 
Hd as in (3.11) and (3.12), and that stabilizes P is given by the 
left-coprime factorization 

D c / =  VP-RN;, [N,I i N J ] = [ ( ~ ~ ; ~ ) - ~ A R Q ~  Ug+RDp/ ] .  

IV. EXAMPLES ~ h ? )  CONCLUSIONS 

In the following examples we concentrate on the diagonal UO 
map Hyo,,, and show the design for the compensator parameter 
Nr/. 

Example I :  In this example, X : = @(s, e-") is the principal 
ring where @(s, e - 9  denotes the rationai functions which are 
proper in s, analytic in e +  and have coefficients in R [ e - A ] .  
(R[e-r7 is the ring of polynomials in e - m  with real coefficients.) 
Consider the Po given by (4.1) below: it is strictly proper but  not 
X-stable, and it has a simple zero at s = 3. 

Po(s, e-m)  = 15 ; 1 1 1  e - s  4 X 2 X 2 .  (4.1) 

s + l  s-1 
- -  

A r.c.f. of Po is given by 

Then 

Here, AL and fiir are not unique; AL extracts a zero at 03 from the 
rational part of each row of Nir.  From 

- (s - l)(s + 2) 

(Nir) - ' = 4 3 2 2 x 2 ,  

- (s - l)(s + 1)2 (s+ 1)' 
(s - 3)(s + 2) (s - 3 )  

we obtain 

AR=diag [ - 7 1  
(s- 3)e-S (s- 3)e-S 
(s+1)2 ' (s+ 1) ' 

and 

1 -  1 s-2 . -(s-l)(s+2) 
s + l  : (s+l)' 

N,i = ( Nzr) - Qd = ... 

s + 2  - 
Note that each diagonal entry of AR is equal to det Nir. 
Consequently, det AR = (det fiiC)', and the number of the %+- 
zeros of the diagonal 110 map is Increased. Here, 

has a zero of multiplicity two at s = 3 and it  may have other @+- 
zeros due to Qd E '. Comparing this to the lG+ -zeros of det 
Nzr, we see that the cost of decoupling is the increased number  of 
G A  -zeros (due to A,) and the restriction that Qd be diagonal. 

Exampie 2: Let X = @ U, where 'u = [e+. Po is given by 
(4.2): it is proper but not X-stable; Po has a zero of multiplicity 
two at s = 1, a zero at s = 2 and two zeros at infinity. 

P"(s) = I 
s- 1 

(s - 3)(s + 2)  ... 
s+ 1 
s-3 
- 
... 
0 

1 
s + 2  * 

- 
.. 
1 

... 
1 

(s - l)(s + 1) 

(s - l)(s - 2) 
(s + l)(s + 2) ... 1 

... 
s-2 

(s + l)(s+ 2) 

An r.c.f. of Po is given by 

s - 1  . s -  1 . (S-l)(S-2) 
(s+ l)(s+2) : (s+ l)(s+2) : (s+ l)(s+2) 

... ... ... 

... ... ... 

0 
1 . -  s-2 

* (s+1)2 (s+l)(s+2) 
... ... 

(s- l)e-& . 
s+2 * s+ 1 
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Then, 

Nir = A ~ N ; ~  

A L  and Nzr are not  unique and A L  extracts a zero  at s = 1 from the 
first row of Nir,  and  a zero  at 00 from  the third row of Nir.  Now 

(Nir)-1= 1 (s - 2)(s + 1) 
s- 1 ... 

- (s+ 1)2  

s- 1 

(s + l)(s + 2) 
(s - l)(s - 2) 

... 

1 - 
* s-1 

s+ 1 
. s-1 

... 
- 

... 
. -(s+2) 
: (s- l)(s-2) 

- (s2 - 3) 

"I . (s+1I2 
* s-1 ... 

