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Decoupling Linear Multiinput Multioutput Plants
by Dynamic Output Feedback: An Algebraic
Theory

CHARLES A. DESOER, FELLOW, IEEE, AND A. NAZLI GUNDES

Abstract—This paper presents an algebraic theory for the design of a
decoupling compensator for linear time-invariant multiinput multioutput
systems. The design method uses a two-input one-output compensator,
which gives a convenient parametrization of all diagonal input-output (I/
0) maps and qil disturbance-to-output (D/0) maps achievable by a
stabilizing compensator for a given plant. It is shown that this method has
two degrees of freedom: any achievable diagonal 1/0 map and any
achievable D/O map can be realized simultaneously by a choice of an
appropriate compensator. The difference between all achievable diagonal
and nondiagonal 1/0 maps and the ‘“cost’’ of decoupling is discussed for
some particuiar algebraic settings.

I. INTRODUCTION

N the design theory of linear time-invariant, multiinput

multioutput (MIMO) systems, the characterization of all designs
which can be achieved by a stabilizing controller for a given plant
is a subject of great interest because it shows the limitations on
achievable performance imposed by the plant model and the
constraints of linearity and stability. Stabilizing compensators
were first characterized by Youla er a/. [31] for the lumped
continuous and discrete-time cases. Later, an algebraic formula-
tion was given by Desoer ef al. [9] to include the lumped and
distributed continuous-time and discrete-time cases. Using alge-
braic tools, Zames [32] considered stable plants, characterized all
stabilizing compensators, and established bounds on closed-loop
performance. His methods were used for design in [10]. Further
results in parametrized form were given in [25], [5], [28], [24],
and [29] until finally a general algebraic design procedure, which
enables design with nonsquare plants and controllers and extends
the parametrizations of [31] and [25] was obtained in [11].

This paper presents a general algebraic design method for all
diagonal input-output (I/O) maps which can be achieved by a
stabilizing two-input-one-output controller for a given plant. The
design method is referred to as two-parameter compensation [30}]
or two-degrees-of-freedom design [17]. We consider the MIMO
configuration 2 (P, K) of Fig. 1, where the plant P has an output
Yo and a measured output y,, and the controller X has two inputs:
the exogenous input v and the feedback signal e, = u, — y,,. Such
two-parameter controllers were used, for example, in [1], [25],
and [11]. This two-parameter compensation scheme enables us to
design the I/0 map independently of the D/O map and, therefore,
requiring the compensator to diagonalize the I/0O map leaves the
stabilizing nature of the compensator intact. Furthermore, any
plant, which satisfies the assumption to be given in Section II, can
be stabilized and decoupled with a proper compensator, and
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unlike in one-parameter compensation schemes, decoupling
brings no restrictions to those parameters of the compensator that
are used in stabilization.

Some of the related work in this area can be summarized as
follows. Decoupling of linear time-invariant multivariable sys-
tems over unique factorization domains is considered in [8];
necessary and sufficient conditions are established for the exist-
ence of a decoupling dynamic or static stare feedback in the case
that the system is internally stable and reachable. Furthermore,
the stability preserving stable compensator is required to be
invertible over the unique factorization domain. In the present
paper, the plant is #of assumed to be stable, dynamic output
feedback is used, the compensator is not required to be stable, and
if stable, it is not required to be invertible over the principal ring.
Hammer and Khargonekar [16] give necessary and sufficient
conditions for a plant P to be decoupled using a one-parameter
compensator C placed in the feedback loop, and show that, in
the lumped continuous-time case, there is no proper compensa-
tor which would decouple a plant whose inverse has off-diagonal
polynomial terms: with strictly proper plant and proper compen-
sator, the inverse of the resulting diagonal I/O map is {P(J +
CP)-'1-! = (I + CP)P !, which approaches P! as |s| = o0;
hence the configuration proposed introduces the unnecessary
constraint that the polynomial part of £~! must be diagonal. This
problem does not arise with our two-parameter compensation
scheme. Dion and Commault [14] study the row by row
decoupling of a strictly proper system by dynamic state feedback
defined by u = F(s)x + Gu where F(5) is a proper rational
matrix and G is a constant matrix; the equivalent compensator is a
precompensator B(s)G, where B(s) and its inverse are proper
matrices. They give the conditions for decoupling by such a
compensator and give the minimum McMillan degree achievable
for the decoupled system (see [14] and the references therein). By
restricting the plant P(s) to approach diagonal dominance as |s| =
o, Zames and Bensoussan [33] include a study of decoupling with
an arbitrarily small tolerance using a compensator in the feedback
loop.

The system X (P, K) shown in Fig. 1 represents a general
configuration in which y,, the output-of-interest, is not necessarily
the same as the measured-output y,,, which is the feedback input
to the compensator; furthermore, the disturbance d is applied
directly to the pseudostate of the plant rather than being an
additive input as, for example, in [11]. The paper is organized as
follows.

Section II defines the problem and states the stabilizability
conditions. Section II builds the structures used for decoupling
the I/O map, and presents the main results: the achievable
diagonal I/0 maps and the achievable D/O maps. Some examples
and the conclusions are in Section IV.

The following is a list of the commonly used symbols.

a := b means a denotes b. 8, is the n-vector of zeros. W.l.0.g.
means without loss of generality. U.t.c. means under these
conditions. If 3C is a ring, then &(JC) denotes the set of matrices
having all entries in 3C. ® o denotes the proper rational functions
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Fig. 1.

analytic in the region U C ©, a symmetric subset of € which
contains @, and U := U U {eo}. R(s) denotes the scalar
rational functions in s with real coefficients, and R[s] denotes the
scalar polynomials in s with real coefficients.

Throughout the paper, the properties of groups and of
commutative rings are used; these and other standard algebraic
terms can be found, for example; in [2], [7], [18], [21], [22], and
[34]. The algebraic structure used here is similar to that of [11].
Algebraic Structure [2, p. 55}, [18, p. 393], [21, p. 69):

3C: A principal ring (principal ideal domain), i.e., an entire
commutative ring in which every ideal is principal (e.g., R ).

G: The field of fractions over 3C [e.g., R($)].

9: A multiplicative subset of JC, equivalently, 9 C 3C, 0 & 9,
and x, y, € d implies thatxy € 9. W.lLo.g. 1 € 9 (e.g.,f € Jif
f € Gq and f(o) = 1). .

G := {n/d:n € 3, d € 9}, a subring of G (e.g., Ry(s), the
ring of proper scalar rational functions).

U@sc) := {m € 3¢: m~! € I}, the group of units in JC
(e.g.,f € UX) if f € Rq and f(s) # Oforalls € U). '

G:={xEGU+x)'EGVYE G} (Jacobson radical
of Q) (e.g., R,(5), the set of strictly proper scalar rational
functions).

Four examples of this algebraic structure are given in [11,
Table I].

II. DESIGN THEORY

A. Problem Description

We consider the MIMO linear, time-invariant system X (P,
K)(E (P, K)) shown in Fig. 1 (Fig. 2). Given a plant P, we wish
to design a controller K with two inputs and one output such that
the resulting feedback system is stable, K has elements in G, and
the I/O map v ~ ¥, is nonsingular and decoupled, i.c.,
diagonal. We make the following assumptions on % (P, K).

Assumptions on the System T (P, K):

(P) P = [£,] € G¥*7, and det P° # 0. Consequently, let

(]
N, —1
pre

m
N,

with D, € 3C"*", N7, Ny o€ Jemxn and det D, € 9, det Ny #
0, be a right-coprime factorization (r.c.f.) of P.

(K) K € g2, Consequently, let D! [N,iN;] with D, €
jerxn N, € Jerxa Ny € JC"**, and det D; € 9 be a left-
coprime factorization (l.c.f.) of K; we further assume that det
(Dc[Dp, + NﬂNZ:‘) € 9.

It is understood that the subsystems P and K, specified by their
transfer functions, do not have any unstable hidden modes [3,
sect. 4.2].