- 2(s+ 2) 
: (s- l)(s-2) 

and 

AR = diag (s- l)(s - 2) (s - l)(s - 2) (s - l)(s - 2) 
(s+ 1)2(s+2) ' (s+ l)(s+2) ' (s+ 1)2(s+2) 1 

l)(s+ 2) : (s+ l)(s+ 2) : (s+ 1)2(s+2) 1 
(The first and the third diagonal entries of A R  are  equal to det 
N;r.) Then, 

s - 2  . - (s2 - 3)(s - 2) 

... ... ... 
s - 2  : (s-2) - 

s+ 2 I 
and 

where Qd E X3 x 3  is diagonal and nonsingular.  The closed-loop 
diagonal  110 map Hyoy has  a zero of multiplicity three  at q = 2 
and three  zeros  at 00. Hyou may have  other ,g + -zeros  due to Qd. 
The  cost of decoupling is the  increased number  of e+ -zeros  (due 
to AR) and the restriction that Q d  be diagonal. 

Example 3: In this example  we  design a  decoupling  compensa- 
tor for  the Po given in (4.3), which is the  model  of  a  "boiler 
subsystem"  in [19]. Johansson and  Koivo  apply  the inverse 
Nyquist array method  of Rosenbrock in  the design of a multivaria- 

ble  controller  for this system.  Let X : = a ( s ,  e-n). 

. - 1  

... E X2X2. (4.3) 
0 : -  

* ~ O S +  1 

An r.c.f. of Po is given by Dpr = I ,  Nir = Po. Then 

1 1 
AL=diag [ - , -1 and (N;r) - l  

7 s + l  4Os+l 

-(lOs+  l)eB . -(60s+ l)eIB 
7s+ 1 (40s+ 1) ... ... 

0 
. (60s+ 1)elos 
. (40s+ 1) 

From this, we obtain AR = diag [e --LF, e - I&], and 

NT/=(Nir)-'ARQd 

-(lOs+ 1) . (60s + 1) . -  

(40s + 1) 

where Q d  E X2x2 is diagonal and nonsingular. Finally, 

The  closed-loop UO map is diagonal  and  the  time-constants  are 
reduced from 10 s and 60 s to 7 s and 40 s, respectively. 

CONCLUSIONS 

Without decoupling,  the set of all achievable  110 maps of C (P, 
K) is  given  by (3.13). The  compensator  parameter Nr,, which  is 
used  in designing  the I/O map, is made  X-stable by an 
appropriate  choice of  a diagonal  X-stable  matrix A R  defied by 
(3.3). Finally, the set of all achievable  diagonal  nonsingular 110 
maps  is  given  by (3.1  l), where AL appears  as a left factor of  both 
diagonal and  nondiagonal achievable UO maps. 

The  examples of this section  clearly illustrate the cost involved 
in decoupling the I/O map  while requiring that  it  be X-stable; this 
cost is reflected by A R  and Q d :  AR must  be chosen so that N,I is 
X-stable; Qd E X"'" must  be diagonal. In the case that X = 

(or X = a ( s ,  e-r5) as in Example 1)  the  presence of AR in 
the  diagonal  IIO map results in increasing  the numbqr of %-zeros. 
If NEr E det AR has exactly  twice as many %-zeros  as  det 
Nir (for a proof,  see the Appendix.) This design method has two 
degrees of freedom:  decoupling  the I/O map  has no effect on the 
D/O map. The D/O map is designed  using  the  parameters DcI and 
NJ of the compensator.  The only compensator  parameter used  in 
the I/O map is N+ 

Four  classes of systems  for which the results of this paper are 
valid can be found in [ 1 1 ,  Table  I]. 

APPENDIX 

Let n = 2. Let N o  , AL, A R  be defied as in Section III. U.t.c., 
det AR = (det Nir)%, where u E U ( X ) .  
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Proofi Let 

where, by construction of AL, (rill, n 1 3  is a coprime pair. With 6 
: = det Nor, the fist  and the second columns of (NiJ - are (n22/ 
6, - n 2 1 / ~  and ( -n12/6 ,  n11/6), respectively. Now, any irreduc- 
ible common factor that cancels in n22/6 will  not cancel in - n2 , /6  
since (nZ, - n z 1 )  are coprime. Thus, a least common denomi- 
nator for the first column is 6. The same holds for the second 
column and hence, AR = diag (6, 6). Then det AR = (det f i ; r ) 2 ,  

times a factor in U(X) .  
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