Under assumptions (P) and (K), the system Z (P, K) in Fig. 1
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Fig. 2. The system '¥ (P, K).

is completely described by

In _Dprj N1
Dy : NuNp | | &
[0 -0 - -L: O v
- e
Ny :Npg: 0 @ =NaNn || S
1, 0
B4
0 A [;"]= Yo
P Vm
0 ;Nl’,",
o 0 o0 0
Do !
0:0: 0:-Nm|[d

Letu:= (w7, ul, ul,dD)7, £:= L, EDT y:= Ol y],
»I)7. Then (2.1) and (2.2) are of the form

DE=Nu (2.3)

N.£=y+Eu 2.9
where the matrices D, N, N,, E, defined in an obvious manner
from (2.1) and (2.2), have all their elements in JC.
For any D € 3C"*" and any Ny € 3C"**, define
Dy, 1= DDy + NyN™. (2.5
Note that det D = det D; and, by assumption (K), det D € 9.
Let assumptions (P) and (K) hold; then from (2.3) and (2.4) we
obtain
H,,=N,D7'N;+E € &(9). (2.6)
Thus, det D € 9 is a sufficient condition for the well-posedness of
T (P, K).
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Definition 2.1—(3C-stability): The system Z (P, K) is said to
be JC-stable if and only if H,, : ¥ — y satisfies H,, € &(3().

Definition 2.2 (Stabilizing Controller): Let the plant P satisfy
(P); the controller K is said to stabilize P iff K satisfies
assumption (K) and the resulting system X (P, K) is JC-stable.

Proposition 2.3 (Stabilizability of P): Let P satisfy (P), and
in addition let P € G7*”. Then

i) K stabilizes P if and only if det D, € U(3(),

ii) there is a compensator which stabilizes P if and only if (N7,
D,,) is a right-coprime (r.c.) pair, i.e., there are matrices o
V;’r € &(3C) such that

Un N7+ VT Dy=1,. Q.7

Remark (Normalization) [30]: W l.o.g. K stabilizes P if and

only if

Dy=1 2.8)

Proof of Proposition 2.3: See [13].

III. ACHIEVABLE PERFORMANCE OF X (P, K)

In order to characterize all diagonal 1/0O maps which can be
achieved by 'S (P, K) for the given plant P, we introduce two
diagonal matrices: A; and Ag.

Construction of Ay and Ag: Let P € Q¥xn, K € Grnx2e,

Let 1, € JC'*" denote the kth row of N7 € JC"*". For k =
1, -+-, n, define A;; as a greatest common divisor (g.c.d.) over
JC of the elements of 7, [21, p. 71]: such A, is well defined
within a unimodular factor since JC is a principal ring. Let the
row-vector i, € JC!*" be defined by 1, = Ayl Let N° €
JC»*" be defined as the matrix which has 7, as its kth row. Then

No =diag (Api, **y Apes * 75 A)NG, =1 ALNS (3.1)

where A; and ]\7‘;, are not unique, since each A, is only defined
within a factor in U(3C). (In the case that 3C = Rq, A
“‘bookkeeps’’ the plant zeros in U that are common to all
elements of the kth row of Ng, .) A similar factorization is used in
[8].

The matrix 1\7°r is not necessarily invertible over 3C”*7; but by
assumption (P), and from (3.1), (Ngr) ~! has elements in the field of
fractions [3C] [3C \ 0] ~! of the entire ring 3C since det N € X,
and det N7 = det A, det N], where A, is nonsingular by
construction {21, p. 69]. Let m;/dy denote the ijth element of
(N"fr)“, i,j =1, -+, n, where my, d; € 3C are coprime; thus

— Lyomy
(No) ! =: [d—f] .

Forj =1, « -, n, let Ag; be a least common multiple (1.c.m.) of
dij, dyj, - -, d; the elements of the jth column of (N;’”)‘l 21, p.
72]. Each Ag; is defined within a factor in {J(3C). Define

(3.2)

AR = d]ag (ARla ce, ARJ', RN AR,,) € Jenxn, (3.3)

An extraction of a diagonal factor analogous to A is done in [10].
Lemma 3.1: Let N° and Ap be defined by (3.1) and (3.3).
Then (N2)~1Az € Jexn,
Proof: Since Ag; is an L.c.m. of (d)7_,, fori = 1, -+, n,
we have some d;; € JC such that

ARj=dij51j. (3~4)

Then the ijth element of (N°)~!Ag is (my/dy)Ax; = mydy € 3C
by (3.2) and (3.4). u

The 1/0 Map H,, and the D/O Map H, 4

For any system X (P, K) satisfying (P) and (K) (hence, for
which det D, € 9), (2.1) and (2.2) show that the /O map H, ,:v
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~ ¥, and the D/O map H, qs:d ~ y, are given by

H,,,=N°D;'Ny 3.9

Yov ™

Hyg= N5 [I-D;'NgNT1=N,D; \DyD,.

r

(3.6)
Now if K stabilizes P, by (2.8), (2.5), and (3.1) we obtain

H,,,=N%Ny=a,N%Ny 3.7

f,

a=N°I=NyN™1=N% DyD,y. (3.8)
We now use the relationships between the stabilizing controller K
and det D, to give global parametrizations of a) the family of al/
diagonal I/O maps possible for a given plant with some sfabilizing
controller, and b) the family of a/l disturbance-to-output (D/Q)
maps possible for a given plant with some stabilizing controller.

Definition 3.1 (Achievable Maps): Let P be a given plant that
satisfies assumption (P); Roughly speaking, let 3C, (P) denote
the set of all achievable diagonal 1/0 maps of £ (P, K) and let
J,,q(P) denote the set of all achievable D/O maps of Z (P, K);

meore precisely,

3C,,,(P) := {H,,, : K stabilizes P and the resulting I/O
map H,,, is diagonal and nonsingular}

3.9)

3Cy,a(P) := {H, 4 : K stabilizes P and the resulting I/O
map H,,, is diagonal and nonsingular}.

3.10)

The following theorem characterizes all the achievable diagonal
nonsingular I/O maps and all the achievable D/O maps for £ (P,
K).

Theorem 3.2 (Achievable Diagonal 1/O Maps and Achieva-
ble D/O Maps): Consider the system X (P, K) of Fig. 1. Let P
satisfy assumption (P) and let (N[’;’r, Dy,)ber.c. LetD p‘,‘NI’,", be an
Lec.f. of P™, where Dy, N7, € 307" and det D, € 9. Let A;, Ap
be defined by (3.1) and (53) above. Then ) '

i) any map H, € 3C"*” is an achievable diagonal, nonsingular
1/0 map of the 3C-stable system I (P, K') if and only if H, €
3C,,.(P), where

3y, (P)={ALAgQy : Qy € JC™*” is diagonal and nonsingular}
(3.11)

ii) any map H,; € JC"*" is an achievable D/O map of the J3C-
stable system X (P, K) if and only if H; € 3C, (P), where
3ypa(PY={NO,[I- (U +RDp)N"]
=N° (VI —RN)D,, : R € 3™ s.1.

- det (V7.—RN™) € 9

where V;Tr’ U[';'r satisfy (2.7)}.

3.12)

Comments: 1) If decoupling were not required, the set of all
achievable 1/0 maps of % (P, K) would be given by

3you(P)={N°,0=4,N3,Q: Q € Jer*r}

pr=

3.13)

and the set of all achievable D/O maps would still be given by
(3.12) [11]. Requiring the I/O map to be diagonal adds a number
of constraints to the set of maps in (3.13): i) Q; € JC"*" must be
diagonal; ii) we have A Ay as a left factor of the /O map H, ,
instead of just A;. In the case that 3¢ = R, we can interpret the
cost of decoupling as follows: the ‘U-zeros of P%:e, — y, will
always be the zeros of H, , whether the 1/O map is decoupled or
not. However, with decoupling, the multiplicity (as a zero of det
H, ) of these U-zeros may be greater than the multiplicity as a
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zero of P°. This is due to Ag: indeed, A, is extracted directly from

, and if N° s invertible over 3C”*7, the resulting I/O map will
have the samé Ul -zeros as the original P° assuming that Qy brmgs
no U-zeros; but since A is constructed so that N, =
(N") ‘ARQd € 8(3C), det Ag has a greater multiplicity of the
same ‘l-zeros than No has. It is shown in the Appendix that if »
= 2,det Agp = (det N" )2 within unit factors in JC. If (N") e
JCnx», the diagonal I/O maps are of the form A; Q.

2) The diagonalization of the I/O map is achieved by choosing
N,;; this choice is independent of the choice of D, and Ny, which
appear in the D/O map. Similarly, N,; does not appear in the D/O
map. Thus, the /O map and the D/O map of the JC-stable (P,
K') can be specified independently: it is a two-degrees of freedom
design [17]. The parameter R appearing in the D/O map is related
to the system stability, but the parameter Q,in (3.11) is only used
in shaping the output.

3) It is important to note the constraints imposed on H,_, by the
ql-zeros and the U-poles of the plant when JC = R If ¥ (P, K)
is JC-stable and if PF : = PD,'Np is full normal rank in R,(s),
then:

a) If z, is a U-zero of N” (equivalently, 3a # 9, such that
oz*N" (z0) = 3,) then

o*NJ (I-NpN ) (zo) = o™ y0d(Z0) = On. 3.19)

b) If N”j’ has full normal rank and if z,, is a U-zero of N"‘
(equivalently, 33 # 9, such that N’" "(Zm)B = 8,), then

N (I~ NaN™Yzm)8 =N, @n)B= Hyoa(@m)B.

c) If p,, is a U-pole of P (equivalently, 3y # 9, such that D, p,)y
= 4,), then

(3.15)

Nz,Dcl-Dpr (po)'y =

Thus, whenever either N° or N7 has a U-zero or when P has a
U-pole, the D/O map is constrained by a vector-equality such as
(3.14)-(3.16), respectively.

Proof of Theorem 3.2: (= >) We are given P satisfying
(P) and any diagonal nonsingular I/O map H, € 3C”*" and any D/
O map H,; € JC"*” achieved by the JC-stable system % (P, K).
Since H, is an achievable I/O map, K satisfies assumption (K).
We must show that H, is of the form A; ArQj, for some diagonal,
nonsingular Q; € JC"*" and H, is of the form N7 [ - wy, +
RDy)N7] = Nj (V'" — RNJ)D,, for some R € CFC"""
satisfying det (V'" - RN?) €4

Since X (P, K) is JC-stable, using (2.8), (3.5), (3.7), and (3.1),
we see that the diagonal matrix A; € JC?*" is obviously a left-
factor of H,. It remains to show that Ay is also a factor. For a
contradiction, suppose that for all diagonal @, € JC"*", H, is of
the form

Hy,a(Po)y = 8n. (3.16)

H,=A; A0, (3.17)

where Ay is a proper factor of Ag, and Q, € """ is nonsingular
and diagonal. W.l.0.g. suppose, for example, that

Ag=diag (Ag1, “* 5 Agj—1, Agjs Agjsris *° 5 Ara) (3.18)

where, for a nonunit prime element §; € JC [21, p. 72],
ARj=6j5Rj. (3.19)

Then by (3.7) and (3.17)

ALND Nr =480, (3.20)
Since JC is a principal ring, we may cancel the nonsingular left-
factor A; and invert N" in (3.20) to obtain
AR Qq-

Nu=(N5)" @.21)
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By (3.2) and (3.18)

m;: X -
Ny= [d—y] diag (Agy, ***, Arjy % Bra) © Qa (3.22)
Hi
Recalling that Ag; is by definition a lL.c.m. of (dy)7_, and by
(3.19), for some i, we have
d;j=6;d; (3.23)

where 07,-,- € JC is a factor of ZRJ-; i.e., thereis a &; € 3C, possibly
a unit, such that

ZR‘1=d~,j6,‘, (3.24)
Hence, with g; € JC denoting the jth (nonzero) diagonal entry of
some general nonsingular diagonal Q; € JC”*", we obtain the
ijth element of N, from (3.22)-(3.24) as

m!
6-J é;id;. (3.25)
J
Since 8; & U(3C) and in general §; is not a factor of g;, (3.25) is
not in 3C. Therefore, except when the prime nonunit 3 is a factor
of gj, N & 3Cm*", thus with N,, as in (3.21), there is a diagonal,
nonsingular @, € 3C”*” such that X does not satisfy assumption
(K). This contradicts the assumption that K stabilizes P. There-
fore, H, must be an element of the set in (3.11).

Now consider A By (2.5) and (2.8),

NgN?+DyDp=1. (3.26)
Viewing (3.26) as a /inear matrix equation in §(3C), we solve for
(Do, Np) subject to det Dy € 9 so that D !Ny € gnxn: since

(N™ o D,,) is an r.c. pair, from (2.7) we have
and since N;’er"‘ = D,,‘,‘NZ’, = P, we have
DyN7 —N3 Dy =0. (3.28)

The pair (U V’:) in(3.27)i 1s a partlcular solution to (N, D) in
(3.26) and the pair (Dp,, N™) is a particular solution to the
homogeneous equation (3.28). Hence, any general solution of
(3.26) is given by

(3.29a)

Np=U7+RDy

Dy= V’;;_—RN;”I.

We now show that R € §(3C). Since K satisfies (K), det D, € 9;
therefore, det (VZ’ RN'") € 9. Since (Dy, N7 ,) are l.c., there
exist Vi, Uy € 6(3C) such that

(3.29b)

Dp/ Vp/+N;1[UpI=I. (3.30)

Thus, by (3.29a), (3.29b) and (3.30), we see that R = R(D, V)
+ N7 Upl) = (Nﬂ U )Vpl + (V cl)UpI = NﬂVpl -
DU & 8(30) since N, Doy V., Uy € E(30).

From (3.9) and (3.29a), (3.29b) H; = N" AV (U"’
RD,,,)N 1=N¢ (V”’ RN”’)D,,, Therefore "the given Hd is
an elemem of the set (3 12).

(< =) For some diagonal nonsingular Q, € JC"*", we are
given H, = A;ArQy, and for some R & JC"*", we are given Hy
= No [l — (U + RD,N7] = Nj (V7. — RN7)D,,, where
det ( V'" - R ,) € 9. We must show that there exists a
compensator K whlch stabilizes P and the JC-stable X (P, K)
achieves the given H, and Hd

Choose the controller K : = Dg'[N,;iNy] with Ny and D, as
in (3.29a), (3.29b) and N,; = (N°) ~!ApQ;,. By Lemma 3.1, N,
€ 3erxn, Clearly, Dy, Ny € s‘(:}C) Note that det D, € 9 is
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guaranteed by the R that was chosen. (Note that if P € GI**,

Here, A, and N o are not unique;
rational part of each row of NY.

A, extracts a zero at oo from the
From

then det Dy € g for all R € JC"*" since Ny, N7\ € Q"x")
Now, by (2.5)
D,,=(V’" RN”‘)D,,,+(U"‘ +RDp1)N;‘,. (3.31)
By (3.26) and (3.27), Dy = I. Rewriting (3.31) as
(V™ ~ RNT)D,,
+[(N2) "ArQy | (UT+RDp)] | - ax =1

we see that (D, [Nn: Ny]) are l.c., and this K satisfies (K). Since
det D, € U(I0), X (P, K) is JC-stable by Proposition 2.3 i).

By (3 7), we calculate the I/O map: H,, = N Ny =
ALN" (N" V) !AzQ, = H,. By (3.8), we calculate the /o map:
Hyod = N I — NpN7l = NoW - (U + RD,Np] =
NgrDc,Dp, N° (V5 — RN, ,)D,,, = H,

Summary: Given the setup of Theorem 3.2 and, in particular,
the Q, and the R of (3.11) and (3.12), the compensator X that
achieves the specified diagonal, nonsingular H, and the specified
Hj as in (3.11) and (3.12), and that stabilizes P is given by the
left-coprime factorization

Dy=Vm—RN™, [Ny i Nal=[(N°) 'ArQq : UT+RDy].

IV. ExamMPLES AND CONCLUSIONS

In the following examples we concentrate on the diagonal /O
map H, ,, and show the design for the compensator parameter

x>

Example 1: In this example, JC : = ®(s, e ~™) is the principal
ring where ®(s, e ~") denotes the rationa!/ functions which are
proper in s, analytic in @, and have coefficients in R[e ~"].
(R[e —~] is the ring of polynomials in e =" with real coefficients.)
Consider the P? given by (4.1) below: it is strictly proper but not
JC-stable, and it has a simple zero at s = 3.

es 1
s—1 ° §=2
Po(s, e ®)= . & 32x2, 4.1)
er ., e
s+1 s—1
A r.c.f. of P° is given by
e * s—1
s5+2 s+ 1?2
0 — o —l_
P°=N3 D '=
—1e 2= (s—2)e=s
s+ 1D(s+2) s+1)?
- diag E s __(s—l)(s—Z) _1.
s+2 s+1)2
Then

. 1 e-s
No <A, N =diag | — , —
r=ALNG, = diag [s+2’ s+l]

o -1(s+2)
s+ 1)?
(s—1e % ' s—1
s+2 s+1

(s=2)s+1) —(s—-1)(s+2)
(s—3)e~* (s—3)es
(A"jzr)—l___ & JCZXZ’
~(s—1s+1)? (s+1)?2
(s—3)s+2) (s—3)
we obtain
o —3e" (s—3)e*
A =ding [ G+D? (12 ] ;
and
s=2 . —(=D6+2)
) s+1 : (s+1)2
Ny=(N2) 14 Qy= " e Q-
——De* s
_ e
s+2

Note that each diagonal entry of Ap i

s equal to det N;

Consequently, det Ap = (det N o, )2, and the number of the @ -

zeros of the diagonal 1/0 map is increased.

H, .=A; ApQy=diag [

has a zero of multiplicity two ats = 3 and
zeros due to O, €
Ne¢ , we see that the cost of decoupling is th

Here,
(=35 (s—3)e %>
G+2(s+ )2’ (s+1)? Qa

it may have other @, -

JC2%2, Comparing this to the @, -zeros of det

e increased number of

8. -zeros (due to Ag) and the restriction that Q, be diagonal.

Example 2: Let 3 = R, where U =

©.. P is given by

(4.2): it is proper but not JC-stable; P° has a zero of multiplicity
twoats = 1, a zero at s = 2 and two zeros at infinity.

C s—1 .1 G=1@E-2) |
(s=3)(s+2) * s+2 s+ D(s+2)
s+1 s—2
P=1 500 ! 572
0 1 s—2
i G-D+1) * +DE+2)
¢ J03%3. (4.2)
An r.c.f. of P?is given by
[ s-1 s—1 G-D-2) |
E+DE+2) F S+HDE+H2) s+ +2)
oD—l_ 1 s_—_l S;Z
NeDor = s+1 s+2
0 1 5s—2
B s+ D2 (s+Ds+2)
s—3 s-1
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Then,

No =ANo,

1 1 s—2
s+1 s+1 s+1
s— 1 s—1 s—2
=d * » 1 1 T _—
128 [s+2 s+l] s+1 s+2
0 1 . s—2
| s+1 s+2_

A and N° . are not unique and A, extracts a zero ats = 1 from the

first row of N © » and a zero at oo from the third row of N ¢ . Now
[-26+1) . 1 —(s2-3) ]
s—1 : s—1 : s—1
cono1_ | —G+D? s+1 s+1)2
(N = s—1 : s—1 s—1
s+ 1D(s+2) —(5+2) -2(s+2)
L (s—1)(s—2) s—1(s-2) (s-1)(s—2)
¢ 5(33)(3
and
Aw=di ~-DE-2) -DE-2) (-1)s-2)
R= | T D25 +2) G+ D6+ G+ DXs+2)

(The first and the third diagonal entries of Ag are equal to det
Nzr.) Then,

[ (s—2)? s=2 —(2=3)(s—-2) |

S+ DE+2) S+ D(s+2) G+ 1D(s+2)

—(s-2) s—2 (s—2)
Ne=| =2 1 2 S5 | 9

1 A -2

[ s+1 : s+1 oG+
and
Hy,=A1 804

(s—1)(s—-2)

=diag [ (- DXs-2)

(s—1(s—-2)
G+DAs+2)?° (s+ D(s+2)° Qus

s+ 1D3s+2)

where Q, € 3C3*3 is diagonal and nonsingular. The closed-loop
diagonal I/0 map H, , has a zero of multiplicity three at s = 2
and three zeros at co. Hyo,, may have other &, -zeros due to Q.
The cost of decoupling is the increased number of @ -zeros (due
to Ag) and the restriction that O, be diagonal.

Example 3: In this example we design a decoupling compensa-
tor for the P° given in (4.3), which is the model of a ‘‘boiler
subsystem’’ in [19]. Johansson and Koivo apply the inverse
Nyquist array method of Rosenbrock in the design of a multivaria-
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ble controller for this system. Let JC : = QR(s, e

_e_zs'
10s+1 10s+1
Pos, e™")= : € 3022, @.3)
o105
0 60s+1
An r.c.f. of P?is given by D,, = I, Ng, = P°. Then

Ay =dia ! ! d (Ne)-!
L=CBE N 7o 1 q0s+1 | N)
—(10s + 1)e* —(60s+ 1)e'>
7s+1 (40s+1)
0 (605+1)ew‘
40s+1)

From this, we obtain A, = diag [e~%, e~'%], and

N11=(N;,)_IARQd
~(10s+1) (60s+1) 1
(Is+1) (405+ 1)
- cen 04,
0 (6OS+ De->
(40s+1)
_ where Q, € 3%*? is diagonal and nonsingular. Finally,
) e PSP
oo =Au8nQa=dizg | 707 G051 |

The closed-loop I/0 map is diagonal and the time-constants are
reduced from 10 s and 60 s to 7 s and 40 s, respectively.

CONCLUSIONS

Without decoupling, the set of all achievable I/0O maps of X (P,
K) is given by (3.13). The compensator parameter N,;, which is
used in designing the I/O map, is made JC-stable by an
appropriate choice of a diagonal JC-stable matrix Ag defined by
(3.3). Finally, the set of all achievable diagonal nonsingular 1/O
maps is given by (3.11), where A, appears as a left factor of both
diagonal and nondiagonal achievable I/O maps.

The examples of this section clearly illustrate the cost involved
in decoupling the I/O map while requiring that it be JC-stable; this
cost is reflected by Ap and Q4. Az must be chosen so that NV, is
JC-stable; O, € JC”*" must be diagonal. In the case that JC =
®Rq (or I = R(s, e ™) asin Example 1) the presence of Ag in
the diagonal I/0 map results in mcreasmg the number of ‘ll-zeros.
If No € JC**2, det Ag has exactly twice as many 9l-zeros as det
N" (for a proof, see the Appendix.) This design method has two
degrees of freedom: decouphng the I/O map has no effect on the
D/O map. The D/O map is designed using the parameters D,; and
Np of the compensator. The only compensator parameter used in
the I/O map is N,,.

Four classes of systems for which the results of this paper are
valid can be found in [11, Table I].

APPENDIX

Letn = 2. Let N°, A;, A be defined as in Section III. U.t.c.,
det Ag = (det N )%, where u € U(X).
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Proof: Let

LGV OV
VO — 2x2
Npr— : € 3C
Ay [ Hy

where, by construction of A;, (1, 1) is a coprime pair. With 6
:= det N?, the first and the second columns of (]V;r) -1are (ny/
8, — nu/gi and (— n3/8, n,;/8), respectively. Now, any irreduc-
ible common factor that cancels in 7,,/8 will not cancel in — n,,/8
since (ny;, —ny,) are coprime. Thus, a least common denomi-
nator for the first column is 6. The same holds for the second
column and hence, Ag = diag (5, 8). Then det Az = (det N 22
times a factor in U(3C).
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